1
|
Zhou M, Liu Z, Zhang B, Hu B. Defense systems of soil microorganisms in response to compound contamination by arsenic and polycyclic aromatic hydrocarbons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175364. [PMID: 39117226 DOI: 10.1016/j.scitotenv.2024.175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Arsenic and PAHs impose environmental stress on soil microorganisms, yet their compound effects remain poorly understood. While soil microorganisms possess the ability to metabolize As and PAHs, the mechanisms of microbial response are not fully elucidated. In our study, we established two simulated soil systems using soil collected from Xixi Wetland Park grassland, Hangzhou, China. The As-600 Group was contaminated with 600 mg/kg sodium arsenite, while the As-600-PAHs-30 Group received both 600 mg/kg sodium arsenite and 30 mg/kg PAHs (phenanthrene:fluoranthene:benzo[a]pyrene = 1:1:1). These systems were operated continuously for 270 days, and microbial responses were assessed using high-throughput sequencing and metagenomic analysis. Our findings revealed that compound contamination significantly promoted the abundance of microbial defense-related genes, with general defense genes increasing by 11.07 % ∼ 74.23 % and specific defense genes increasing by 44.13 % ∼ 55.74 %. The dominate species Rhodococcus adopts these general and specific defense mechanisms to resist compound pollution stress and gain ecological niche advantages, making it a candidate strain for soil remediation. Our study contributes to the assessment of ecological damage caused by As and PAHs from a microbial perspective and provides valuable insights for soil remediation.
Collapse
Affiliation(s)
- Meng Zhou
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zishu Liu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| | - Baofeng Zhang
- Hangzhou Ecological and Environmental Monitoring Center, Hangzhou 310007, China.
| | - Baolan Hu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
2
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
3
|
Ojo AF, Peng C, Annamalai P, Megharaj M, Ng JC. Toxicity assessment of historical aqueous film-forming foams (AFFFs) using cell-based assays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119806. [PMID: 35868471 DOI: 10.1016/j.envpol.2022.119806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Aqueous film-forming foam (AFFF) has historically contained high concentrations of long-chain per-and polyfluoroalkyl substances (PFAS), which have been linked with adverse health outcomes. However, the toxicity of historical AFFFs remains largely unknown, presenting uncertainties in their risk assessment. This study assessed the toxicity of historical AFFFs by exposing human liver cells (HepG2) to various dilutions of 3M Light Water AFFF or Ansulite AFFF (0.001%, 0.002%, 0.005%, 0.009%, 0.019%, 0.038%, 0.075%, 0.15%, and 0.3%) for 24 h. The effects of the two AFFF formulations on the cell viability, intracellular reactive oxygen species (ROS) production, Nrf2-ARE activity, and DNA damage were assessed by CellTiter 96® Aqueous One Solution Cell Proliferation Assay (MTS kit), dichlorofluorescein diacetate assay, luciferase assay, and alkaline Comet assay, respectively. The results revealed that the two brands of AFFFs tested were toxic to HepG2 cells at dilutions lower than the recommended 3% application formulation. Specifically, exposure to 3M Light Water AFFF or Ansulite AFFF induced a dilution-dependent decrease in cell viability, increased intracellular ROS production, and increased Nrf2-ARE activity. However, except for the highest concentration (lowest dilution) of 3M Light Water AFFF tested (0.038%.), both 3M Light Water AFFF and Ansulite AFFF did not significantly induce cellular DNA damage. Overall, 3M Light Water AFFF was more toxic than Ansulite AFFF. The findings from this study provided valuable in vitro toxicity data that may better inform the health risk assessment of these historical AFFFs.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia
| | - Prasath Annamalai
- Global Centre for Environmental Remediation, School of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, School of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
4
|
Ojo AF, Xia Q, Peng C, Ng JC. Evaluation of the individual and combined toxicity of perfluoroalkyl substances to human liver cells using biomarkers of oxidative stress. CHEMOSPHERE 2021; 281:130808. [PMID: 34022600 DOI: 10.1016/j.chemosphere.2021.130808] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 05/26/2023]
Abstract
Although human exposure is to mixtures of per- and polyfluoroalkyl substances (PFAS), their combined effects and underlying mechanisms remain largely unknown. In this study, the combined effects of PFAS was investigated by treating human liver cells (HepG2) with various concentrations of perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorodecanoic acid (PFDA), perfluorononanoic acid (PFNA), and perfluorohexanoic acid (PFHxS) individually or in binary combinations (PFOS + PFOA, PFOS + PFDA, PFOS + PFNA, PFOS + PFHxS, PFOA + PFDA, PFOA + PFNA, and PFOA + PFHxS) for 24 h using an orthogonal design. The individual and binary combination effects of PFAS on the cytotoxicity, intracellular reactive oxygen species (ROS) production, and glutathione (GSH) levels were determined by MTS assay, dichlorofluorescein diacetate assay, and GSH-Glo™ Glutathione assay, respectively. The results showed that exposure to PFOA, PFOS, PFDA, PFNA, and PFHxS individually and in binary combinations caused concentration-dependent cytotoxicity to HepG2 cells. Also, intracellular ROS production was not significantly induced in both the individual and co-treatment groups, indicating that ROS production may not be likely influencing the combined cytotoxicity of PFAS to HepG2 cells. However, the depletion of the intracellular glutathione levels was correlated with cytotoxicity. Moreover, the factorial analysis results showed no significant interactive effects between PFOS + PFOA, PFOS + PFDA, PFOS + PFNA, PFOS + PFHxS, PFOA + PFDA, PFOA + PFNA, and PFOA + PFHxS. Taken together, the results showed that both individual and combined PFAS could induce concentration-dependent cytotoxicity and depletion of GSH levels, but could not induce significant increases in ROS production at the concentration range tested. Overall, these results provided valuable toxicological data on the combined effects of mixed PFAS that may help to better assess their human health risk.
Collapse
Affiliation(s)
- Atinuke F Ojo
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Qing Xia
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Cheng Peng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia
| | - Jack C Ng
- The University of Queensland, Queensland Alliance for Environmental Health Sciences (QAEHS), 20 Cornwall Street, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
5
|
Xu M, Fu L, Zhang J, Wang T, Fan J, Zhu B, Dziugan P, Zhang B, Zhao H. Potential of Inactivated Bifidobacterium Strain in Attenuating Benzo(A)Pyrene Exposure-Induced Damage in Colon Epithelial Cells In Vitro. TOXICS 2020; 8:toxics8010012. [PMID: 32053893 PMCID: PMC7151743 DOI: 10.3390/toxics8010012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 02/07/2023]
Abstract
Long-term exposure to benzo(a)pyrene (BaP) poses a serious genotoxic threat to human beings. This in vitro study investigated the potential of inactivated Bifidobacterium animalis subsp. lactis BI-04 in alleviating the damage caused by BaP in colon epithelial cells. A concentration of BaP higher than 50 μM strongly inhibited the growth of colon epithelial cells. The colon epithelial cells were treated with 50 μM BaP in the presence or absence of inactivated strain BI-04 (~5 × 108 CFU/mL). The BaP-induced apoptosis of the colon epithelial cells was retarded in the presence of B. lactis BI-04 through activation of the PI3K/ AKT signaling pathway, and p53 gene expression was decreased. The presence of the BI-04 strain reduced the intracellular oxidative stress and DNA damage incurred in the colon epithelial cells by BaP treatment due to the enhanced expression of antioxidant enzymes and metabolism-related enzymes (CYP1A1). The data from comet assay, qRT-PCR, and western blot analysis showed that the cytotoxic effects of BaP on colon epithelial cells were largely alleviated because the bifidobacterial strain could bind to this carcinogenic compound. The in vitro study highlights that the consumption of commercial probiotic strain BI-04 might be a promising strategy to mitigate BaP cytotoxicity.
Collapse
Affiliation(s)
- Mengfan Xu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Lili Fu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Junwen Zhang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Junfeng Fan
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Baoqing Zhu
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Piotr Dziugan
- Institute of Fermentation Technology & Microbiology, Technical University of Lodz, 90924 Lodz, Poland
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.Z.)
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.X.); (L.F.); (J.F.); (B.Z.)
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
- Correspondence: (B.Z.); (H.Z.)
| |
Collapse
|
6
|
Wang Y, Liu Y, Liu S, Wu B. Influence of Iron on Cytotoxicity and Gene Expression Profiles Induced by Arsenic in HepG2 Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16224484. [PMID: 31739468 PMCID: PMC6888336 DOI: 10.3390/ijerph16224484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/10/2023]
Abstract
The toxicity of arsenic (As) could be influenced by many environmental factors and elements. Iron (Fe) is one of the elements that could be involved in As-induced toxicity. In this study, the interactive effects of Fe and As in HepG2 cells were analyzed based on cytotoxicity and transcriptomic analyses. The results showed that Fe could decrease cell viability and increase mitochondrial depolarization induced by As exposure. Oxidative stress and damage have been proven to be one of the main mechanisms of As toxicity. Our results showed that Fe increased the generation of reactive oxygen species (ROS) and lipid peroxidation product malondialdehyde (MDA) induced by As exposure. Microarray analysis further verified that Fe increased the alteration of gene expression and biological processes related to oxidative stress, cell proliferation, and the apoptotic signaling pathway caused by As exposure. Both results of cytotoxicity and transcriptomic analyses suggest that an increase of Fe in the human body could increase the As-induced toxicity, which should be considered during the health risk assessment of As.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
- Correspondence:
| | - Yuxuan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
| | - Su Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (S.L.); (B.W.)
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; (S.L.); (B.W.)
| |
Collapse
|
7
|
Al-Zoughool M, Bird M, Rice J, Baan RA, Billard M, Birkett N, Krewski D, Zielinski JM. Development of a database on key characteristics of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:264-287. [PMID: 31379270 DOI: 10.1080/10937404.2019.1642593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A database on mechanistic characteristics of human carcinogenic agents was developed by collecting mechanistic information on agents identified as human carcinogens (Group 1) by the International Agency for Research on Cancer (IARC) in the IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. A two-phase process is described for the construction of the database according to 24 toxicological endpoints, derived from appropriate test systems that were acquired from data obtained from the mechanisms sections of the IARC Monographs (Section 4) and a supplementary PubMed search. These endpoints were then aligned with 10 key characteristics of human carcinogens that reflect the broader attributes of these agents relating to the development of cancer in humans. The considerations involved in linking of toxicological endpoints to key characteristics are described and specific examples of the determination of key characteristics for six specific agents (tamoxifen, hepatitis B virus, arsenic, ultraviolet and solar radiation, tobacco smoking, and dioxin) are provided. Data for humans and animals were tabulated separately, as were results for in-vivo and for in-vitro sources of information. The database was constructed to support a separate analysis of the expression of these endpoints by 86 Group 1 carcinogens, in-vivo and in-vitro along with an analysis of the key characteristics of these agents.
Collapse
Affiliation(s)
- Mustafa Al-Zoughool
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Jerry Rice
- Department of Oncology, Georgetown University Medical Center, Georgetown University, Georgetown, DC, USA
| | - Robert A Baan
- International Agency for Research on Cancer (retired), Lyon, France
| | - Mélissa Billard
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Krewski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- Risk Sciences International, Ottawa, Canada
| | - Jan M Zielinski
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Genotoxicity evaluation of multi-component mixtures of polyaromatic hydrocarbons (PAHs), arsenic, cadmium, and lead using flow cytometry based micronucleus test in HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:9-18. [DOI: 10.1016/j.mrgentox.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
|
9
|
Li X, Gu S, Sun D, Dai H, Chen H, Zhang Z. The selectivity of artemisinin-based drugs on human lung normal and cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:86-94. [PMID: 29227908 DOI: 10.1016/j.etap.2017.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 05/21/2023]
Abstract
Artemisinin-based drugs are documented to possess anticancer potential that is selectively effective to cancer cells. However, this selectivity is disputable in different studies and the mechanism is still unclear. To clarify this discrepancy, this study employed five assays to evaluate the cytotoxic effects of artemisinin and artesunate on normal human bronchial epithelial (HBE) cells and lung adenocarcinoma A549 cells. The results of five cytotoxic assays coherently showed that artemisinin and artesunate caused dose-dependent cytotoxicity in both HBE and A549 cells with a slight selectivity to A549 cells. Further, both HBE cells and A549 cells demonstrated elevated levels of intracellular reactive oxygen species (ROS) and increased DNA damage. Since artemisinin and artesunate exerted significant cytotoxic effect on both normal cells and cancer cells via the same pathway of ROS-mediated DNA damage, the side effects of artemisinin and artesunate on normal cell cannot be ignored when developing their antitumor effects.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shiyan Gu
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Donglei Sun
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Huangmei Dai
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongyu Chen
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
10
|
Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:443-455. [PMID: 28229170 DOI: 10.1007/s00210-017-1351-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022]
Abstract
Population of India and Bangladesh and many other parts of the world are badly exposed to arsenic through drinking water. Due to non-availability of safe drinking water, they are dependent on arsenic-contaminated water. Generally, poverty level is high in those areas with lack of proper nutrition. Arsenic is considered to be an environmental contaminant and widely distributed in the environment due to its natural existence and anthropogenic applications. Contamination of arsenic in both human and animal could occur through air, soil, and other sources. Arsenic exposure mainly occurs in food materials through drinking water with high levels of arsenic in it. High levels of arsenic in groundwater have been found to be associated with various health-related problems including arsenicosis, skin lesions, cardiovascular diseases, reproductive problems, psychological, neurological, immunotoxic, and carcinogenesis. The mechanism of arsenic toxicity consists in its transformation in metaarsenite, which acylates protein sulfhydryl groups, affect on mitochondria by inhibiting succinic dehydrogenase activity and can uncouple oxidative phosphorylation with production of active oxygen species by tissues. A variety of dietary antioxidant supplements are useful to protect the carcinogenetic effects of arsenic. They play crucial role for counteracting oxidative damage and protect carcinogenesis by chelating with heavy metal moiety. Phytochemicals and chelating agents will be beneficial for combating heavy metal-induced carcinogenesis through its biopharmaceutical properties.
Collapse
|
11
|
Muthusamy S, Peng C, Ng JC. Effects of binary mixtures of benzo[a]pyrene, arsenic, cadmium, and lead on oxidative stress and toxicity in HepG2 cells. CHEMOSPHERE 2016; 165:41-51. [PMID: 27639076 DOI: 10.1016/j.chemosphere.2016.08.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 08/28/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
Mixed contamination of benzo[a]pyrene (B[a]P), arsenic (As), cadmium (Cd), and lead (Pb) is a major environmental and human health concern. The mixture toxicity data on these co-contaminants are important for their risk assessment. In this study, we have determined the mixture toxicity of As, Cd and Pb, and B[a]P with As, Cd or Pb in HepG2 cells. The binary mixtures of Cd + As, Cd + Pb and As + Pb and B[a]P + metals (B[a]P + As, B[a]P + Cd and B[a]P + Pb) were evaluated for their interaction on the cytotoxicity using the MTS assay. A full factorial design (4 × 5) was used to determine the interaction toxicity and all the six mixtures showed significant interaction on the cytotoxicity. We further investigated the role of oxidative stress (reactive oxygen species (ROS) generation) and antioxidant defense mechanism (total glutathione (GSH) level) with the observed cytotoxicity. The mixtures of metals reduced the total GSH level and increased the ROS generation, respectively. In the case of mixtures of B[a]P and metals, both total GSH level and ROS generation were increased. Overall, the binary mixtures of metals and B[a]P with metals caused a dose dependent toxicity to HepG2 cells. The results also showed a significant contribution of oxidative stress to the observed toxicity and the potential protective role of the total GSH level against this mixture toxicity. The findings of interaction between B[a]P and metals might have an impact on the potential human health risk of this mixtures at contaminated sites.
Collapse
Affiliation(s)
- Sasikumar Muthusamy
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Member of Queensland Alliance for Environmental Health Science (QAEHS), Coopers Plains, Brisbane, QLD, 4108, Australia; CRC CARE, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Member of Queensland Alliance for Environmental Health Science (QAEHS), Coopers Plains, Brisbane, QLD, 4108, Australia; CRC CARE, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Jack C Ng
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Member of Queensland Alliance for Environmental Health Science (QAEHS), Coopers Plains, Brisbane, QLD, 4108, Australia; CRC CARE, The University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
12
|
Zaragoza-Ojeda M, Eguía-Aguilar P, Perezpeña-Díazconti M, Arenas-Huertero F. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line. Toxicol Lett 2016; 256:64-76. [DOI: 10.1016/j.toxlet.2016.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 05/17/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
|
13
|
Fan XY, Chen XY, Liu YJ, Zhong HM, Jiang FL, Liu Y. Oxidative stress-mediated intrinsic apoptosis in human promyelocytic leukemia HL-60 cells induced by organic arsenicals. Sci Rep 2016; 6:29865. [PMID: 27432798 PMCID: PMC4949440 DOI: 10.1038/srep29865] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/27/2016] [Indexed: 01/09/2023] Open
Abstract
Arsenic trioxide has shown the excellent therapeutic efficiency for acute promyelocytic leukemia. Nowadays, more and more research focuses on the design of the arsenic drugs, especially organic arsenicals, and on the mechanism of the inducing cell death. Here we have synthesized some organic arsenicals with Schiff base structure, which showed a better antitumor activity for three different kinds of cancer cell lines, namely HL-60, SGC 7901 and MCF-7. Compound 2a (2-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) and 2b (2-methoxy-4-(((4-(oxoarsanyl)phenyl)imino)methyl)phenol) were chosen for further mechanism study due to their best inhibitory activities for HL-60 cells, of which the half inhibitory concentration (IC50) were 0.77 μM and 0.51 μM, respectively. It was illustrated that 2a or 2b primarily induced the elevation of reactive oxygen species, decrease of glutathione level, collapse of mitochondrial membrane potential, release of cytochrome c, activation of Caspase-3 and apoptosis, whereas all of the phenomena can be eliminated by the addition of antioxidants. Therefore, we concluded that compound 2a and 2b can induce the oxidative stress-mediated intrinsic apoptosis in HL-60 cells. Both the simplicity of structure with Schiff base group and the better anticancer efficiency demonstrate that organic arsenicals are worthy of further exploration as a class of potent antitumor drugs.
Collapse
Affiliation(s)
- Xiao-Yang Fan
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xin-You Chen
- School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P. R. China
| | - Yu-Jiao Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hui-Min Zhong
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Feng-Lei Jiang
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- State Key Laboratory of Virology, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China.,School of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, P. R. China
| |
Collapse
|
14
|
Muthusamy S, Peng C, Ng JC. Effects of multi-component mixtures of polyaromatic hydrocarbons and heavy metal/loid(s) on Nrf2-antioxidant response element (ARE) pathway in ARE reporter-HepG2 cells. Toxicol Res (Camb) 2016; 5:1160-1171. [PMID: 30090422 PMCID: PMC6072108 DOI: 10.1039/c6tx00024j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 05/05/2016] [Indexed: 12/28/2022] Open
Abstract
Exposure to polyaromatic hydrocarbons (PAHs) and heavy metal/loid(s) has been demonstrated to induce an oxidative stress response in mammalian cells. The combined effect of PAHs and heavy metal/loid(s) on the oxidative stress response has not been reported extensively. The Nrf2 antioxidant response pathway plays an important role in cellular antioxidant defense against oxidative stress-induced cell damage. In this study, we have determined the combined effect of four PAHs (benzo[a]pyrene (B[a]P), naphthalene (Nap), phenanthrene (Phe) and pyrene (Pyr)) and three heavy metal/loid(s) (arsenic (As), cadmium (Cd) and lead (Pb)) on the Nrf2 antioxidant pathway using the ARE reporter-HepG2 cell line. The mixture study was carried out for binary, ternary, quaternary and seven-component combinations of PAHs and heavy metal/loid(s). Initially, individual dose responses for the PAHs (B[a]P, Nap, Phe and Pyr) and heavy metal/loid(s) (As, Cd and Pb), as well as their respective concentrations that induced an induction ratio of 1.5 (ECIR1.5), were determined. The luciferase assay system was used to quantify the induction of the Nrf2 antioxidant pathway. The individual dose response study showed that both PAHs and heavy metal/loid(s) activated the Nrf2 antioxidant pathway in ARE reporter-HepG2 cells. Among these chemicals, Cd was the most potent inducer, followed by B[a]P and As. Based on the individual dose response findings, PAHs and heavy metal/loid(s) were mixed at equipotent ratios using a fixed concentration ratio, and the effects of the mixtures of PAHs and heavy metal/loid(s) (binary to seven-component) on the Nrf2 antioxidant pathway were determined. The mixture effects were predicted by using the concentration addition (CA) model. Overall, the results showed that the multi-component mixtures of PAHs and heavy metal/loid(s) induced an oxidative stress response in ARE reporter-HepG2 cells, and that the CA model is an appropriate model to predict the interaction effect of these selected mixtures. A human cell line-based reporter gene assay system was successfully used to determine the mixture effects of two groups of common contaminants on oxidative stress response pathway.
Collapse
Affiliation(s)
- Sasikumar Muthusamy
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Member of Queensland Alliance for Environmental Health Science (QAEHS) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| | - Cheng Peng
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Member of Queensland Alliance for Environmental Health Science (QAEHS) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| | - Jack C Ng
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Member of Queensland Alliance for Environmental Health Science (QAEHS) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| |
Collapse
|
15
|
Muthusamy S, Peng C, Ng JC. The binary, ternary and quaternary mixture toxicity of benzo[ a]pyrene, arsenic, cadmium and lead in HepG2 cells. Toxicol Res (Camb) 2016; 5:703-713. [PMID: 30090384 PMCID: PMC6062251 DOI: 10.1039/c5tx00425j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/04/2016] [Indexed: 01/22/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and heavy metal/loid(s) are common environmental pollutants. Toxicological interaction data on benzo[a]pyrene (B[a]P) and heavy metal/loid(s) are lacking. In this study, we have determined the combined toxicity of B[a]P, arsenic (As), cadmium (Cd) and lead (Pb) in HepG2 cells. The binary, ternary and quaternary mixture toxicity of B[a]P and heavy metal/loid(s) was predicted by using the combination index (CI)-isobologram method. This method is useful to predict the quantitative nature of an interaction between chemicals at different effect (inhibitory concentration) levels from 0.1 to 99% using computerised quantitation. A total of 11 mixtures including six binary mixtures, four ternary and one quaternary mixtures of B[a]P and heavy metal/loid(s) were evaluated for their interactions. The cytotoxicity of individual and multi-component mixtures was evaluated by MTS assay. The selected concentrations for the individual dose response study were 0-100 μM - B[a]P; 0-40 μM - Cd; 0-400 μM - As and Pb. The individual dose response results showed that all four chemicals were toxic to liver cells with Cd being the most potent toxicant. Mixtures of B[a]P and heavy metal/loid(s) were prepared based on their individual Dm concentration using a 1 : 1 ratio and exposed to HepG2 cells. By using the CI-isobologram method, the predicted interactions between these chemicals were synergism, additivity or antagonism at different effect levels. All the mixtures except the ternary mixture of B[a]P + As + Pb displayed synergism at a lower effect level (IC10-IC30), and additivity, synergism or antagonism at 50-90% effect levels. Among these mixtures, mixtures of heavy metal/loid(s) (both binary and ternary combinations) and a quaternary mixture of B[a]P + As + Cd + Pb showed a strong synergistic response at lower effect levels compared to other mixtures. The predicted interaction response by the CI method was compared with classical models of concentration addition and independent action. The CI method displayed an improved prediction power compared to classical models. The predicted synergistic interaction between B[a]P and heavy metal/loid(s) may have important implications in the human health risk assessment of these mixed chemical mixtures at contaminated sites.
Collapse
Affiliation(s)
- Sasikumar Muthusamy
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| | - Cheng Peng
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| | - Jack C Ng
- The University of Queensland , National Research Centre for Environmental Toxicology (Entox) , Coopers Plains , Brisbane , QLD 4108 , Australia
- CRC CARE , The University of Newcastle , University Drive , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 414 747 147
| |
Collapse
|
16
|
Jasso-Pineda Y, Díaz-Barriga F, Yáñez-Estrada L, Pérez-Vázquez FJ, Pérez-Maldonado IN. DNA damage in Mexican children living in high-risk contaminated scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:38-48. [PMID: 25747362 DOI: 10.1016/j.scitotenv.2015.02.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 02/21/2015] [Accepted: 02/21/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to evaluate the deoxyribonucleic acid (DNA) damage (as a biomarker of biological effects) in children living in areas at high risk of contamination in Mexico using the comet assay. The alkaline comet assay was performed in order to assess DNA damage levels in blood cells of 276 children living in eleven communities in four states of Mexico. Moreover, levels of arsenic and 1-hydroxypyrene (1-OHP) in urine and lead and total DDT [sum of 1,1-dichloro-2,2-bis(p-chlorophenyl) ethylene (DDE) and 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT)] in blood were quantified. We found urinary 1-OHP levels between <LOD and 14.5 μmol/mol creatinine; for arsenic, the urinary levels were 3.5-180 μg/g creatinine (range). Lead levels in blood ranged from 0.5 to 24 μg/dL and finally, the levels of total DDT (DDE and DDT) ranged from <LOD to 32,000 ng/g lipid. Regarding DNA damage (comet assay), the most important finding in our study was that children exposed to a chemical mixture [high levels of exposure to polycyclic aromatic hydrocarbons (PAHs) and DDT were found] had the significant highest DNA damage level (p<0.05) in their blood cells (olive tail moment=7.5±3.5), when compared with DNA damage levels in children living in the other scenarios assessed in this work. Finally, significant correlations were observed between urinary arsenic levels (r=0.32, p<0.05); urinary 1-OHP levels (r=0.65, p<0.01); total DDT in blood levels (r=0.59, p<0.01) and DNA damage. In conclusion, the data indicates that children living in areas which are at high risk of contamination showed high levels of biomarkers of exposure in urine or blood. Moreover, the exposure levels contribute to DNA damage and suggest an increased health risk in studied sites at risk of great pollution.
Collapse
Affiliation(s)
- Yolanda Jasso-Pineda
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, Mexico; Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Mexico
| | - Fernando Díaz-Barriga
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | | | - Francisco Javier Pérez-Vázquez
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | - Ivan Nelinho Pérez-Maldonado
- Laboratorio de Toxicología Molecular, Centro de Investigación Aplicada en Ambiente y Salud (CIAAS), Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Mexico; Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico; Unidad Académica Multidisciplinaria Zona Media, Universidad Autónoma de San Luis Potosí, Mexico.
| |
Collapse
|
17
|
Chen C, Jiang X, Lai Y, Liu Y, Zhang Z. Resveratrol protects against arsenic trioxide-induced oxidative damage through maintenance of glutathione homeostasis and inhibition of apoptotic progression. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:333-46. [PMID: 25339131 PMCID: PMC4376608 DOI: 10.1002/em.21919] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 10/07/2014] [Indexed: 05/22/2023]
Abstract
Arsenic trioxide (As2 O3 ) is commonly used to treat acute promyelocytic leukemia and solid tumors. However, the clinical application of the agent is limited by its cyto- and genotoxic effects on normal cells. Thus, relief of As2 O3 toxicity in normal cells is essentially necessary for improvement of As2 O3 -mediated chemotherapy. In this study, we have identified a series of protective effects of resveratrol against As2 O3 -induced oxidative damage in normal human bronchial epithelial (HBE) cells. We showed that treatment of HBE cells with resveratrol significantly reduced cellular levels of DNA damage, chromosomal breakage, and apoptosis induced by As2 O3 . The effect of resveratrol against DNA damage was associated with a decreased level of reactive oxygen species and lipid peroxidation in cells treated by As2 O3 , suggesting that resveratrol protects against As2 O3 toxicity via a cellular anti-oxidative stress pathway. Further analysis of the roles of resveratrol demonstrated that it modulated biosynthesis, recycling, and consumption of glutathione (GSH), thereby promoting GSH homeostasis in HBE cells treated by As2 O3 . This was further supported by results showing that resveratrol prevented an increase in the activities and levels of caspases, Fas, Fas-L, and cytochrome c proteins induced by As2 O3 . Our study indicates that resveratrol relieves As2 O3 -induced oxidative damage in normal human lung cells via maintenance of GSH homeostasis and suppression of apoptosis.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuejun Jiang
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yanhao Lai
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
| | - Yuan Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida, USA
- Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
- Corresponding authors: Zunzhen Zhang, M.D., Ph.D., Department of Environmental Health, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu 610041, People's Republic of China. ; ; Tel: +86 028 85501298; Fax: +86 028 85501295, Yuan Liu, M.D., Ph.D., Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 Street, Miami, Florida, 33199, USA. ; Tel: 305-348-3628
| | - Zunzhen Zhang
- Department of Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Corresponding authors: Zunzhen Zhang, M.D., Ph.D., Department of Environmental Health, West China School of Public Health, Sichuan University, No. 16, Section 3, Renmin Nan Road, Chengdu 610041, People's Republic of China. ; ; Tel: +86 028 85501298; Fax: +86 028 85501295, Yuan Liu, M.D., Ph.D., Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8 Street, Miami, Florida, 33199, USA. ; Tel: 305-348-3628
| |
Collapse
|