1
|
Khayatan D, Razavi SM, Arab ZN, Nasoori H, Fouladi A, Pasha AVK, Butler AE, Karav S, Momtaz S, Abdolghaffari AH, Sahebkar A. Targeting mTOR with curcumin: therapeutic implications for complex diseases. Inflammopharmacology 2025:10.1007/s10787-025-01643-y. [PMID: 39955697 DOI: 10.1007/s10787-025-01643-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/16/2024] [Indexed: 02/17/2025]
Abstract
The mammalian target of rapamycin (mTOR) is a crucial enzyme in regulating multiple signaling pathways in the body, including autophagy, proliferation and apoptosis. Disruption of these mTOR signaling pathways can lead to an array of abnormalities and trigger disease processes, examples being neurodegenerative conditions, cancer, obesity and diabetes. Under conditions of oxidative stress, mTOR can regulate apoptosis and autophagy, with tissue repair being favored under such circumstances. Moreover, the correlation between mTOR and other signaling pathways could play a pivotal role in the pathophysiology of numerous disorders. mTOR has a tight connection with NF-κB, Akt, PI3K, MAPK, GSK-3β, Nrf2/HO-1, JAK/STAT, CREB/BDNF, and ERK1/2 pathways, which together could play significant roles in the regulation of inflammation, apoptosis, cell survival, and oxidative stress in different body organs. Research suggests that inhibiting mTOR could be beneficial in treating metabolic, neurological and cardiovascular conditions, as well as potentially extending life expectancy. Therefore, identifying new chemicals and agents that can modulate the mTOR signaling pathway holds promise for treating and preventing these disorders. Curcumin is one such agent that has demonstrated regulatory effects on the mTOR pathway, making it an exciting alternative for reducing complications associated with complex diseases by targeting mTOR. This review aims to examine the potential of curcumin in modulating the mTOR signaling pathway and its therapeutic implications.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hadis Nasoori
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Abtin Fouladi
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aytak Vahdat Khajeh Pasha
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Saeideh Momtaz
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Hosseini S, Rahsepar S, Naghipour S, Elyasi S. Is oral nano-curcumin formulation a safe and effective measure for preventing cisplatin-induced nephrotoxicity in cancer patients? Anticancer Drugs 2024; 35:859-866. [PMID: 39017207 DOI: 10.1097/cad.0000000000001639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Nephrotoxicity is one of the most important complications in cancer patients under treatment with cisplatin-containing regimens. Curcumin, as the most important active component of Curcuma longa, is an antioxidant and anti-inflammatory compound. In this clinical trial, we assessed the preventive effect of nano-curcumin oral formulation against cisplatin-induced nephrotoxicity in cancer patients. In this triple-blind clinical trial 30 cancer patients on cisplatin were randomly included in the treatment group, receiving nano-curcumin 40 mg capsules ( n = 15) or the placebo group ( n = 15) twice a day during four chemotherapy courses. Kidney function was measured at the beginning of the study and then at the end of each course of chemotherapy. There was no significant difference in acute kidney injury occurrence rate and creatinine and blood urine nitrogen serum levels between the treatment and placebo groups at the end of each chemotherapy course ( P value >0.05). Just at the end of the first course, the difference was close to significant ( P = 0.055). We also found no difference in mortality and recurrence rate in an average 30-month follow-up. Nano-curcumin in the prescribed dose and duration was not effective in preventing cisplatin-induced nephrotoxicity in cancer patients in comparison with the placebo. Further studies with larger sample size using different doses and duration of nano-curcumin are recommended.
Collapse
Affiliation(s)
- Sare Hosseini
- Cancer Research Center, Mashhad University of Medical Sciences,
- Department of Radiation Oncology, Faculty of Medicine, Mashhad University of Medical Sciences
| | - Sara Rahsepar
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| | - Sara Naghipour
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| | - Sepideh Elyasi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Selim MS, Kassem AB, El-Bassiouny NA, Salahuddin A, Abu El-Ela RY, Hamza MS. Polymorphic renal transporters and cisplatin's toxicity in urinary bladder cancer patients: current perspectives and future directions. Med Oncol 2023; 40:80. [PMID: 36650399 PMCID: PMC9845168 DOI: 10.1007/s12032-022-01928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/10/2022] [Indexed: 01/19/2023]
Abstract
Urinary bladder cancer (UBC) holds a potentially profound social burden and affects over 573,278 new cases annually. The disease's primary risk factors include occupational tobacco smoke exposure and inherited genetic susceptibility. Over the past 30 years, a number of treatment modalities have emerged, including cisplatin, a platinum molecule that has demonstrated effectiveness against UBC. Nevertheless, it has severe dose-limiting side effects, such as nephrotoxicity, among others. Since intracellular accumulation of platinum anticancer drugs is necessary for cytotoxicity, decreased uptake or enhanced efflux are the root causes of platinum resistance and response failure. Evidence suggests that genetic variations in any transporter involved in the entry or efflux of platinum drugs alter their kinetics and, to a significant extent, determine patients' responses to them. This review aims to consolidate and describe the major transporters and their polymorphic variants in relation to cisplatin-induced toxicities and resistance in UBC patients. We concluded that the efflux transporters ABCB1, ABCC2, SLC25A21, ATP7A, and the uptake transporter OCT2, as well as the organic anion uptake transporters OAT1 and OAT2, are linked to cisplatin accumulation, toxicity, and resistance in urinary bladder cancer patients. While suppressing the CTR1 gene's expression reduced cisplatin-induced nephrotoxicity and ototoxicity, inhibiting the expression of the MATE1 and MATE2-K genes has been shown to increase cisplatin's nephrotoxicity and resistance. The roles of ABCC5, ABCA8, ABCC10, ABCB10, ABCG1, ATP7B, ABCG2, and mitochondrial SLC25A10 in platinum-receiving urinary bladder cancer patients should be the subject of further investigation.
Collapse
Affiliation(s)
- Mohamed S Selim
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt.
| | - Amira B Kassem
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Noha A El-Bassiouny
- Clinical Pharmacy & Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ahmad Salahuddin
- Biochemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
- Biochemistry Department, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Raghda Y Abu El-Ela
- Medical Oncology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Marwa Samir Hamza
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| |
Collapse
|
4
|
A synchronized dual drug delivery molecule targeting cancer stem cells in tumor heterogeneity and metastasis. Biomaterials 2022; 289:121781. [PMID: 36113331 DOI: 10.1016/j.biomaterials.2022.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022]
Abstract
Cancer stem-like cells (CSCs) represent a key barrier to successful therapy for triple-negative breast cancer (TNBC). CSCs promote the emergence of chemoresistance, triggering relapse and resulting in a poor prognosis. We herein present CDF-TM, a new small molecule-based binary prodrug conjugated with SN-38 and 3,4-difluorobenzylidene curcumin (CDF) that is specifically activated in hypoxic conditions. CDF-TM treatment significantly induced apoptosis in TNBC-derived 3D spheroids, accompanied with caspase-3 activation as well as the attenuation of tumor stemness with evidence of reduction in aldehyde dehydrogenase 1 (ALDH1) activity and the CD44high/CD24low phenotype. An in vivo orthotopic allograft model was used to investigate its effects on tumor growth and metastasis. The dissemination of CSCs from primary allografts was impaired by CDF-TM, along with inhibition of tumor growth via eradication of CSCs and downregulation of multidrug resistance 1 (MDR1). This new small molecule-based binary prodrug offers a novel therapeutic option for metastatic TNBC.
Collapse
|
5
|
Guerreiro Í, Ferreira-Pêgo C, Carregosa D, Santos CN, Menezes R, Fernandes AS, Costa JG. Polyphenols and Their Metabolites in Renal Diseases: An Overview. Foods 2022; 11:foods11071060. [PMID: 35407148 PMCID: PMC8997953 DOI: 10.3390/foods11071060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
Kidney diseases constitute a worldwide public health problem, contributing to morbidity and mortality. The present study aimed to provide an overview of the published data regarding the potential beneficial effects of polyphenols on major kidney diseases, namely acute kidney injury, chronic kidney disease, diabetic nephropathy, renal cancer, and drug-induced nephrotoxicity. This study consists of a bibliographical review including in vitro and in vivo studies dealing with the effects of individual compounds. An analysis of the polyphenol metabolome in human urine was also conducted to estimate those compounds that are most likely to be responsible for the kidney protective effects of polyphenols. The biological effects of polyphenols can be highly attributed to the modulation of specific signaling cascades including those involved in oxidative stress responses, anti-inflammation processes, and apoptosis. There is increasing evidence that polyphenols afford great potential in renal disease protection. However, this evidence (especially when in vitro studies are involved) should be considered with caution before its clinical translation, particularly due to the unfavorable pharmacokinetics and extensive metabolization that polyphenols undergo in the human body. Future research should consider polyphenols and their metabolites that indeed reach kidney tissues.
Collapse
Affiliation(s)
- Íris Guerreiro
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Cíntia Ferreira-Pêgo
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - Diogo Carregosa
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Cláudia N. Santos
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
| | - Regina Menezes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal; (D.C.); (C.N.S.)
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana S. Fernandes
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
| | - João G. Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (Í.G.); (C.F.-P.); (R.M.); (A.S.F.)
- Correspondence:
| |
Collapse
|
6
|
Bhosale M, Jeelani I, Nawaz A, Abe H, Padhye S. Site-Specific Binding of Anticancer Drugs to Human Serum Albumin. Anticancer Agents Med Chem 2022; 22:2876-2884. [PMID: 35331098 DOI: 10.2174/1871520622666220324094033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022]
Abstract
The interaction of drugs with proteins plays a very important role in the distribution of the drug. Human serum albumin (HSA) is the most abundant protein in the human body and showing great binding characteristics has gained a lot of importance pharmaceutically. It plays an essential role in the pharmacokinetics of a number of drugs and hence several reports are available on the interaction of drugs with HSA. It can bind to cancer drugs and thus it is crucial to look at the binding characteristics of these drugs with HSA. Herein we summarize the binding properties of some anti-cancer drugs by specifically looking into the binding site with HSA. The number of drugs binding at Sudlow's site I situated in subdomain II A is more than the drugs binding at Sudlow's site II.
Collapse
Affiliation(s)
- Mrinalini Bhosale
- Department of Chemistry, Abeda Inamdar Senior College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune 411001, India
| | - Ishtiaq Jeelani
- Graduate School of Innovative Life Science, University of Toyama, Toyama, 3190 Gofuku 930-8555, Japan
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 2630 Sugitani 930-0194, Japan
| | - Allah Nawaz
- Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 2630 Sugitani 930-0194, Japan
| | - Hitoshi Abe
- Faculty of Engineering, University of Toyama, Toyama, 3190 Gofuku 930-8555, Japan
| | - Subhash Padhye
- Department of Chemistry, Abeda Inamdar Senior College of Arts, Science and Commerce, Savitribai Phule Pune University, Pune 411001, India
| |
Collapse
|
7
|
OUP accepted manuscript. J Pharm Pharmacol 2022; 74:1051-1060. [DOI: 10.1093/jpp/rgac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/24/2022] [Indexed: 11/14/2022]
|
8
|
Sahin E, Orhan C, Erten F, Er B, Acharya M, Morde AA, Padigaru M, Sahin K. Next-Generation Ultrasol Curcumin Boosts Muscle Endurance and Reduces Muscle Damage in Treadmill-Exhausted Rats. Antioxidants (Basel) 2021; 10:antiox10111692. [PMID: 34829562 PMCID: PMC8614663 DOI: 10.3390/antiox10111692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 02/07/2023] Open
Abstract
Curcumin positively affects performance during exercise and subsequent recovery. However, curcumin has limited bioavailability unless consumed in larger doses. In the current study, we examined the impact of a new formulation of curcumin, Next-Generation Ultrasol Curcumin (NGUC), which is relatively more bioavailable than natural curcumin on exhaustion time, grip strength, muscle damage parameters, and serum and muscle proteins. A total of 28 rats were randomly grouped as control (C, non-supplemented), exercise (E, non-supplemented), E+NGUC100 (supplemented with 100 mg/kg BW NGUC), and E+NGUC200 (supplemented with 200 mg/kg NGUC). Grip strength and exhaustion time were increased with NGUC supplementation (p < 0.0001). Creatine kinase (CK), lactate dehydrogenase (LDH), lactic acid (LA), myoglobin, malondialdehyde (MDA) concentrations were reduced in serum, and muscle tissue in NGUC supplemented groups (p < 0.05). In contrast, NGUC supplementation elevated the antioxidant enzyme levels compared to the non-supplemented exercise group (p < 0.01). Additionally, inflammatory cytokines were inhibited with NGUC administration (p < 0.05). NGUC decreased PGC-1α, p-4E-BP1, p-mTOR, MAFbx, and MuRF1 proteins in muscle tissue (p < 0.05). These results indicate that NGUC boosts exercise performance while reducing muscle damage by targeting antioxidant, anti-inflammatory, and muscle mass regulatory pathways.
Collapse
Affiliation(s)
- Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol 12000, Turkey;
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
| | - Fusun Erten
- Department of Veterinary Science, Pertek Sakine Genc Vocational School, Munzur University, Tunceli 62500, Turkey;
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey;
| | - Manutosh Acharya
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Abhijeet A. Morde
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Muralidhara Padigaru
- Research and Development, OmniActive Health Technologies, Mumbai 400001, India; (M.A.); (A.A.M.); (M.P.)
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig 23119, Turkey;
- Correspondence: ; Tel.: +90-532-747-3506 or +90-424-237-0000 (ext. 3938)
| |
Collapse
|
9
|
Abadi AJ, Mirzaei S, Mahabady MK, Hashemi F, Zabolian A, Hashemi F, Raee P, Aghamiri S, Ashrafizadeh M, Aref AR, Hamblin MR, Hushmandi K, Zarrabi A, Sethi G. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother Res 2021; 36:189-213. [PMID: 34697839 DOI: 10.1002/ptr.7305] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022]
Abstract
Curcumin is a phytochemical isolated from Curcuma longa with potent tumor-suppressor activity, which has shown significant efficacy in pre-clinical and clinical studies. Curcumin stimulates cell death, triggers cycle arrest, and suppresses oncogenic pathways, thereby suppressing cancer progression. Cisplatin (CP) stimulates DNA damage and apoptosis in cancer chemotherapy. However, CP has adverse effects on several organs of the body, and drug resistance is frequently observed. The purpose of the present review is to show the function of curcumin in decreasing CP's adverse impacts and improving its antitumor activity. Curcumin administration reduces ROS levels to prevent apoptosis in normal cells. Furthermore, curcumin can inhibit inflammation via down-regulation of NF-κB to maintain the normal function of organs. Curcumin and its nanoformulations can reduce the hepatoxicity, neurotoxicity, renal toxicity, ototoxicity, and cardiotoxicity caused by CP. Notably, curcumin potentiates CP cytotoxicity via mediating cell death and cycle arrest. Besides, curcumin suppresses the STAT3 and NF-ĸB as tumor-promoting pathways, to enhance CP sensitivity and prevent drug resistance. The targeted delivery of curcumin and CP to tumor cells can be mediated nanostructures. In addition, curcumin derivatives are also able to reduce CP-mediated side effects, and increase CP cytotoxicity against various cancer types.
Collapse
Affiliation(s)
- Asal Jalal Abadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fardin Hashemi
- School of Rehabilitation, Department of Physical Therapy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Tuzla, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Vice President at Translational Sciences, Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa.,Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey.,Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Kim JH, Verwilst P, Won M, Lee J, Sessler JL, Han J, Kim JS. A Small Molecule Strategy for Targeting Cancer Stem Cells in Hypoxic Microenvironments and Preventing Tumorigenesis. J Am Chem Soc 2021; 143:14115-14124. [PMID: 34374290 DOI: 10.1021/jacs.1c03875] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Breast cancer consists of heterogenic subpopulations, which determine the prognosis and response to chemotherapy. Among these subpopulations, a very limited number of cancer cells are particularly problematic. These cells, known as breast cancer stem cells (BCSCs), are thought responsible for metastasis and recurrence. They are thus major contributor to the unfavorable outcomes seen for many breast cancer patients. BCSCs are more prevalent in the hypoxic niche. This is an oxygen-deprived environment that is considered crucial to their proliferation, stemness, and self-renewal but also one that makes BCSCs highly refractory to traditional chemotherapeutic regimens. Here we report a small molecule construct, AzCDF, that allows the therapeutic targeting of BCSCs and which is effective in normally refractory hypoxic tumor environments. A related system, AzNap, has been developed that permits CSC imaging. Several design elements are incorporated into AzCDF, including the CAIX inhibitor acetazolamide (Az) to promote localization in MDA-MB-231 CSCs, a dimethylnitrothiophene subunit as a hypoxia trigger, and a 3,4-difluorobenzylidene curcumin (CDF) as a readily released therapeutic payload. This allows AzCDF to serve as a hypoxia-liable molecular platform that targets BCSCs selectively which decreases CSC migration, retards tumor growth, and lowers tumorigenesis rates as evidenced by a combination of in vitro and in vivo studies. To the best of our knowledge, this is the first time a CSC-targeting small molecule has been shown to prevent tumorigenesis in an animal model.
Collapse
Affiliation(s)
- Ji Hyeon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Peter Verwilst
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Junhyoung Lee
- Department of Biological Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jiyou Han
- Department of Biological Sciences, Hyupsung University, Hwasung-si 18330, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
11
|
Regression Modeling of the Antioxidant-to-Nephroprotective Relation Shows the Pivotal Role of Oxidative Stress in Cisplatin Nephrotoxicity. Antioxidants (Basel) 2021; 10:antiox10091355. [PMID: 34572987 PMCID: PMC8464812 DOI: 10.3390/antiox10091355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
The clinical utility of the chemotherapeutic drug cisplatin is significantly limited by its nephrotoxicity, which is characterized by electrolytic disorders, glomerular filtration rate decline, and azotemia. These alterations are consequences of a primary tubulopathy causing injury to proximal and distal epithelial cells, and thus tubular dysfunction. Oxidative stress plays a role in cisplatin nephrotoxicity and cytotoxicity, but its relative contribution to overall toxicity remains unknown. We studied the relation between the degree of oxidative reduction (provided by antioxidant treatment) and the extent of nephrotoxicity amelioration (i.e., nephroprotection) by means of a regression analysis of studies in animal models. Our results indicate that a linear relation exists between these two parameters, and that this relation very nearly crosses the value of maximal nephroprotection at maximal antioxidant effect, suggesting that oxidative stress seems to be a pivotal and mandatory mechanism of cisplatin nephrotoxicity, and, hence, an interesting, rationale-based target for clinical use. Our model also serves to identify antioxidants with enhanced effectiveness by comparing their actual nephroprotective power with that predicted by their antioxidant effect. Among those, this study identified nanoceria, erythropoietin, and maltol as highly effective candidates affording more nephroprotection than expected from their antioxidant effect for prospective clinical development.
Collapse
|
12
|
Okamoto K, Kitaichi F, Saito Y, Ueda H, Narumi K, Furugen A, Kobayashi M. Antioxidant effect of ascorbic acid against cisplatin-induced nephrotoxicity and P-glycoprotein expression in rats. Eur J Pharmacol 2021; 909:174395. [PMID: 34332922 DOI: 10.1016/j.ejphar.2021.174395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/04/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022]
Abstract
Cisplatin (CDDP) is a highly potent anticancer drug that is widely used in the treatment of several cancers. CDDP-induced nephrotoxicity (CIN) is one of the most significant adverse effects, and oxidative stress is thought to be one of the mechanisms underlying CIN. Although there are some studies available on the variability in transporter expression in the kidney after a single CDDP dose, none have reported the change in renal transporter expression after multiple CDDP dose administrations. P-glycoprotein (P-gp), a transporter, is reported to be induced by oxidative stress. Ascorbic acid is a vitamin with antioxidant potential and therefore, may regulate the expression of P-gp transporter and affect CIN. In the present study, our aim was to assess the variability in expression of several renal transporters after multiple CDDP dose administrations and the antioxidant effect of ascorbic acid against transporter expression and CIN. Multiple doses of CDDP affected markers of kidney injury and antioxidants in the kidneys. Also, the expression of P-gp, breast cancer resistance protein, and multidrug resistance-associated protein 4 was upregulated by CDDP. Using a normal kidney cell line, we demonstrated that ascorbic acid attenuated CDDP-induced cytotoxicity due to its high superoxide scavenging ability. CDDP and ascorbic acid were injected into rats once a week for three weeks, and it was observed that co-administration of ascorbic acid attenuated CIN and regulated antioxidant marker. In addition, ascorbic acid reduced P-gp expression, which was upregulated by CDDP. In conclusion, ascorbic acid may attenuate CIN and reverse P-gp-mediated changes in drug pharmacokinetics.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Fumi Kitaichi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan.
| | - Hinata Ueda
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan; Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
13
|
Abstract
Cisplatin has been a mainstay of cancer chemotherapy since the 1970s. Despite its broad anticancer potential, its clinical use has regularly been constrained by kidney toxicities. This review details those biochemical pathways and metabolic conversions that underlie the kidney toxicities. A wide range of redox events contribute to the eventual physiological consequences of drug activities.
Collapse
|
14
|
Wang Y, Liu Z, Shu S, Cai J, Tang C, Dong Z. AMPK/mTOR Signaling in Autophagy Regulation During Cisplatin-Induced Acute Kidney Injury. Front Physiol 2020; 11:619730. [PMID: 33391038 PMCID: PMC7773913 DOI: 10.3389/fphys.2020.619730] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a conserved, multistep pathway that degrades and recycles dysfunctional organelles and macromolecules to maintain cellular homeostasis. Mammalian target of rapamycin (mTOR) and adenosine-monophosphate activated-protein kinase (AMPK) are major negative and positive regulators of autophagy, respectively. In cisplatin-induced acute kidney injury (AKI) or nephrotoxicity, autophagy is rapidly induced in renal tubular epithelial cells and acts as a cytoprotective mechanism for cell survival. Both mTOR and AMPK have been implicated in the regulation of autophagy in cisplatin-induced AKI. Targeting mTOR and/or AMPK may offer effective strategies for kidney protection during cisplatin-mediated chemotherapy.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Shaoqun Shu
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Juan Cai
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital at Central South University, Changsha, China.,Department of Cellular Biology and Anatomy, Charlie Norwood Veterans Affair Medical Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
15
|
Casanova AG, Hernández-Sánchez MT, Martínez-Salgado C, Morales AI, Vicente-Vicente L, López-Hernández FJ. A meta-analysis of preclinical studies using antioxidants for the prevention of cisplatin nephrotoxicity: implications for clinical application. Crit Rev Toxicol 2020; 50:780-800. [PMID: 33170047 DOI: 10.1080/10408444.2020.1837070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug whose clinical use and efficacy are limited by its nephrotoxicity, which affects mainly the renal tubules and vasculature. It accumulates in proximal and distal epithelial tubule cells and causes oxidative stress-mediated cell death and malfunction. Consequently, many antioxidants have been tested for their capacity to prevent cisplatin nephrotoxicity. In this study, we made a systematic review of the literature and meta-analyzed 152 articles, which tested the nephroprotective effect of isolated compounds or mixtures of natural origin on cisplatin nephrotoxicity in preclinical models. This meta-analysis identified the most effective candidates and examined the efficacy obtained by antioxidants administered by the oral and intraperitoneal routes. By comparing with a recent, similar meta-analysis performed on clinical studies, this article identifies a disconnection between preclinical and clinical research, and contextualizes, discusses, and integrates the existing preclinical information toward the optimized selection of candidates to be further explored (clinical level). Despite proved efficacy, this article discusses the barriers limiting the clinical development of natural mixtures, such as those in extracts from Calendula officinalis flowers and Heliotropium eichwaldii roots. On the contrary, isolated compounds are more straightforward candidates, among which arjunolic acid and quercetin stand out in this meta-analysis.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - M Teresa Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| |
Collapse
|
16
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
17
|
Okamoto K, Saito Y, Narumi K, Furugen A, Iseki K, Kobayashi M. Comparison of the nephroprotective effects of non-steroidal anti-inflammatory drugs on cisplatin-induced nephrotoxicity in vitro and in vivo. Eur J Pharmacol 2020; 884:173339. [PMID: 32726655 DOI: 10.1016/j.ejphar.2020.173339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Cisplatin (CDDP) is an anticancer drug, often used in the treatment of several types of cancers. CDDP-induced nephrotoxicity (CIN) is one of the most severe adverse events associated with the use of CDDP. It has been suggested that the co-administration of non-steroidal anti-inflammatory drugs (NSAIDs) is a risk factor for CIN. However, the specific NSAIDs that affect CIN and the precise mechanisms underlying this interaction remain unclear. Hence, we aimed to evaluate the effect of NSAIDs on CDDP-induced cytotoxicity in vitro and confirmed the results in vivo. Using the epithelioid clone of the normal rat kidney cells (NRK-52E cells), we assessed the effects of 17 NSAIDs on CDDP-induced cytotoxicity all at once using the MTT assay. Furthermore, we evaluated two NSAIDs, which significantly attenuated or enhanced CDDP-induced cytotoxicity, in vivo. Wistar rats were treated with CDDP (5 mg/kg, i.p., day 1) and NSAIDs (p.o., day 1-4), and the kidneys were excised on day 5. Our results demonstrated that several NSAIDs attenuated, while others enhanced CDDP-induced cytotoxicity. Celecoxib significantly attenuated and flurbiprofen markedly enhanced cell dysfunction by CDDP. These results were reproduced in vivo as celecoxib decreased and flurbiprofen increased the expression of kidney injury molecule 1 (Kim-1) mRNA, a sensitive kidney injury marker, compared to the CDDP group. Moreover, celecoxib increased the antioxidant and autophagy markers quantified by qPCR in vitro and prevented a decrease in body weight induced by CDDP in vivo. In conclusion, we revealed that celecoxib significantly attenuated CIN in vitro and in vivo.
Collapse
Affiliation(s)
- Keisuke Okamoto
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Yoshitaka Saito
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-jo, Nishi-5-chome, Kita-ku, Sapporo, 060-8648, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo, 060-0812, Japan.
| |
Collapse
|
18
|
Ontawong A, Srimaroeng C, Boonphang O, Phatsara M, Amornlerdpison D, Duangjai A. Spirogyra neglecta Aqueous Extract Attenuates LPS-Induced Renal Inflammation. Biol Pharm Bull 2020; 42:1814-1822. [PMID: 31685765 DOI: 10.1248/bpb.b19-00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spirogyra neglecta (SN), commonly named "Tao" in Thai, is a genus of filamentous green macroalgae. SN contains polyphenols such as isoquercetin, catechin, hydroquinone and kaempferol. These constituents exhibit beneficial effects including anti-oxidant, anti-gastric ulcer, anti-hyperglycaemia and anti-hyperlipidaemia in both in vitro and in vivo models. Whether SN extract (SNE) has an anti-inflammatory effect in vivo remains unclear. This study examined the effect of SNE on renal function and renal organic transport in lipopolysaccharide (LPS)-induced renal inflammation in rats. Rats were randomised and divided into normal saline (NS), NS supplemented with 1000 mg/kg body weight (BW) of SNE (NS + SNE), intraperitoneally injected with 12 mg/kg BW of LPS and LPS treated with 1000 mg/kg BW of SNE (LPS + SNE). Biochemical parameters in serum and urine, lipid peroxidation concentration, kidney function and renal organic anion and cation transports were determined. LPS-injected rats developed renal injury and inflammation by increasing urine microalbumin, total malondialdehyde (MDA) and inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β protein expression, respectively. In addition, uptake of renal organic anion, [3H]-oestrone sulphate (ES), was reduced in LPS-injected rats together with increased expression of organic anion transporter 3 (Oat3). However, the renal injury and inflammation, as well as impaired Oat3 function and protein expression, were restored in LPS + SNE rats. Accordingly, SNE could be developed as nutraceutical product to prevent inflammation-induced nephrotoxicity.
Collapse
|
19
|
Renoprotective Effects of a New Free Radical Scavenger, XH-003, against Cisplatin-Induced Nephrotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9820168. [PMID: 32377314 PMCID: PMC7189338 DOI: 10.1155/2020/9820168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022]
Abstract
Acute renal injury has an incidence of 25%–30% in patients with tumors who are treated with cisplatin and in patients for whom no specific drugs are available for treatment. Amifostine is the only FDA-approved chemoprotective drug; however, its clinical application is limited because of side effects. The small-molecule antioxidant XH-003, an acute radiation syndrome- (ARS-) protective drug independently developed in our laboratory, with 100% intellectual property rights, overcomes the side effects of amifostine but retains its high efficacy. In this study, XH-003 showed a chemoprotective effect similar to that of amifostine. A mechanistic study showed that XH-003 could significantly reduce cisplatin-induced increases in serum creatinine and urea nitrogen, increase the activity of antioxidant enzymes (SOD, CAT, and GSH-Px), reduce oxidative stress and tissue inflammation, and alleviate renal tissue damage by blocking the activity of the mitochondrial apoptosis pathway. Most importantly, XH-003 could reduce the accumulation of cisplatin in renal tissue by regulating the expression of proteins involved in cisplatin uptake and excretion, such as organic cation transporter 2 and MRP2. Moreover, in an in vivo xenotransplantation model, XH-003 did not interfere with the antitumor effect of cisplatin. These data provide strong evidence that the ARS-protective agent has a great potential for protecting against chemotherapy-induced toxicity. Thus, XH-003 can be considered in antitumor therapy.
Collapse
|
20
|
Prša P, Karademir B, Biçim G, Mahmoud H, Dahan I, Yalçın AS, Mahajna J, Milisav I. The potential use of natural products to negate hepatic, renal and neuronal toxicity induced by cancer therapeutics. Biochem Pharmacol 2020; 173:113551. [PMID: 31185225 DOI: 10.1016/j.bcp.2019.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022]
|
21
|
Wahdan SA, Azab SS, Elsherbiny DA, El-Demerdash E. Piceatannol protects against cisplatin nephrotoxicity via activation of Nrf2/HO-1 pathway and hindering NF-κB inflammatory cascade. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2019; 392:1331-1345. [PMID: 31197431 DOI: 10.1007/s00210-019-01673-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Abstract
This study investigates the molecular mechanisms of the nephroprotective effect of piceatannol (PIC) against cisplatin-induced nephrotoxicity in rats. PIC (10 mg/kg i.p.) was given for 7 days, starting 2 days before cisplatin single injection (7 mg/kg i.p.). Serum creatinine, blood urea nitrogen (BUN), kidney injury molecule 1, and neutrophil gelatinase-associated lipocalin were used as nephrotoxicity markers. Oxidative stress, inflammatory, and apoptotic markers were determined. In addition, the role of PIC in Nrf2 activation and its subsequent induction of antioxidant enzymes, as well as its potential cross talk with nuclear factor kappa-B, were addressed. PIC reversed cisplatin-induced elevation of nephrotoxicity markers and restored the normal kidney ultrastructure. PIC attenuated cisplatin-induced reduction in Nrf2 expression and the relative mRNA level of antioxidant enzymes: hemeoxygenase-1, cysteine ligase catalytic, and modifier subunits, as well as superoxide dismutase and glutathione-S-transferase activities. Cisplatin pro-inflammatory response was reduced by PIC treatment as evidenced by the suppression of nuclear factor kappa-B activation and the subsequent decreased tissue levels of interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and inducible nitric oxide synthase. PIC suppressed cisplatin-induced apoptosis by decreasing p53 and cytochrome C expression and caspase-3 activity. Therefore, PIC may protect against cisplatin-induced nephrotoxicity by modulating Nrf2/HO-1 signaling and hindering the inflammatory and apoptotic pathways.
Collapse
Affiliation(s)
- Sara A Wahdan
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samar S Azab
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Doaa A Elsherbiny
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
22
|
Ridzuan NRA, Rashid NA, Othman F, Budin SB, Hussan F, Teoh SL. Protective Role of Natural Products in Cisplatin-Induced Nephrotoxicity. Mini Rev Med Chem 2019; 19:1134-1143. [PMID: 30894108 DOI: 10.2174/1389557519666190320124438] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/31/2023]
Abstract
Cisplatin is a widely used antineoplastic agent for the treatment of metastatic tumors, advanced bladder cancer and many other solid tumors. However, at higher doses, toxicities such as nephrotoxicity may appear. Cisplatin leads to DNA damage and subsequently renal cell death. Besides that, oxidative stress is also implicated as one of the main causes of nephrotoxicity. Several studies showed that numerous natural products: ginseng, curcumin, licorice, honey and pomegranate were able to reduce the oxidative stress by restoring the levels of antioxidant enzymes and also at the same time act as an anti-inflammatory agent. Furthermore, pre-treatment with vitamin supplementation, such as vitamin C, E and riboflavin markedly decreased serum urea and increased the levels of antioxidant enzymes in the kidney even after cisplatin induction in cancer patients. These natural products possess potent antioxidant and anti-inflammatory medicinal properties, and they can be safely used as a supplementary regime or combination therapy against cisplatin-induced nephrotoxicity. The present review focused on the protective role of a few natural products which is widely used in folk medicines in cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Nurul Raudzah Adib Ridzuan
- Department of Anatomy, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norhashima Abd Rashid
- Biomedical Science Program, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Faizah Othman
- Department of Anatomy, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Biomedical Science Program, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farida Hussan
- Human Biology Division, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, University Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Motaharinia J, Panahi Y, Barreto GE, Beiraghdar F, Sahebkar A. Efficacy of curcumin on prevention of drug-induced nephrotoxicity: A review of animal studies. Biofactors 2019; 45:690-702. [PMID: 31246346 DOI: 10.1002/biof.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/31/2019] [Indexed: 11/10/2022]
Abstract
Drug-induced nephrotoxicity is a frequent serious adverse effect, contributing to morbidity and increased healthcare utilization. Prevention or reversal is key. Curcumin has useful biological features that include antioxidant, anti-inflammatory, and anticancer properties. This review covers aspects of curcumin in relation to prevention of drug-induced nephrotoxicity: dosage and schedule, effect on kidney biomarkers and histological changes, and mechanisms of curcumin's protective effects. Despite success in some animal models, human studies and clinical administration of curcumin for nephroprotection remains limited due to difficulty in achieving therapeutic levels following oral administration and in determining the optimal dosing schedule. Lack of sufficient evidence from animal studies, coupled with low systemic bioavailability, continues to limit the utilization of curcumin in addressing and controlling drug-induced nephrotoxicity. Therefore, human studies are required to fully assess and validate the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Javad Motaharinia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Clinical Pharmacy Department, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Fatemeh Beiraghdar
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
24
|
Zhao S, Pi C, Ye Y, Zhao L, Wei Y. Recent advances of analogues of curcumin for treatment of cancer. Eur J Med Chem 2019; 180:524-535. [PMID: 31336310 DOI: 10.1016/j.ejmech.2019.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023]
Abstract
Curcumin (CU), an edible natural pigment from Curcuma Longa, has demonstrated extensive anti-tumor effect in vivo and in vitro. With the property of reversing drug resistance and low toxicity, CU has been considered to develop a new adjuvant chemotherapy protocol of cancer. However, the poor stability, solubility, in vivo bioavailability and weak activity of CU greatly limit its clinical application. Therefore, CU analogues have been extensively studied. Starting from the study of natural CU analogues, multiple approaches are being sought to obtain more stable, soluble and effective analogues of CU. This review focuses on the progress of these approaches to more potent CU analogues.
Collapse
Affiliation(s)
- Shijie Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China
| | - Yun Ye
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China; Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, No.25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China.
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China.
| |
Collapse
|
25
|
Lin CY, Hung CC, Wang CCN, Lin HY, Huang SH, Sheu MJ. Demethoxycurcumin sensitizes the response of non-small cell lung cancer to cisplatin through downregulation of TP and ERCC1-related pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 53:28-36. [PMID: 30668408 DOI: 10.1016/j.phymed.2018.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/04/2018] [Accepted: 08/06/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Excision repair cross-complementary 1 (ERCC1) overexpression in lung cancer cells is strongly correlated with its resistance to platinum-based chemotherapy. Overexpression of thymidine phosphorylase (TP) reverts platinum-induced cancer cell death. PURPOSE Curcumin has been reported to enhance antitumor properties through the suppression of TP and ERCC1 in non-small cell lung carcinoma cells (NSCLC). Nevertheless, whether two other curcuminoids, demethoxycurcumin (DMC) and bisdemethoxycurcumin (BDMC) from Curcuma longa demonstrate antitumor activity like that of curcumin remain unknown. METHODS MTT assay was conducted to determine the cell cytotoxicity. Western blotting was used to determine the protein expressions. Docking is the virtual screening of a database of compounds and predicting the strongest binders based on various scoring functions. BIOVIA Discovery Studio 4.5 (D.S. 4.5) were used for docking. RESULTS Firstly, when compared with curcumin and BDMC, DMC exhibited the most potent cytotoxic effect on NSCLC, most importantly, MRC-5, a lung fetal fibroblast, was insensitive to DMC (under 30 µM). Secondly, DMC alone significantly inhibited on-target cisplatin (CDDP) resistance protein, ERCC1, via PI3K-Akt-snail pathways, and TP protein expression in A549 cells. Thirdly, DMC treatment markedly increased post-target CDDP resistance pathway including Bax and cytochrome c. DMC significantly decreased Bcl-2 protein expressions. Finally, MTT assay indicated that DMC significantly increased CDDP-induced cytotoxicity and was confirmed with an increased Bax/Bcl-2 ratio, indicating upregulation of caspase-3. CONCLUSIONS We concluded that enhancement of the cytotoxicity to CDDP by coadminstration with DMC was mediated by down-regulation of the expression of TP and ERCC1, regulated by PI3K-Akt-Snail pathway inactivation.
Collapse
Affiliation(s)
- Chen-Yuan Lin
- Division of Hematology and Oncology, Department of Internal Medicine, China Medical University Hospital, Taiwan
| | - Chin-Chuan Hung
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Charles C N Wang
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan
| | - Hui-Yi Lin
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Shih-Huan Huang
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Ming-Jyh Sheu
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
26
|
Farkhondeh T, Samarghandian S, Azimi-Nezhad M, Shahri AMP. Protective Effects of Curcumin Against Nephrotoxic Agents. Cardiovasc Hematol Disord Drug Targets 2019; 19:176-182. [PMID: 30205807 DOI: 10.2174/1871529x18666180905160830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 08/08/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Curcumin is the one of the main phenolic ingredients in curcuma species rhizome. Curcuma species have traditionally been used for the treatment of diabetes, cardiovascular, and renal diseases. METHODS The present study was designed to review the scientific literature on the protective effects of curcumin against nephrotoxic agents. RESULTS Studies have shown the protective effects of curcumin against nephrotoxic agents such as gallic acid, glucose, tartrazine, streptozotocin, lead, cadmium, fluoride, maleate, malathion, nicotine, cisplatin, gentamicin, and methotrexate. However, further investigations are needed to determine the efficacy of curcumin as an antidote agent due to the lack of clinical trial studies. Therefore, it is recommended to conduct clinical trials in humans to confirm these effects. CONCLUSION The current review indicated that curcumin may be effective against nephrotoxicity by modulating oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi-Nezhad
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Department of Medical Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali M P Shahri
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
27
|
Zhang QY, Wang FX, Jia KK, Kong LD. Natural Product Interventions for Chemotherapy and Radiotherapy-Induced Side Effects. Front Pharmacol 2018; 9:1253. [PMID: 30459615 PMCID: PMC6232953 DOI: 10.3389/fphar.2018.01253] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/15/2018] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death in the world. Chemotherapy and radiotherapy are the common cancer treatments. However, the development of adverse effects resulting from chemotherapy and radiotherapy hinders the clinical use, and negatively reduces the quality of life in cancer patients. Natural products including crude extracts, bioactive components-enriched fractions and pure compounds prepared from herbs as well as herbal formulas have been proved to prevent and treat cancer. Of significant interest, some natural products can reduce chemotherapy and radiotherapy-induced oral mucositis, gastrointestinal toxicity, hepatotoxicity, nephrotoxicity, hematopoietic system injury, cardiotoxicity, and neurotoxicity. This review focuses in detail on the effectiveness of these natural products, and describes the possible mechanisms of the actions in reducing chemotherapy and radiotherapy-induced side effects. Recent advances in the efficacy of natural dietary supplements to counteract these side effects are highlighted. In addition, we draw particular attention to gut microbiotan in the context of prebiotic potential of natural products for the protection against cancer therapy-induced toxicities. We conclude that some natural products are potential therapeutic perspective for the prevention and treatment of chemotherapy and radiotherapy-induced side effects. Further studies are required to validate the efficacy of natural products in cancer patients, and elucidate potential underlying mechanisms.
Collapse
Affiliation(s)
- Qing-Yu Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fei-Xuan Wang
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Ke-Ke Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
28
|
Gómez-Sierra T, Eugenio-Pérez D, Sánchez-Chinchillas A, Pedraza-Chaverri J. Role of food-derived antioxidants against cisplatin induced-nephrotoxicity. Food Chem Toxicol 2018; 120:230-242. [DOI: 10.1016/j.fct.2018.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/22/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022]
|
29
|
Mercantepe F, Mercantepe T, Topcu A, Yılmaz A, Tumkaya L. Protective effects of amifostine, curcumin, and melatonin against cisplatin-induced acute kidney injury. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:915-931. [DOI: 10.1007/s00210-018-1514-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/13/2018] [Indexed: 12/21/2022]
|
30
|
Bami E, Ozakpınar OB, Ozdemir-Kumral ZN, Köroglu K, Ercan F, Cirakli Z, Sekerler T, Izzettin FV, Sancar M, Okuyan B. Protective effect of ferulic acid on cisplatin induced nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 54:105-111. [PMID: 28704751 DOI: 10.1016/j.etap.2017.06.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/26/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Erliasa Bami
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | | | | | - Kutay Köroglu
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Feriha Ercan
- Department of Histology and Embryology, Marmara University Faculty of Medicine, Istanbul, Turkey
| | - Zeynep Cirakli
- Biochemistry Department, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Turgut Sekerler
- Department of Biochemistry, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Fikret Vehbi Izzettin
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Mesut Sancar
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey
| | - Betul Okuyan
- Clinical Pharmacy Department, Marmara University, Faculty of Pharmacy, Istanbul, Turkey.
| |
Collapse
|
31
|
Ortega-Domínguez B, Aparicio-Trejo OE, García-Arroyo FE, León-Contreras JC, Tapia E, Molina-Jijón E, Hernández-Pando R, Sánchez-Lozada LG, Barrera-Oviedo D, Pedraza-Chaverri J. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem Toxicol 2017; 107:373-385. [DOI: 10.1016/j.fct.2017.07.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/03/2023]
|
32
|
Effect of curcumin on glycerol-induced acute kidney injury in rats. Sci Rep 2017; 7:10114. [PMID: 28860665 PMCID: PMC5579036 DOI: 10.1038/s41598-017-10693-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to investigate the protective role and underlying mechanisms of curcumin on glycerol-induced acute kidney injury (AKI) in rats. Glycerol (10 ml/kg BW, 50% v/v in sterile saline, i.m.) was used to induce AKI, followed by curcumin (200 mg/kg/day, p.o.) administration for 3 days. To confirm renal damage and the effects of curcumin on AKI, serum BUN, Scr, and CK as well as renal SOD, MDA, GSH-Px were measured. Additionally, morphological changes were identified by H&E staining and transmission electron microscopy. The expression of several factors including chemotactic factor MCP-1, proinflammatory cytokines including TNF-α and IL-6, as well as the kidney injury markers, as Kim-1 and Lipocalin-2 were also assessed using q-PCR. Finally, cell apoptosis in renal tissue was detected using in situ TUNEL apoptosis fluorescence staining and expression of proteins associated with apoptotic, oxidative stress and lipid oxidative related signaling pathways were detected using immunohistochemical staining and western blot. The results showed that curcumin exerts renoprotective effects by inhibiting oxidative stress in rhabdomyolysis-induced AKI through regulation of the AMPK and Nrf2/HO-1 signaling pathways, and also ameliorated RM-associated renal injury and cell apoptosis by activating the PI3K/Akt pathway.
Collapse
|
33
|
Rezaee R, Momtazi AA, Monemi A, Sahebkar A. Curcumin: A potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol Res 2017; 117:218-227. [DOI: 10.1016/j.phrs.2016.12.037] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/25/2016] [Accepted: 12/27/2016] [Indexed: 01/06/2023]
|
34
|
Topcu-Tarladacalisir Y, Sapmaz-Metin M, Karaca T. Curcumin counteracts cisplatin-induced nephrotoxicity by preventing renal tubular cell apoptosis. Ren Fail 2016; 38:1741-1748. [DOI: 10.1080/0886022x.2016.1229996] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | - Turan Karaca
- Department of Histology and Embryology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
35
|
Li W, Zhou M, Xu N, Hu Y, Wang C, Li D, Liu L, Li D. Comparative analysis of protective effects of curcumin, curcumin-β-cyclodextrin nanoparticle and nanoliposomal curcumin on unsymmetrical dimethyl hydrazine poisoning in mice. Bioengineered 2016; 7:334-341. [PMID: 27710431 PMCID: PMC5060975 DOI: 10.1080/21655979.2016.1197029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/17/2015] [Accepted: 04/21/2016] [Indexed: 10/21/2022] Open
Abstract
The aim of this study was to compare the protective effects of curcumin, curcumin-β-cyclodextrin nanoparticle curcumin (BCD-CUR) and nanoliposomal curcumin (NLC) on unsymmetrical dimethylhydrazine (UDMH) induced poison in mice. Curcumin, BCD-CUR, and NLC were prepared and their properties of zeta potential, particle size, encapsulation efficiency, and loading capacity were characterized. Eighty-eight male ICR mice on normal chow diet were randomly divided into 11 groups, and intraperitoneally injected with UDMH alone, or together with different doses of curcumin, BCD-CUR or NLC daily for up to 10 d. Enzyme activities of serum alanine transaminase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were analyzed by fully-automatic analyzer and neurotransmitter levels were determined with high performance liquid chromatography (HPLC). 150 mg/kg curcumin treatment alone significantly reduced levels of serum ALT and LDH that were induced by UDMH and markedly increased level of γ-amino butyric acid (GABA) that were reduced by UDMH in the hippocampus. 150 mg/kg BCD-CUR not only decreased significantly the increase of ALT, LDH and glutamate (Glu) but also recovered levels of AST and GABA. 150 mg/kg NLC recovered profoundly levels of AST and GABA while decreased remarkably the UDMH induced increase of ALT, LDH, Glu and 5-hydroxytryptamine (5-HT). In addition, treatments with all tested doses of NLC significantly reduced the UMDH induced dopamine (DA), the monoamine neurotransmitter. NLC had more profound protective effects against liver and central nervous system injury induced by UDMH than a suspension of BCD-CUR or curcumin did in mice.
Collapse
Affiliation(s)
- Wei Li
- Hubei Cooperative Innovation Center for Industrial Fermentation, Research Center of Food Fermentation Engineering and Technology of Hubei, Hubei University of Technology, Wuhan, PR China
| | - Mengzhou Zhou
- Hubei Cooperative Innovation Center for Industrial Fermentation, Research Center of Food Fermentation Engineering and Technology of Hubei, Hubei University of Technology, Wuhan, PR China
| | - Ning Xu
- Hubei Cooperative Innovation Center for Industrial Fermentation, Research Center of Food Fermentation Engineering and Technology of Hubei, Hubei University of Technology, Wuhan, PR China
| | - Yong Hu
- Hubei Cooperative Innovation Center for Industrial Fermentation, Research Center of Food Fermentation Engineering and Technology of Hubei, Hubei University of Technology, Wuhan, PR China
| | - Chao Wang
- Hubei Cooperative Innovation Center for Industrial Fermentation, Research Center of Food Fermentation Engineering and Technology of Hubei, Hubei University of Technology, Wuhan, PR China
| | - Deyuan Li
- Nutrition and Food Research Institute, Wuhan Economic College, Wuhan, PR China
| | - Liegang Liu
- Department of Health Toxicology, Hubei Key Laboratory of Food Nutrition and Safety, Wuhan, PR China
| | - Dongsheng Li
- Hubei Cooperative Innovation Center for Industrial Fermentation, Research Center of Food Fermentation Engineering and Technology of Hubei, Hubei University of Technology, Wuhan, PR China
| |
Collapse
|
36
|
Indole-3-carbinol protects against cisplatin-induced acute nephrotoxicity: role of calcitonin gene-related peptide and insulin-like growth factor-1. Sci Rep 2016; 6:29857. [PMID: 27417335 PMCID: PMC4945906 DOI: 10.1038/srep29857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
Nephrotoxicity associated with the clinical use of the anticancer drug cisplatin is a limiting problem. Thus, searching for new protective measures is required. Indole-3-carbinol is a powerful anti-oxidant, anti-inflammatory and anti-tumor agent. The present study aimed to investigate the potential protective effect of indole-3-carbinol against cisplatin-induced acute nephrotoxicity in rats. Rats were pre-treated with 20 mg/kg indole-3-carbinol orally before giving cisplatin (7 mg/kg). Cisplatin-induced acute nephrotoxicity was demonstrated where relative kidney weight, BUN and serum creatinine were significantly increased. Increased oxidative stress was evident in cisplatin group where GSH and SOD tissue levels were significantly depleted. Also, lipid peroxidation and NOX-1 were increased as compared to the control. Additionally, renal expression of pro-inflammatory mediators was induced by cisplatin. Cisplatin-induced cell death was shown by increased caspase-3 and decreased expression of EGF, IGF-1 and IGF-1 receptor. Nephrotoxicity, oxidative stress, inflammation and apoptotic effects induced by cisplatin were significantly ameliorated by indole-3-carbinol pre-treatment. Besides, the role of CGRP in cisplatin-induced nephrotoxicity was explored. Furthermore, cisplatin cytotoxic activity was significantly enhanced by indole-3-carbinol pre-treatment in vitro. In conclusion, indole-3-carbinol provides protection against cisplatin-induced nephrotoxicity. Also, reduced expression of CGRP may play a role in the pathogenesis of cisplatin-induced renal injury.
Collapse
|
37
|
Hussain SA, Sulaiman AA, Alhaddad H, Alhadidi Q. Natural polyphenols: Influence on membrane transporters. JOURNAL OF COMPLEMENTARY MEDICINE RESEARCH 2016; 5:97-104. [PMID: 27069731 PMCID: PMC4805155 DOI: 10.5455/jice.20160118062127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/18/2016] [Indexed: 02/02/2023]
Abstract
Accumulated evidence has focused on the use of natural polyphenolic compounds as nutraceuticals since they showed a wide range of bioactivities and exhibited protection against variety of age-related disorders. Polyphenols have variable potencies to interact, and hence alter the activities of various transporter proteins, many of them classified as anion transporting polypeptide-binding cassette transporters like multidrug resistance protein and p-glycoprotein. Some of the efflux transporters are, generally, linked with anticancer and antiviral drug resistance; in this context, polyphenols may be beneficial in modulating drug resistance by increasing the efficacy of anticancer and antiviral drugs. In addition, these effects were implicated to explain the influence of dietary polyphenols on drug efficacy as result of food-drug interactions. However, limited data are available about the influence of these components on uptake transporters. Therefore, the objective of this article is to review the potential efficacies of polyphenols in modulating the functional integrity of uptake transporter proteins, including those terminated the effect of neurotransmitters, and their possible influence in neuropharmacology.
Collapse
Affiliation(s)
- Saad Abdulrahman Hussain
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Amal Ajaweed Sulaiman
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Hasan Alhaddad
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Qasim Alhadidi
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Avenue, Toledo, OH, 43614, USA
| |
Collapse
|
38
|
He L, Peng X, Zhu J, Liu G, Chen X, Tang C, Liu H, Liu F, Peng Y. Protective effects of curcumin on acute gentamicin-induced nephrotoxicity in rats. Can J Physiol Pharmacol 2015; 93:275-82. [PMID: 25730179 DOI: 10.1139/cjpp-2014-0459] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Gentamicin-induced nephrotoxicity is one of the most common causes of acute kidney injury (AKI). The phenotypic alterations that contribute to acute kidney injury include inflammatory response and oxidative stress. Curcumin has a wide range biological functions, especially as an antioxidant. This study was designed to evaluate the renoprotective effects of curcumin treatment in gentamicin-induced AKI. Methods: Gentamicin-induced AKI was established in female Sprague–Dawley rats. Rats were treated with curcumin (100 mg/kg body mass) by intragastric administration, once daily, followed with an intraperitoneal injection of gentamicin sulfate solution at a dose of 80 mg/kg body mass for 8 consecutive days. At days 3 and 8, the rats were sacrificed, and the kidneys and blood samples were collected for further analysis. Results: The animals treated with gentamicin showed marked deterioration of renal function, together with higher levels of neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule 1 (KIM-1) in the plasma as compared with the controls. Animals that underwent intermittent treatment with curcumin exhibited significant improvements in renal functional parameters. We also observed that treatment with curcumin significantly attenuated renal tubular damage, apoptosis, and oxidative stress. Curcumin treatment exerted anti-apoptosis and anti-oxidative effects by up-regulating Nrf2/HO-1 and Sirt1 expression. Conclusions: Our data clearly demonstrate that curcumin protects kidney from gentamicin-induced AKI via the amelioration of oxidative stress and apoptosis of renal tubular cells, thus providing hope for the amelioration of gentamicin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Liyu He
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Xiaofei Peng
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Jiefu Zhu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Guoyong Liu
- Department of Nephrology, The First Affiliated Hospital of Changde Vocational Technical College, Changde, Hunan 415000, People’s Republic of China
| | - Xian Chen
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Chengyuan Tang
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Hong Liu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Fuyou Liu
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| | - Youming Peng
- Nephrology Department, 2nd Xiangya Hospital, Central South University, Key Lab of Kidney Disease and Blood Purification in Hunan, 139 Renmin Road, Changsha, Hunan 410011, People’s Republic of China
| |
Collapse
|
39
|
Ugur S, Ulu R, Dogukan A, Gurel A, Yigit IP, Gozel N, Aygen B, Ilhan N. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail 2015; 37:332-6. [PMID: 25594614 DOI: 10.3109/0886022x.2014.986005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The polyphenol curcumin has several pharmacological effects, including antioxidant, anti-inflammatory and anti-cancer features. In this study, we evaluated the effects of curcumin in cisplatin-induced nephrotoxicity in rats. Male Wistar rats were divided into four groups: (1) control; (2) cisplatin (7 mg/kg body weight, intraperitoneal as a single dose); (3) curcumin (100 mg/kg via gavage, for 10 days); and (4) cisplatin and curcumin. The cisplatin-treated rats exhibited kidney injury manifested by increased serum urea and creatinine (p<0.05). The kidney tissue from the cisplatin treated rats also exhibited a significant increase in the malondialdehyde (MDA) levels (p<0.05). The treatment with curcumin prevented a rise in the serum urea, creatinine and MDA levels when compared to the control group kidneys (p<0.05). The analysis the nicotinamide phosphoribosyltransferase (NAMPT) and sirtuin (SIRT) proteins (SIRT1, SIRT3 and SIRT4), which play important roles in the resistance to stress and the modulation of the threshold of cell death, showed similar trends (p<0.05). In the cisplatin-only treated rats, the induced renal injury decreased the levels of the NAMPT and SIRT proteins. Conversely, the curcumin increased the levels of the NAMPT and SIRT proteins in the cisplatin-treated rats (p<0.05). These data suggest that curcumin can potentially be used to reduce chemotherapy-induced nephrotoxicity, thereby enhancing the therapeutic window of cisplatin.
Collapse
Affiliation(s)
- Sıddık Ugur
- Department of Nephrology, Medical Faculty, Firat University , Elazig , Turkey and
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bakır S, Yazgan ÜC, İbiloğlu İ, Elbey B, Kızıl M, Kelle M. The protective effect of pomegranate extract against cisplatin toxicity in rat liver and kidney tissue. Arch Physiol Biochem 2015; 121:152-6. [PMID: 26247305 DOI: 10.3109/13813455.2015.1068336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The purpose of this study was to perform a histopathological investigation, at the light microscopy level, of the protective effects of pomegranate extract in cisplatin-induced liver and kidney damage in rats. MATERIAL AND METHODS Twenty-eight adult male Wistar albino rats were randomly divided into four groups of seven animals: Group 1: Control; Group 2: Treated for 10 consecutive days by gavage with pomegranate juice (2 ml/kg/day); Group 3: Injected intraperitoneally with cisplatin (8 mg/kg body weight, single dose) onset of the day 5, and Group 4: Treated by gavage with pomegranate juice 10 days before and after a single injection of cisplatin onset of the day 5. After 10 days, the animals were sacrificed and their kidneys and liver tissue samples were removed from each animal after experimental procedures. Cisplatin-induced renal and hepatic toxicity and the effect of pomegranate juice were evaluated by histopatological examinations. RESULTS In the kidney tissue, pomegranate juice significantly ameliorated cisplatin-induced structural alterations when compared with the cisplatin alone group. But in the liver tissue, although pomegranate juice attenuated the cisplatin-induced toxicity only in two rats, significant improvement was not observed. CONCLUSION In conclusion, these results demonstrate that the anti-oxidant pomegranate juice might have a protective effect against cisplatin-induced toxicity in rat kidney, but not in liver. Pomegranate juice could be beneficial as a dietary supplement in patients receiving chemotherapy medications.
Collapse
Affiliation(s)
- Salih Bakır
- a Dicle University, School of Medicine, Department of Physiology , Diyarbakır , Turkey
| | - Ümit Can Yazgan
- b Zirve University, School of Medicine, Department of Physiology , Gaziantep , Turkey
| | - İbrahim İbiloğlu
- c Dicle University, School of Medicine, Department of Pathology , Diyarbakır , Turkey
| | - Bilal Elbey
- d Dicle University, School of Medicine, Department of Immunology , Diyarbakır , Turkey , and
| | - Murat Kızıl
- e Dicle University, Faculty of Science, Chemistry Department , Diyarbakır , Turkey
| | - Mustafa Kelle
- a Dicle University, School of Medicine, Department of Physiology , Diyarbakır , Turkey
| |
Collapse
|
41
|
Miyagi MYS, Seelaender M, Castoldi A, de Almeida DC, Bacurau AVN, Andrade-Oliveira V, Enjiu LM, Pisciottano M, Hayashida CY, Hiyane MI, Brum PC, Camara NOS, Amano MT. Long-term aerobic exercise protects against cisplatin-induced nephrotoxicity by modulating the expression of IL-6 and HO-1. PLoS One 2014; 9:e108543. [PMID: 25272046 PMCID: PMC4182716 DOI: 10.1371/journal.pone.0108543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 08/22/2014] [Indexed: 12/13/2022] Open
Abstract
Nephrotoxicity is substantial side effect for 30% of patients undergoing cancer therapy with cisplatin and may force them to change or even abandon the treatment. Studies regarding aerobic exercise have shown its efficacy for the treatment of many types of diseases and its capacity to reduce tumors. However, little is known about the impact of physical exercise on cisplatin-induced acute kidney injury (AKI). In the present study, our aim was to investigate the role of physical exercise in AKI induced by cisplatin. We submitted C57Bl6 male mice to seven weeks of chronic exercise on a training treadmill and treated them with single i.p. injection of cisplatin (20 mg/kg) in the last week. Exercise efficacy was confirmed by an increased capillary-to-fiber ratio in the gastrocnemius muscle of exercised groups (EX and CIS-EX). The group submitted to exercise before cisplatin administration (CIS-EX) exhibited less weight loss and decreased serum urea levels compared to the cisplatin group (CIS). Exercise also showed a protective role against cisplatin-induced cell death in the kidney. The CIS-EX group showed a lower inflammatory response, with less TNF and IL-10 expression in the kidney and serum. In the same group, we observed an increase of IL-6 and HO-1 expression in the kidney. Taken together, our results indicate that chronic aerobic exercise is able to attenuate AKI by inducing IL-6 and HO-1 production, which results in lower inflammatory and apoptotic profiles in the kidney.
Collapse
Affiliation(s)
- Mariana Yasue Saito Miyagi
- Laboratory of Immunobiology of Transplants, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Cell Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Angela Castoldi
- Laboratory of Immunobiology of Transplants, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Danilo Candido de Almeida
- Laboratory of Immunobiology of Transplants, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline Villa Nova Bacurau
- Laboratory of Molecular and Cellular Exercise Physiology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Vinicius Andrade-Oliveira
- Laboratory of Immunobiology of Transplants, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Lucas Maceratesi Enjiu
- Cancer Metabolism Research Group, Department of Cell Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcus Pisciottano
- Cancer Metabolism Research Group, Department of Cell Biology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Caroline Yuri Hayashida
- Laboratory of Immunobiology of Transplants, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Meire Ioshie Hiyane
- Laboratory of Immunobiology of Transplants, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Patricia Chakur Brum
- Laboratory of Molecular and Cellular Exercise Physiology, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Niels Olsen Saraiva Camara
- Laboratory of Immunobiology of Transplants, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Mariane Tami Amano
- Laboratory of Immunobiology of Transplants, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
42
|
Tapia E, Sánchez-Lozada LG, García-Niño WR, García E, Cerecedo A, García-Arroyo FE, Osorio H, Arellano A, Cristóbal-García M, Loredo ML, Molina-Jijón E, Hernández-Damián J, Negrette-Guzmán M, Zazueta C, Huerta-Yepez S, Reyes JL, Madero M, Pedraza-Chaverrí J. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I. Free Radic Res 2014; 48:1342-54. [PMID: 25119790 DOI: 10.3109/10715762.2014.954109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The potential protective effect of the dietary antioxidant curcumin (120 mg/Kg/day for 6 days) against the renal injury induced by maleate was evaluated. Tubular proteinuria and oxidative stress were induced by a single injection of maleate (400 mg/kg) in rats. Maleate-induced renal injury included increase in renal vascular resistance and in the urinary excretion of total protein, glucose, sodium, neutrophil gelatinase-associated lipocalin (NGAL) and N-acetyl β-D-glucosaminidase (NAG), upregulation of kidney injury molecule (KIM)-1, decrease in renal blood flow and claudin-2 expression besides of necrosis and apoptosis of tubular cells on 24 h. Oxidative stress was determined by measuring the oxidation of lipids and proteins and diminution in renal Nrf2 levels. Studies were also conducted in renal epithelial LLC-PK1 cells and in mitochondria isolated from kidneys of all the experimental groups. Maleate induced cell damage and reactive oxygen species (ROS) production in LLC-PK1 cells in culture. In addition, maleate treatment reduced oxygen consumption in ADP-stimulated mitochondria and diminished respiratory control index when using malate/glutamate as substrate. The activities of both complex I and aconitase were also diminished. All the above-described alterations were prevented by curcumin. It is concluded that curcumin is able to attenuate in vivo maleate-induced nephropathy and in vitro cell damage. The in vivo protection was associated to the prevention of oxidative stress and preservation of mitochondrial oxygen consumption and activity of respiratory complex I, and the in vitro protection was associated to the prevention of ROS production.
Collapse
Affiliation(s)
- E Tapia
- Department of Nephrology, National Institute of Cardiology I. Ch. , Mexico City , Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Gómez-Sierra T, Molina-Jijón E, Tapia E, Hernández-Pando R, García-Niño WR, Maldonado PD, Reyes JL, Barrera-Oviedo D, Torres I, Pedraza-Chaverri J. S-allylcysteine prevents cisplatin-induced nephrotoxicity and oxidative stress. J Pharm Pharmacol 2014; 66:1271-81. [DOI: 10.1111/jphp.12263] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/23/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Cisplatin (CP) is an antineoplastic agent that induces nephrotoxicity and oxidative stress. S-allylcysteine (SAC) is a garlic-derived antioxidant. This study aims to explore whether SAC protects against CP-induced nephrotoxicity in rats.
Methods
In the first stage, the SAC protective dose was determined by measuring renal damage and the oxidative stress markers malondialdehyde, oxidized proteins and glutathione in rats injected with CP. In the second stage, the effect of a single dose of SAC on the expression of nuclear factor-erythroid 2-related factor-2 (Nrf2), protein kinase C beta 2 (PKCβ2) and nicotinamide adenine dinucleotide phosphate oxidase subunits (p47phox and gp91phox) was studied. In addition, the effect of SAC on oxidative stress markers and on the activity of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in isolated proximal and distal tubules were evaluated.
Key findings
SAC (25 mg/kg) prevented the CP-induced renal damage and attenuated CP-induced decrease in Nrf2 levels and increase in PKCβ2, p47phox and gp91phox expression in renal cortex and oxidative stress and decrease in the activity of CAT, GPx and GR in proximal and distal tubules.
Conclusions
These data suggest that SAC provides renoprotection by attenuating CP-induced oxidative stress and decrease in the activity of CAT, GPx and GR.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Eduardo Molina-Jijón
- Departament of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, National Polytechnic Institute (Cinvestav-IPN), DF, Mexico
| | - Edilia Tapia
- Laboratory of Renal Pathophysiology, Department of Nephrology, National Institute of Cardiology, DF, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘Salvador Zubirán’, DF, Mexico
| | - Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Perla D Maldonado
- Laboratory of Vascular Pathology, National Institute Neurology and Neurosurgery ‘Manuel Velasco Suárez’, Mexico City, DF, Mexico
| | - José Luis Reyes
- Departament of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, National Polytechnic Institute (Cinvestav-IPN), DF, Mexico
| | - Diana Barrera-Oviedo
- Department of Pharmacology, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Ismael Torres
- Animal Care Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| |
Collapse
|