1
|
Iwabuchi E, Miki Y, Xu J, Kanai A, Ishida T, Sasano H, Suzuki T. Zinc transporter ZnT5 is associated with epithelial mesenchymal transition via SMAD1 in breast cancer. Int J Exp Pathol 2024; 105:184-192. [PMID: 39138630 PMCID: PMC11574640 DOI: 10.1111/iep.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024] Open
Abstract
Zinc levels in breast cancer tissues have been reported to be higher than those in normal tissues. In addition, the expression levels of zinc transporters, including ZnT5 and ZnT6, are reportedly higher in breast cancer than in normal breast tissues. ZnT5 and ZnT6 also contribute to heterodimer formation and are involved in several biological functions. However, the functions of ZnT5 and ZnT6 heterodimers in breast cancer remain unknown. Therefore, we first investigated the immunolocalization of ZnT5 and ZnT6 in pathological breast cancer specimens and in MCF-7 and T-47D breast cancer cells. Next, we used small interfering RNA to assess cell viability and migration in ZnT5 knockdown MCF-7 and T-47D cells. Immunohistochemical analysis showed that the number of ZnT5-positive breast cancer cells was inversely correlated with the pathologic N factor status. ZnT5 knockdown had no effect on cell viability in the presence of 100 μM ZnCl2 in MCF-7 and T-47D cells. In a wound healing assay, 100 μM ZnCl2 treatment inhibited cell migration of MCF-7 and T-47D cells, whereas ZnT5 knockdown promoted cell migration, decreased E-cadherin expression and increased vimentin, slug and matrix metalloproteinase 9 expression. Antibody arrays showed that ZnT5 knockdown increased the expression of SMAD1, and that dorsomorphin treatment inhibited the promotion of migratory ability induced by ZnT5 knockdown. The results of this study revealed that both ZnT5 may be involved in less aggressive breast cancer subtypes, possibly through inhibition of cell migration.
Collapse
Affiliation(s)
- Erina Iwabuchi
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhiro Miki
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Junyao Xu
- The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Zhejiang, Hangzhou, China
| | - Ayako Kanai
- Department of Breast Surgery, Hachinohe City Hospital, Aomori, Japan
| | - Takanori Ishida
- Department of Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hironobu Sasano
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Anatomic Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Pathology, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
2
|
Tian X, Wei J. Sestrin 2 protects human lens epithelial cells from oxidative stress and apoptosis induced by hydrogen peroxide by regulating the mTOR/Nrf2 pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241234741. [PMID: 38379215 PMCID: PMC10880533 DOI: 10.1177/03946320241234741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
OBJECTIVE We aimed to explore the effect and potential mechanism of Sestrin 2 (SESN2) in human lens epithelial cells (HLECs). METHODS To mimic the oxidative stress environment, SAR01/04 cells were treated with 200 μM hydrogen peroxide (H2O2) for 24 h. Cell viability and apoptosis were checked by cell counting kit-8 and flow cytometry. Western blot was taken to check the protein changes of SESN2, B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), mechanistic target of rapamycin (mTOR), phosphorylated (p)-mTOR, ribosomal protein S6 kinase B1 (p70S6K), p-p70S6K, and nuclear factor erythroid 2-related factor 2 (Nrf2). Superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and reactive oxygen species (ROS) were detected via the corresponding reagent kit. The levels of interleukin (IL)-1β, IL-18, and tumor necrosis factor (TNF)-α were measured using enzyme-linked immunosorbent assay. RESULTS SESN2 was down-regulated in cataract lens tissue and up-regulated in SAR01/04 cells treated with H2O2. Under treatment of H2O2, up-regulation of SESN2 improved cell viability, enhanced the activity of SOD and CAT, inhibited cell apoptosis, and reduced the levels of MDA, ROS, IL-1β, IL-18, and TNF-α, while down-regulation of SESN2 caused the contrary effects. Further bioinformatics analysis suggested that SESN2 regulated the mTOR signaling pathway. Treatment of H2O2 inhibited p-mTOR and p-p70S6K protein expression, while overexpression of SESN2 increased p-mTOR and p-p70S6K protein expression in the H2O2 group and down-regulation of SESN2 further decreased p-mTOR and p-p70S6K protein expression in the H2O2 group. Additionally, H2O2 increased Nrf2 protein expression, and overexpression of SESN2 further increased Nrf2 protein expression in the H2O2 group. Importantly, rapamycin (an inhibitor of mTOR signaling pathway) and knockdown of Nrf2 reversed the promotive effects of SESN2 on cell viability and the inhibitive effects of SESN2 on cell apoptosis, oxidative stress, and inflammatory reaction. CONCLUSION SESN2 protected HLECs damage induced by H2O2, which was related to the activation of mTOR/Nrf2 pathway.
Collapse
Affiliation(s)
- Xiao Tian
- Department of Ophthalmology, Jinan Aier Eye Hospital, Jinan, China
| | - Jie Wei
- Department of Ophthalmology, No. 960 Hospital of PLA Joint Logistic Support Force, Jinan, China
| |
Collapse
|
3
|
Regulation of the Inflammatory Response, Proliferation, Migration, and Epithelial-Mesenchymal Transition of Human Lens Epithelial Cells by the lncRNA-MALAT1/miR-26a-5p/TET1 Signaling Axis. J Ophthalmol 2023; 2023:9942880. [PMID: 36700118 PMCID: PMC9870684 DOI: 10.1155/2023/9942880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Background The ocular inflammatory microenvironment has been reported to be closely associated with the occurrence and progression of highly myopic cataract (HMC). Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) could alter the biological properties of mammalian cells by modulating the expression of inflammatory mediators; therefore, it may contribute to the development of HMC. Objective To investigate the function of MALAT1 in the inflammatory response, proliferation, migration, and epithelial-mesenchymal transition (EMT) of inflammatory and injured human lens epithelial cells (HLECs) and to reveal the underlying molecular signals. Methods Patients with HMC and age-related cataract (ARC) with an axial length of more than 26 mm were selected, and the anterior capsular tissue was obtained during cataract surgery. TNF-α (20 ng/mL) was chosen to induce inflammatory damage in HLECs to simulate the inflammatory microenvironment in HMC eyes. Specific siRNAs, inhibitors, and mimics were used to suppress or enhance the functions of MALAT1 and miR-26a-5p. RT-qPCR and Western blot analysis were performed to measure gene and protein expression, respectively. Results The expression of MALAT1 and the inflammatory mediators IL-6, MMP-2, and MMP-9 were significantly higher in HMC anterior capsule tissues than in ARC. TNF-α treatment increased the expression of MALAT1, while it also promoted the proliferation, migration, and EMT of HLECs. MALAT1 interference decreased the expression of IL-6 and MMP-2 and inhibited the aforementioned processes. Furthermore, MALAT1 negatively regulated the expression of miR-26a-5p and then promoted TET1 expression. TET1 was identified as a direct target of miR-26a-5p, and the promoting effect of MALAT1 on TET1 expression could be reversed by miR-26a-5p mimics. Conclusion The inflammatory environment and MALAT1 expression could be reciprocally induced in HLECs. MALAT1 may act as a ceRNA via the "sponge" miR-26a-5p and target TET1 to regulate the inflammatory response, proliferation, migration, and EMT processes in HLECs.
Collapse
|
4
|
Lin X, Yang T, Liu X, Fan F, Zhou X, Li H, Luo Y. TGF-β/Smad Signalling Activation by HTRA1 Regulates the Function of Human Lens Epithelial Cells and Its Mechanism in Posterior Subcapsular Congenital Cataract. Int J Mol Sci 2022; 23:14431. [PMID: 36430917 PMCID: PMC9692351 DOI: 10.3390/ijms232214431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital cataract is the leading cause of blindness among children worldwide. Patients with posterior subcapsular congenital cataract (PSC) in the central visual axis can result in worsening vision and stimulus deprivation amblyopia. However, the pathogenesis of PSC remains unclear. This study aims to explore the functional regulation and mechanism of HTRA1 in human lens epithelial cells (HLECs). HTRA1 was significantly downregulated in the lens capsules of children with PSC compared to normal controls. HTRA1 is a suppression factor of transforming growth factor-β (TGF-β) signalling pathway, which plays a key role in cataract formation. The results showed that the TGF-β/Smad signalling pathway was activated in the lens tissue of PSC. The effect of HTRA1 on cell proliferation, migration and apoptosis was measured in HLECs. In primary HLECs, the downregulation of HTRA1 can promote the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway and can significantly upregulate the TGF-β/Smad downstream target genes FN1 and α-SMA. HTRA1 was also knocked out in the eyes of C57BL/6J mice via adeno-associated virus-mediated RNA interference. The results showed that HTRA1 knockout can significantly upregulate p-Smad2/3 and activate the TGF-β/Smad signalling pathway, resulting in abnormal proliferation and irregular arrangement of lens epithelial cells and leading to the occurrence of subcapsular cataract. To conclude, HTRA1 was significantly downregulated in children with PSC, and the downregulation of HTRA1 enhanced the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway, which led to the occurrence of PSC.
Collapse
Affiliation(s)
- Xiaolei Lin
- Department of Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China;
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Tianke Yang
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xin Liu
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Fan Fan
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xiyue Zhou
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Hongzhe Li
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| |
Collapse
|
5
|
Croaker A, Davis A, Carroll A, Liu L, Myers SP. Understanding of black salve toxicity by multi-compound cytotoxicity assays. BMC Complement Med Ther 2022; 22:247. [PMID: 36127674 PMCID: PMC9487053 DOI: 10.1186/s12906-022-03721-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Black salve is a controversial complementary and alternative medicine (CAM) associated with skin toxicity and skin cancer treatment failures. Black salve formulations vary between manufacturers and contain a number of botanical and synthetic constituents. The skin cancer cytotoxicity of a number of these constituents has not been assessed to date. The alkaloids from the rhizomes of Sanguinaria canadensis, a key black salve ingredient, have had their single compound cytotoxicity assessed; however, whether they possess synergistic cytotoxicity with other compounds has not been studied and is of direct clinical relevance. This research aimed to improve our understanding of the skin cancer cytotoxicity of black salve constituents.
Methods
The cytotoxicity of individual and combination black salve constituents were assessed against the A375 melanoma and A431 squamous cell carcinoma cell lines. Cytotoxicity was determined using the Resazurin assay with fluorescence measured using a Tecan Infinite 200 Pro Microplate reader, compound cytotoxicity being compared to that of the topical cancer therapeutic agent, 5- fluouracil. Docetaxal was used as a positive control. Dunnetts p value was used to determine whether significant synergistic cytotoxicity was present.
Results
Sanguinarine was the most cytotoxic compound tested with a 24-hour IC50 of 2.1 μM against the A375 Melanoma cell line and 3.14 μM against the A431 SCC cell line. All black salve constituents showed greater cytotoxicity against the two skin cancer cell lines tested than the skin cancer therapeutic 5-Fluouracil with 24 hours of compound exposure. Chelerythrine and minor Quaternary Benzophenanthridine Alkaloids (QBAs) present in black salve, at concentrations not having a cytotoxic effect by themselves, boosted the cytotoxic effects of sanguinarine. This could be a synergistic rather than additive cytotoxic effect although the synergistic effect was cell line and concentration dependent.
Conclusions
Black salve contains several cytotoxic compounds, a number of which have been found to possess synergistic cytotoxicity for the first time against skin cancer cell lines. In addition, these compounds together increase the overall cytotoxic effect. Assessing multi-compound cytotoxicity in herbal medicine can provide additional information about both their therapeutic and toxicity potential. As black salve is currently being used by patients, further cytotoxicity work should be undertaken to assess whether synergistic cytotoxicity exists when tested in normal skin cells.
Collapse
|
6
|
Lin X, Li H, Yang T, Liu X, Fan F, Zhou X, Luo Y. Transcriptomics Analysis of Lens from Patients with Posterior Subcapsular Congenital Cataract. Genes (Basel) 2021; 12:1904. [PMID: 34946854 PMCID: PMC8702110 DOI: 10.3390/genes12121904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 01/30/2023] Open
Abstract
To gain insight into the aetiology of posterior subcapsular congenital cataract from the perspective of transcriptional changes, we conducted an mRNA sequencing analysis of the lenses in posterior subcapsular congenital cataract patients and in normal children. There were 1533 differentially expressed genes from 19,072 genes in the lens epithelial cells of the posterior subcapsular congenital cataract patients compared to in the normal controls at a cut-off criteria of |log2 fold change| of >1 and a p-value of <0.05, including 847 downregulated genes and 686 upregulated genes. To further narrow down the DEGs, we utilised the stricter criteria of |log2 fold change| of >1 and an FDR value of <0.05, and we identified 551 DEGs, including 97 upregulated genes and 454 downregulated genes. This study also identified 1263 differentially expressed genes of the 18,755 genes in lens cortex and nuclear fibres, including 646 downregulated genes and 617 upregulated genes. The downregulated genes in epithelial cells were significantly enriched in the structural constituent of lenses, lens development and lens fibre cell differentiation. After filtering the DEGs using the databases iSyTE and Cat-Map, several high-priority candidate genes related to posterior subcapsular congenital cataract such as GRIFIN, HTRA1 and DAPL1 were identified. The findings of our study may provide a deeper understanding of the mechanisms of posterior subcapsular congenital cataract and help in the prevention and treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (X.L.); (H.L.); (T.Y.); (X.L.); (F.F.); (X.Z.)
| |
Collapse
|
7
|
Salesa B, Sabater i Serra R, Serrano-Aroca Á. Zinc Chloride: Time-Dependent Cytotoxicity, Proliferation and Promotion of Glycoprotein Synthesis and Antioxidant Gene Expression in Human Keratinocytes. BIOLOGY 2021; 10:1072. [PMID: 34827065 PMCID: PMC8615178 DOI: 10.3390/biology10111072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022]
Abstract
The use of ionic metals such as zinc (Zn2+) is providing promising results in regenerative medicine. In this study, human keratinocytes (HaCaT cells) were treated with different concentrations of zinc chloride (ZnCl2), ranging from 1 to 800 µg/mL, for 3, 12 and 24 h. The results showed a time-concentration dependence with three non-cytotoxic concentrations (10, 5 and 1 µg/mL) and a median effective concentration value of 13.5 µg/mL at a cell exposure to ZnCl2 of 24 h. However, the zinc treatment with 5 or 1 µg/mL had no effect on cell proliferation in HaCaT cells in relation to the control sample at 72 h. The effects of the Zn2+ treatment on the expression of several genes related to glycoprotein synthesis, oxidative stress, proliferation and differentiation were assessed at the two lowest non-cytotoxic concentrations after 24 h of treatment. Out of 13 analyzed genes (superoxide dismutase 1 (SOD1), catalase (CAT), matrix metallopeptidase 1 (MMP1), transforming growth factor beta 1 (TGFB1), glutathione peroxidase 1 (GPX1), fibronectin 1 (FN1), hyaluronan synthase 2 (HAS2), laminin subunit beta 1 (LAMB1), lumican (LUM), cadherin 1 (CDH1), collagen type IV alpha (COL4A1), fibrillin (FBN) and versican (VCAN)), Zn2+ was able to upregulate SOD1, CAT, TGFB1, GPX1, LUM, CDH1, FBN and VCAN, with relative expression levels of at least 1.9-fold with respect to controls. We found that ZnCl2 promoted glycoprotein synthesis and antioxidant gene expression, thus confirming its great potential in biomedicine.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46022 València, Spain;
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
- Biomedical Research Networking Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46022 València, Spain;
| |
Collapse
|
8
|
Xia Z, Bi X, Lian J, Dai W, He X, Zhao L, Min J, Wang F. Slc39a5-mediated zinc homeostasis plays an essential role in venous angiogenesis in zebrafish. Open Biol 2020; 10:200281. [PMID: 33081634 PMCID: PMC7653363 DOI: 10.1098/rsob.200281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a precise process mediated by a variety of signals and the environmental niche. Although the essential trace element zinc and its homeostasis are essential for maintaining proper cellular functions, whether zinc plays a role in angiogenesis is currently unknown. Using zebrafish embryos as a model system, we found that zinc treatment significantly increased the expression of the slc39a5 gene, which encodes the zinc transporter Slc39a5. Moreover, knocking down slc39a5 expression using either a morpholino or CRISPR/Cas9-mediated gene editing led to cardiac ischaemia and an accumulation of red blood cells in the caudal vein plexus (CVP), as well as delayed venous sprouting and fewer vascular loops in the CVP region during early development. Further analysis revealed significantly reduced proliferation and delayed cell migration in the caudal vein of slc39a5 morphants. At the mechanistic level, we found increased levels of systemic zinc in slc39a5-deficient embryos, and chelating zinc restored CVP development. In addition, we found that zinc overload in wild-type embryos leads to impaired CVP formation. Taken together, these results indicate that Slc39a5 plays a critical role in endothelial sprouting and migration in venous angiogenesis by regulating zinc homeostasis.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xinying Bi
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jia Lian
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wei Dai
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xuyan He
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lu Zhao
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Junxia Min
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Fudi Wang
- The First Affiliated Hospital, School of Public Health, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
9
|
Jia Y, Dai J, Zhang L, Xia H. Effect of Exogenous Zinc on MsrB1 Expression and Protein Oxidation in Human Lens Epithelial Cells. Biol Trace Elem Res 2019; 190:60-64. [PMID: 30306419 DOI: 10.1007/s12011-018-1543-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/04/2018] [Indexed: 11/30/2022]
Abstract
Aging has been related to zinc deficiency, resulting in protein oxidation and age-related decline of methionine sulfoxide reductase (Msr) activity. This study was designed to investigate the levels of methionine sulfoxide reductase B1 (MsrB1) mRNA and oxidized proteins in human lens epithelial (hLE) cells after treatment with exogenous zinc. The role of exogenous zinc in regulation of MsrB1 gene expression and protein oxidation in hLE cells was studied by MTT assay, oxidized protein measurement kit, and real-time PCR. The results showed that hLE cell viability was significantly decreased by MsrB1 gene knockdown or peroxynitrite (ONOO-) treatment, while it was significantly increased after treatment with exogenous zinc (P < 0.05). Protein carbonyl content in hLE cell by MsrB1 gene knockdown or ONOO- treatment was significantly decreased after treatment with ZnSO4 (P < 0.01). And exogenous zinc could increase the level of MsrB1 in hLE cell under normal (P < 0.001) and oxidative stress (P < 0.01) conditions. In conclusion, exogenous zinc could protect hLE cells against MsrB1 gene knockdown or ONOO--induced cell death by upregulation of MsrB1 involved in the elimination of reactive oxygen species (ROS) and oxidized proteins.
Collapse
Affiliation(s)
- Yi Jia
- Department of Chemical Biology, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China.
| | - Jie Dai
- Department of Chemical Biology, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Liangliang Zhang
- Department of Chemical Biology, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Huan Xia
- Department of Chemical Biology, School of Biology and Engineering, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| |
Collapse
|
10
|
Croaker A, King GJ, Pyne JH, Anoopkumar-Dukie S, Liu L. Black salve composition: An evaluation of the potential for normal tissue toxicity and treatment failure from black salve products. J Herb Med 2019. [DOI: 10.1016/j.hermed.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Orlova M, Nikolaev A, Trofimova T, Orlov A, Severin A, Kalmykov S. Hydroxyapatite and porphyrin-fullerene nanoparticles for diagnostic and therapeutic delivery of paramagnetic ions and radionuclides. Nanomedicine (Lond) 2018. [DOI: 10.24075/brsmu.2018.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nanoparticles for drug delivery are the subject of extensive research. Importantly, they can transform in size during synthesis or actual use, thereby changing their cytotoxic properties. The aim of the present work was to study the tendency of [67Zn] porphyrin-fullerene nanoparticles (BFNP) to aggregate over time and to compare the properties of hydroxyapatite (HAP) nanoparticles obtained through 3 different techniques. We found that aggregation of BFNP nanoparticles does not affect their function but attenuates their cytotoxicity against leukemia cells. We were also able to obtain HAP nanoparticles with programmable properties (such as size, shape or the capacity to adsorb metal ions, ligands and chemical complexes) through enzymatic synthesis by varying its conditions. The synthesized HAP nanoparticles contain short-lived isotopes of zinc and copper (in the form of ions and complexes with pyrimidine or thiazine derivatives). These tumoricidal components (a radionuclide and a ligand or a complex) determine the diagnostic and therapeutic potential of the obtained radiopharmaceutical agents.
Collapse
Affiliation(s)
- M.A. Orlova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow; Department of Biochemistry and Pharmacology, Dmitry Rogachev National Medical Research Centre of Hematology, Oncology and Immunology, Moscow
| | - A.L. Nikolaev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - T.P. Trofimova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow; Institute of Physiological Active Compounds of RAS, Chernogolovka
| | - A.P. Orlov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - A.V. Severin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| | - S.N. Kalmykov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow
| |
Collapse
|
12
|
Wang H, Liu B, Yin X, Guo L, Jiang W, Bi H, Guo D. Excessive zinc chloride induces murine photoreceptor cell death via reactive oxygen species and mitochondrial signaling pathway. J Inorg Biochem 2018; 187:25-32. [DOI: 10.1016/j.jinorgbio.2018.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 07/02/2018] [Accepted: 07/17/2018] [Indexed: 01/04/2023]
|
13
|
Trofimova TP, Orlova MA, Severin AV, Shalamova ES, Proshin AN, Orlov AP. The complex of zinc with N-(5,6-dihydro-4H-1,3-thiazine-2-yl)benzamide. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2135-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
A Review of Black Salve: Cancer Specificity, Cure, and Cosmesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9184034. [PMID: 28246541 PMCID: PMC5299188 DOI: 10.1155/2017/9184034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022]
Abstract
Black salve is a topical escharotic used for the treatment of skin cancer. Although promoted as a safe and effective alternative to conventional management by its proponents, limited clinical research has been undertaken to assess its efficacy and potential toxicities. Patients are increasingly utilizing the Internet as a source of health information. As a minimally regulated space, the quality and accuracy of this information vary considerably. This review explores four health claims made by black salve vendors, investigating its natural therapy credentials, tumour specificity, and equivalence to orthodox medicine in relation to skin cancer cure rates and cosmesis. Based upon an analysis of in vitro constituent cytotoxicity, in vivo post black salve histology, and experience with Mohs paste, black salve is likely to possess normal tissue toxicity with some cancer cell lines being relatively resistant to its effects. This may explain the incongruous case study reports of excessive scarring, deformity, and treatment failure.
Collapse
|
15
|
Zhang X, Liang D, Lian X, Chi ZH, Wang X, Zhao Y, Ping Z. Effect of zinc deficiency on mouse renal interstitial fibrosis in diabetic nephropathy. Mol Med Rep 2016; 14:5245-5252. [PMID: 27779665 DOI: 10.3892/mmr.2016.5870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/07/2016] [Indexed: 11/05/2022] Open
Abstract
There is emerging evidence that tubulointerstitial fibrosis is the final common pathway of the majority of chronic progressive renal diseases, including diabetic nephropathy (DN). Zinc, an essential dietary element, has been suggested to be important for a number of protein functions during fibrosis in vivo and in vitro. However, the effect of zinc deficiency (ZnD) on renal interstitial fibrosis in DN remains unclear. The present study investigated the effect and the underlying mechanisms of ZnD on renal interstitial fibrosis during DN using an streptozotocin‑induced model of diabetes with immunofluorescence staining and western blot analysis. The present study identified that dietary zinc restriction significantly decreased zinc concentrations in the plasma and mouse kidney. ZnD enhanced albuminuria and extracellular matrix protein expression, associated with diabetic renal interstitial fibrosis by activation of renal interstitial fibroblasts and regulation of the expression of fibrosis‑associated factors, which may be mediated by the activation of fibroblasts via the TGF‑β/Smad signaling pathway. The data indicates that ZnD serves an important role in the pathogenic mechanisms of renal interstitial fibrosis during the development of DN.
Collapse
Affiliation(s)
- Xiuli Zhang
- Key Laboratory of Medical Cell Biology, Ministry of Education, Shenyang, Liaoning 110001, P.R. China
| | - Dan Liang
- Troops of 95935 Unit, Harbin, Heilongjiang 150111, P.R. China
| | - Xu Lian
- Department of Endocrinology, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Zhi-Hong Chi
- Key Laboratory of Medical Cell Biology, Ministry of Education, Shenyang, Liaoning 110001, P.R. China
| | - Xuemei Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhao
- Key Laboratory of Medical Cell Biology, Ministry of Education, Shenyang, Liaoning 110001, P.R. China
| | - Zhang Ping
- Department of Histology and Embryology, Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|