1
|
Dao HT, Moss AF, Bradbury EJ, Swick RA. Effects of L-arginine, guanidinoacetic acid and L-citrulline supplementation in reduced-protein diets on bone morphology and mineralization of laying hens. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:225-234. [PMID: 37484992 PMCID: PMC10362165 DOI: 10.1016/j.aninu.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/05/2023] [Accepted: 03/16/2023] [Indexed: 07/25/2023]
Abstract
The alterations in feed ingredients and the nutrient matrix to produce reduced-protein diets may affect bone morphology and mineralization in laying hens. This study was implemented to determine the effects of L-arginine (Arg), guanidinoacetic acid (GAA), and L-citrulline (Cit) supplementation to Arg-deficient reduced-protein diets on bone morphology, strength, and mineralization status of laying hens. Individually housed Hy-Line Brown laying hens were evenly distributed to five dietary treatments with 25 replicates per treatment from 20 to 40 wk of age. Treatments consisted of a standard protein diet (17% crude protein, SP), a reduced-protein diet deficient in Arg (13% crude protein, RP), and RP supplemented with Arg (0.35% Arg, RP-Arg), GAA (0.46% GAA equivalent to 0.35% Arg, RP-GAA), or Cit (0.35% Cit equivalent to 0.35% Arg, RP-Cit) to reach the Arg level of SP diets. Birds fed the SP diet had similar bone weight, ash, length, width, Seedor index, breaking strength, and serum mineral concentration, but higher toe B level (P < 0.001) compared to those fed the RP diet at wk 40. Birds fed the SP diet consumed more but also excreted more K and B compared to those fed the RP diet (P < 0.01). Birds fed the SP diet had lower Cu digestibility (P = 0.01) and higher B retention (P < 0.01) compared to those offered the RP diet. Supplementation of Arg, GAA, and Cit to the RP diet increased relative femur weight and length (P < 0.001). Citrulline supplementation also increased relative tibia and femur ash, and Zn digestibility (P < 0.05). Supplementation of GAA to the RP diet decreased serum Ca, P, and Mg levels, decreased tibia Fe and Mg levels and toe Mg level, but increased Al, Fe, Zn, and Mn digestibility (P < 0.05). The current findings demonstrated the capacity of laying hens to adapt to low mineral intake by increasing mineral utilization. Overall, bone morphology and breaking strength, and serum mineral level in laying hens were not influenced by dietary CP levels. Dietary Arg, GAA, or Cit supplementation were effective in improving bone morphology and mineralization in laying hens fed Arg-deficient RP diets.
Collapse
Affiliation(s)
- Hiep Thi Dao
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, 2351, Australia
- Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy Town, Gia Lam District, Hanoi, 100000, Vietnam
| | - Amy F. Moss
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, 2351, Australia
| | - Emma J. Bradbury
- Baiada Poultry Pty Limited, Pendle Hill, New South Wales, 2145, Australia
| | - Robert A. Swick
- School of Environmental and Rural Science, Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, New South Wales, 2351, Australia
| |
Collapse
|
2
|
Xing L, Zhang R, Gong R, Liu X, Bao J, Li J. Ameliorative effects of dietary selenium against cadmium toxicity on production performance and egg quality in laying hens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114317. [PMID: 36435000 DOI: 10.1016/j.ecoenv.2022.114317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
In order to reveal the influences of supplemented dietary selenium (Se) on the suppressive effect of cadmium (Cd) toxicity on performance and egg properties of laying hens, the effects of co-treatment Se and Cd on the performance, egg quality, levels of amino acids and the antioxidant capacity of egg and serum were investigated. A total of 128 31-week-old laying hens were randomly distributed in four treatments, which were fed with the basic diet (0.2 mg/kg Se and 0.08 mg/kg Cd), and the basic diet with Se (1.1 mg/kg Se and 0.08 mg/kg Cd), Cd (0.2 mg/kg Se and 92.1 mg/kg Cd) and Se+Cd for 13 weeks, respectively. Hens supplemented with Cd led to an impairment on production performance and egg quality with decreased egg production (EP), egg mass (EM), feed intake (FI), eggshell color, eggshell thickness, yolk color, albumen height and haugh unit and increased the feed conversion ratio (FCR) (p < 0.05). Cd treatment decreased the contents of cysteine (Cys), histidine (His), lithium (Li), aluminum (Al), chromium (Cr), manganese (Mn), nickel (Ni), zinc (Zn), arsenic (As), Se, strontium (Sr), stannum (Sn), mercury (Hg) and thallium (Tl) and increased the contents of isoleucine (Ile) and Cd (p < 0.05). Cd destroyed the egg yolk and serum redox states with the increased concentration of malondialdehyde (MDA) and the decreased activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) (p < 0.05). The expression levels of ovarian apoptotic genes (protein 53, Caspase9, Cytochrome c and Bcl-2 associated X protein) increased, and B-cell lymphoma 2 (Bcl-2) expression decreased in the Cd group (p < 0.05). Feeding Se significantly alleviated Cd-induced toxicity on performance and egg quality. Se+Cd treatment restored the balance between oxidation and antioxidant systems and modulated the elements' homeostasis and alleviated the changes in apoptotic-related genes expression levels. Se could alleviate the Cd toxicity to laying hens and their eggs but could not counteract all negative effects of Cd.
Collapse
Affiliation(s)
- Lu Xing
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Runxiang Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Rixin Gong
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Xiaotao Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| |
Collapse
|
3
|
Chen DW, Li HJ, Liu Y, Ma LN, Pu JH, Lu J, Tang XJ, Gao YS. Protective effects of fowl-origin cadmium-tolerant lactobacillus against sub-chronic cadmium-induced toxicity in chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76036-76049. [PMID: 35665891 DOI: 10.1007/s11356-022-19113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) directly endangers poultry health and indirectly causes harm to human health by food chain. Numerous studies have focused on removing Cd using lactic acid bacteria (LAB). However, there is still a lack of in vivo studies to validate whether Cd can be absorbed successfully by LAB to alleviate Cd toxicity. Here, we aimed to isolated and screened poultry-derived Cd-tolerant LAB with the strongest adsorption capacity in vitro and investigate the protective effect of which on sub-chronic Cd toxicity in chickens. First, nine Cd-tolerant LAB strains were selected preliminarily by isolating, screening, and identifying from poultry farms. Next, four strains with the strongest adsorption capacity were used to explore the influence of different physical and chemical factors on the ability of LAB to adsorb Cd as well as its probiotic properties in terms of acid tolerance, bile salt tolerance, drug resistance, and antibacterial effects. Resultantly, the CLF9-1 strain with the best comprehensive ability was selected for further animal protection test. The Cd-tolerant LAB treatment promoted the growth performance of chickens and reduced the Cd-elevated liver and kidney coefficients. Moreover, Cd-induced liver, kidney, and duodenum injuries were alleviated significantly by high-dose LAB treatment. Furthermore, LAB treatment also increased the elimination of Cd in feces and markedly reduced the Cd buildup in the liver and kidney. In summary, these findings determine that screened Cd-tolerant LAB strain exerts a protective effect on chickens against sub-chronic cadmium poisoning, thus providing an essential guideline for the public health and safety of livestock and poultry.
Collapse
Affiliation(s)
- Da-Wei Chen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Hui-Jia Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - YinYin Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Li-Na Ma
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Jun-Hua Pu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - JunXian Lu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Xiu-Jun Tang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Yu-Shi Gao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China.
| |
Collapse
|
4
|
Wu C, Song J, Li L, Jiang Y, Applegate TJ, Wu B, Liu G, Wang J, Lin Y, Zhang K, Li H, Wu F, Bai S. Protective effects of selenized yeast on the combination of cadmium-, lead-, mercury-, and chromium-induced toxicity in laying hens. Front Vet Sci 2022; 9:958056. [PMID: 36246320 PMCID: PMC9558123 DOI: 10.3389/fvets.2022.958056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to investigate the toxic effects of a combination of cadmium (Cd), lead (Pb), mercury (Hg), and chromium (Cr) on laying performance, egg quality, serum biochemical parameters, and oxidative stress of laying hens, as well as the alleviating action of dietary supplementation of selenized yeast. A total of 160 Lohmann pink-shell laying hens (63-week-old) were randomly divided into four treatments with 10 replicates of four hens each. The treatments were the corn–soybean meal basal diet (control; CON), the CON diet supplemented with 0.4 mg selenium (Se)/kg from selenized yeast (Se); combined heavy metals group: the basal diet supplemented with 5 mg Cd/kg, 50 mg Pb/kg, 3 mg Hg/kg, and 5 mg Cr/kg (HEM), and the HEM diet supplemented with 0.4 mg Se/kg from selenized yeast (HEM+Se). The experimental period lasted for 12 weeks. The HEM diet decreased hen-day egg production, feed conversion ratio (FCR), and egg white quality (P < 0.05), but increased (P < 0.05) glutamic oxalacetic transaminase (AST) activity in the serum. HEM induced higher malondialdehyde (MDA) and reactive oxygen species (ROS) in the serum, liver, and ovary and significantly decreased (P < 0.05) the activity of total superoxide dismutase (SOD) and tended to decrease glutathione S-transferase (GST) (P = 0.09) in the serum. Meanwhile, HEM significantly decreased (P < 0.05) activity of SOD, GST, glutathione peroxidase (GPX), and glutathione (GSH) in the liver, and the activity of GPX and GSH in the ovary. Se addition of 0.4 mg/kg significantly (P < 0.05) improved hen-day egg production and FCR and decreased AST concentration and increased some enzyme activity in the serum, liver, and ovary. In conclusion, dietary HEM exposure depressed laying performance, and egg white quality was likely due to an impaired antioxidant capacity, disrupted hepatic function, and elevated HEM accumulation in the egg yolk and egg white of laying hens. Se addition of 0.4 mg/kg ameliorated toxic effects of HEM on laying performance, oxidative stress, and hepatic function.
Collapse
Affiliation(s)
- Caimei Wu
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jingping Song
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Lang Li
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yuxuan Jiang
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Todd J. Applegate
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Bing Wu
- Chelota Biotechnology Co., Ltd., Deyang, China
| | - Guangmang Liu
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Jianping Wang
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Keying Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hua Li
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Fali Wu
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shiping Bai
- Key Laboratory for Animal Disease-Resistance Nutrition and Feedstuffs of China Ministry of Agriculture and Rural Affairs, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Shiping Bai
| |
Collapse
|
5
|
Ali Kara M. The impact of different boron levels in diet on performance and eggshell quality of Japanese quails (Coturnix japonica). Saudi J Biol Sci 2022; 29:1796-1800. [PMID: 35280560 PMCID: PMC8913425 DOI: 10.1016/j.sjbs.2021.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 10/28/2022] Open
|
6
|
Dao HT, Moss AF, Bradbury EJ, Swick RA. Bone mineralisation status of broilers fed reduced-protein diets supplemented with l-arginine, guanidinoacetic acid and l-citrulline. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kar I, Patra AK. Tissue Bioaccumulation and Toxicopathological Effects of Cadmium and Its Dietary Amelioration in Poultry-a Review. Biol Trace Elem Res 2021; 199:3846-3868. [PMID: 33405085 DOI: 10.1007/s12011-020-02503-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) has been recognized as one of the most toxic heavy metals, which is continuously discharged into environments through anthropogenic (industrial activities, fertilizer production, and waste disposal) and natural sources with anthropogenic sources contributing greater than the natural sources. Therefore, Cd concentration sometimes increases in feeds, fodders, water bodies, and tissues of livestock including poultry in the vicinity of the industrial areas, which causes metabolic, structural, and functional changes of different organs of all animals. In poultry, bioaccumulation of Cd occurs in several organs mainly in the liver, kidney, lung, and reproductive organs due to its continuous exposure. Intake of Cd reduces growth and egg laying performance and feed conversion efficiency in poultry. Chronic exposure of Cd at low doses can also alter the microscopic structures of tissues, particularly in the liver, kidney, brain, pancreas, intestine, and reproductive organs due to increased content of Cd in these tissues. Continuous Cd exposure causes increased oxidative stress at cellular levels due to over-production of reactive oxygen species, exhausting antioxidant defense mechanisms. This leads to disruption of biologically relevant molecules, particularly nucleic acid, protein and lipid, and subsequently apoptosis, cell damage, and necrotic cell death. The histopatholocal changes in the liver, kidneys, and other organs are adversely reflected in hemogram and serum biochemical and enzyme activities. The present review discusses about Cd bioaccumulation and histopathological alterations in different tissues, pathogenesis of Cd toxicity, blood-biochemical changes, and its different ameliorative measures in poultry.
Collapse
Affiliation(s)
- Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, 700037, India.
| |
Collapse
|
8
|
Adarsh V, Dintaran P, Shivakumar GNK, Vijayarangam EA, Kumar DD, Nagaraj K, Eknath JS. Effect of boron supplementation on laying performance of White Leghorn hens fed diet with and without adequate level of calcium. Trop Anim Health Prod 2021; 53:444. [PMID: 34420099 DOI: 10.1007/s11250-021-02878-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 11/26/2022]
Abstract
This study was conducted in White Leghorn layers to ascertain the effect of boron (B) supplementation to calcium (Ca) inadequate diet under standard managemental practices. A total of 80 commercial White Leghorn hens, 25 weeks old with a uniform body weight, were randomly assigned to one of the 4 groups of 20 hens/replicates in each dietary group viz., normal calcium (NC)/Ca adequate, low calcium (LC)/Ca-inadequate, normal calcium with 40 ppm B (NCB) and low calcium with 40 ppm B (LCB). Dietary level of Ca was maintained at two levels, 100 (normal) and 90% (inadequate) of the requirement. Supplementation of B at 40 ppm improved (P < 0.01) egg production of layers from third month of trial as compared to un-supplemented group. Feed conversion ratio of layers was positively (P < 0.05) influenced by B supplementation in Ca-inadequate diet. Egg shell thickness of layers was found to be higher (P < 0.001) in groups supplemented 40 ppm B, irrespective of the level of Ca in the diets. Cracked egg production was also significantly (P < 0.01) lower in B-supplemented groups compared to Ca-inadequate group. Boron supplementation improved Ca retention irrespective of dietary Ca level. Low-Ca diet without boron supplementation resulted in lower retention (P < 0.05) of magnesium and boron. It is concluded that supplementation of 40 ppm B to Ca-inadequate diet ameliorated the lower laying performance in layers and confirms the usefulness of B in such abiotic stress situations.
Collapse
Affiliation(s)
- Vijay Adarsh
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Pal Dintaran
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | | | | | - Dey Debpriyo Kumar
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Kurni Nagaraj
- ICAR-National Institute of Animal Nutrition and Physiology, Bengaluru, India
| | - Jadhav S Eknath
- ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
9
|
Tao C, Zhang B, Wei X, Zhao M, Sun Z, Wang S, Bi J, Qi D, Sun L, Zhang N. Effects of dietary cadmium supplementation on production performance, cadmium residue in eggs, and hepatic damage in laying hens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33103-33111. [PMID: 32529616 DOI: 10.1007/s11356-020-09496-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
This study was conducted to investigate the adverse effects of cadmium (Cd) on the production performance, serum biochemistry, liver antioxidant status, histopathology, and egg residue in laying hens. A total of 72 healthy Hy-Line brown laying hens at 40-week-old were randomly assigned to four diets containing 0 (control diet), 15, 30, or 60 mg/kg Cd for 6 weeks. Laying hens exposed to 60 mg/kg Cd had lower egg production rate and worse feed to egg ratio (P < 0.05). Dietary Cd exposure (≥ 15 mg/kg) significantly decreased hepatic glutathione peroxide (GPX) activities, while increasing malondialdehyde (MDA) (P < 0.05). Hepatic histopathology and ultrastructure also showed damage and the symptoms were exacerbated in a dose-dependent manner. The residue of Cd in the yolk was increased with increasing dietary Cd concentration. The mRNA expression levels of mt4L, mt3, sod1, sod2, gpx1, gpx3, and gpx4 in the liver of laying hens exposed to 60 mg Cd/kg feed were significantly decreased (P < 0.05). In conclusion, dietary Cd exposure at ≥ 15 mg/kg induced hepatic damage in laying hens, indicating that the content of Cd in feed must be critically controlled.
Collapse
Affiliation(s)
- Can Tao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Beiyu Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaotian Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Man Zhao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhangjian Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiwen Bi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lvhui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Niya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
10
|
Zhu M, Li H, Miao L, Li L, Dong X, Zou X. Dietary cadmium chloride impairs shell biomineralization by disrupting the metabolism of the eggshell gland in laying hens. J Anim Sci 2020; 98:5715281. [PMID: 31974567 DOI: 10.1093/jas/skaa025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 01/23/2020] [Indexed: 01/29/2023] Open
Abstract
In this study, we identified cadmium (Cd) as a potential endocrine disruptor that impairs laying performance, egg quality, and eggshell deposition and induces oxidative stress and inflammation in the eggshell glands of laying hens. A total of 480 38-wk-old laying hens were randomly assigned into 5 groups that were fed a basal diet (control) or a basal diet supplemented with Cd (provided as CdCl2·2.5 H2O) at 7.5, 15, 30, and 60 mg Cd per kg feed for 9 wk. The results showed that, when compared with the control group, a low dose of dietary Cd (7.5 mg/kg) had positive effects on egg quality by improving albumen height, Haugh unit, yolk color, and shell thickness at the third or ninth week. However, with the increase in the dose and duration of Cd exposure, the laying performance, egg quality, and activities of eggshell gland antioxidant enzymes (catalase [CAT], glutathione peroxide [GSH-Px]), and ATPase (Na+/K+-ATPase, Ca2+-ATPase, and Mg2+-ATPase) deteriorated, and the activity of total nitric oxide synthase (T-NOS) and the level of malondialdehyde (MDA) increased significantly (P < 0.05). The histopathology and real-time quantitative PCR results showed that Cd induced endometrial epithelial cell proliferation accompanied by upregulation of the mRNA levels of progesterone receptor (PgR) and epidermal growth factor receptor (EGFR), downregulation of the mRNA levels of estrogen receptor α (ERα) and interleukin 6 (IL6), and inflammation of the eggshell gland accompanied by significantly increased expression of complement C3 and pro-inflammatory cytokine tumor necrosis factor α (TNFα) (P < 0.05). In addition, the ultrastructure of the eggshell showed that dietary supplementation with 7.5 mg/kg Cd increased the palisade layer and total thickness of the shell, but with the increase in dietary Cd supplementation (30 and 60 mg/kg) the thickness of the palisade layer and mammillary layer decreased significantly (P < 0.05), and the outer surface of the eggshell became rougher. Correspondingly, the expression of calbindin 1 (CALB1), ovocalyxin-32 (OCX-32), ovocalyxin-36 (OCX-36), osteopontin (SPP1), and ovocledidin-17 (OC-17) decreased significantly (P < 0.05) with increasing dietary Cd supplementation. Conclusively, the present study demonstrates that dietary supplementation with Cd negatively affects laying performance, egg quality, and eggshell deposition by disturbing the metabolism of eggshell glands in laying hens but has a positive effect on egg quality at low doses.
Collapse
Affiliation(s)
- Mingkun Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Huaiyu Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Liping Miao
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Lanlan Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xinyang Dong
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoting Zou
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Sciences, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
11
|
Olgun O, Yildiz A, Şahin A. Evaluation of dietary presence or use of cadmium in poultry. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- O. Olgun
- Department of Animal Science, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - A.O. Yildiz
- Department of Animal Science, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - A. Şahin
- Department of Animal Science, Faculty of Agriculture, University of Kirsehir Ahi Evran, Kirsehir, Turkey
| |
Collapse
|
12
|
Dietary Cadmium Chloride Supplementation Impairs Renal Function and Bone Metabolism of Laying Hens. Animals (Basel) 2019; 9:ani9110998. [PMID: 31752407 PMCID: PMC6912261 DOI: 10.3390/ani9110998] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/15/2019] [Indexed: 11/17/2022] Open
Abstract
This study was conducted to evaluate the toxic effects of cadmium (Cd) on the kidney function and bone development in laying hens. A total of 480 Hy-line laying hens aged 38 weeks were randomly allocated into five treatments, each of which included six replicates of 16 birds. The concentrations of Cd in the diets of the five groups were 0.47, 7.58, 15.56, 30.55, and 60.67 mg/kg. Results showed that serum calcium (Ca) levels decreased significantly in the 60.67 mg Cd/kg diet group (p < 0.05). The activities of serum alkaline phosphatase (ALP) and bone ALP (BALP) decreased significantly in the 15.56, 30.55 and 60.67 mg Cd/kg diet groups (p < 0.05). The levels of parathyroid hormone (PTH) increased significantly in the 30.55 and 60.67 mg Cd/kg diet groups, and the estradiol (E2), 1,25-(OH)2-D3 and calcitonin (CT) decreased significantly with the increase of dietary Cd supplementation (p < 0.05). Histological results presented enlargements of renal tubules and tubular fibrosis in the kidney and decreased trabecular bone in the tibia. Tartrate-resistant acidic phosphatase (TRAP) staining results of tibia showed that osteoclast was significantly increased at the relatively high dose of dietary Cd (p < 0.05). In addition, the renal function indicators of blood urea nitrogen (BUN), urea acid (UA), and creatinine were significantly increased in Cd supplemented groups compared with the control group (p < 0.05). Low dose Cd exposure induced antioxidant defenses accompanying the increase in activities of catalase (CAT), glutathione peroxidase (GSH-Px), and the levels of glutathione (GSH) in renal tissue. At the same time, with the increased Cd levels, the activities of CAT, GSH-Px decreased significantly, and the level of malondialdehyde (MDA) increased significantly (p < 0.05). The activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase decreased significantly in the relatively high levels of dietary Cd (p < 0.05). These results suggest that Cd can damage renal function and induce disorders in bone metabolism of laying hens.
Collapse
|
13
|
Buha A, Jugdaohsingh R, Matovic V, Bulat Z, Antonijevic B, Kerns JG, Goodship A, Hart A, Powell JJ. Bone mineral health is sensitively related to environmental cadmium exposure- experimental and human data. ENVIRONMENTAL RESEARCH 2019; 176:108539. [PMID: 31247431 DOI: 10.1016/j.envres.2019.108539] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/14/2019] [Accepted: 06/15/2019] [Indexed: 06/09/2023]
Abstract
Exposure to cadmium (Cd) is recognised as one of the risk factors for osteoporosis, although critical exposure levels and exact mechanisms are still unknown. Here, we first confirmed that in male Wistar rats challenged orally with 6 different levels of Cd (0.3-10 mg/kg b.w.), over 28 days, there was a direct dose relationship to bone Cd concentration. Moreover, bone mineral content was significantly diminished by ∼15% (p < 0.0001) plateauing already at the lowest exposure level. For the other essential bone elements zinc (Zn) loss was most marked. Having established the sensitive metrics (measures of Cd exposure), we then applied them to 20 randomly selected human femoral head bone samples from 16 independent subjects. Bone Cd concentration was inversely proportional to trabecular bone mineral density and mineral (calcium) content and Zn content of bone, but not the donor's age. Our findings, through direct bone analyses, support the emerging epidemiological view that bone health, adjudged by mineral density, is extremely sensitive to even background levels of environmental Cd. Importantly, however, our data also suggest that Cd may play an even greater role in compromised bone health than prior indirect estimates of exposure could reveal. Environmental Cd may be a substantially determining factor in osteoporosis and large cohort studies with direct bone analyses are now merited.
Collapse
Affiliation(s)
- Aleksandra Buha
- Department of Toxicology, Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade, Serbia.
| | - Ravin Jugdaohsingh
- Biomineral Research, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Vesna Matovic
- Department of Toxicology, Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Zorica Bulat
- Department of Toxicology, Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Biljana Antonijevic
- Department of Toxicology, Akademik Danilo Soldatović", University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11000, Belgrade, Serbia
| | - Jemma G Kerns
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YG, UK
| | - Allen Goodship
- Institute of Orthopaedics and Musculoskeletal Science UCL, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, London, HA7 4LP, UK
| | - Alister Hart
- Institute of Orthopaedics and Musculoskeletal Science UCL, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, London, HA7 4LP, UK
| | - Jonathan J Powell
- Biomineral Research, Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| |
Collapse
|
14
|
Chen J, Xu Y, Han Q, Yao Y, Xing H, Teng X. Immunosuppression, oxidative stress, and glycometabolism disorder caused by cadmium in common carp (Cyprinus carpio L.): Application of transcriptome analysis in risk assessment of environmental contaminant cadmium. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:386-394. [PMID: 30551084 DOI: 10.1016/j.jhazmat.2018.12.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Cadmium (Cd), a hazardous environmental contaminant with irreversible toxicity to fish, has been detected in aquatic environment of many countries. The common carp is one of the most widely distributed fish in the world, so we used common carp to assess environmental contaminant risk. In present study, we investigated effects of Cd on immune function, oxidative defense, and glycometabolism in the spleens of common carp by transcriptome analysis. Obtained 3794 differentially expressed genes (including 1848 up-regulated and 1946 down-regulated genes) were enriched using databases of Kyoto Encyclopedia of Genes and Genomes, and Gene Ontology in David bioinformatics software (version 6.8). The pathways and gene functions of immune, oxidative defense, and glycometabolism were obtained and identified. Some relative genes were validated using qRT-PCR and gene expression of IL-1β, INF-γ, IL-6, Cxcl18b, HO-1a, CAT, GPx1, GCK, and FBA decreased; and gene expression of B4GALT1, GPAT3, and CYP26B1 increased. Our results indicated that Cd exposure led to immunosuppression, oxidative stress, and glycometabolism disorder in the common carp spleens. The present study gives a novel insight and method on environmental risk assessment.
Collapse
Affiliation(s)
- Jianqing Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yanmin Xu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Qi Han
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yuchang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Houjuan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Hu X, Zhang R, Xie Y, Wang H, Ge M. The Protective Effects of Polysaccharides from Agaricus blazei Murill Against Cadmium-Induced Oxidant Stress and Inflammatory Damage in Chicken Livers. Biol Trace Elem Res 2017; 178:117-126. [PMID: 27943028 DOI: 10.1007/s12011-016-0905-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/23/2016] [Indexed: 11/28/2022]
Abstract
This study aimed to assess the protective roles of polysaccharides from Agaricus blazei Murill (ABP) against cadmium (Cd)-induced damage in chicken livers. A total of 80 Hy-Line laying chickens (7 days old) were randomly divided into four groups (n = 20). Group I (control) was fed with a basic diet and 0.2 ml saline per day, group II (Cd-treated group) was fed with a basic diet containing 140 mg/kg cadmium chloride (CdCl2) and 0.2 ml saline per day, group III (Cd + ABP-treated group) was fed with a basic diet containing 140 mg/kg CdCl2 and 0.2-ml ABP solution (30 mg/ml) per day via oral gavage, and group IV (ABP-treated group) was fed with 0.2-ml ABP solution (30 mg/ml) per day via oral gavage. The contents of Cd and malondialdehyde (MDA), the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), the messenger RNA (mRNA) levels of inflammatory cytokines and heat shock proteins (HSPs), the protein levels of HSPs, and the histopathological changes of livers were evaluated on days 20, 40, and 60. The results showed that Cd exposure resulted in Cd accumulating in livers and inhibiting the activities of antioxidant enzymes (SOD and GSH-PX). Cd exposure caused histopathological damage and increased the MDA content, the mRNA levels of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and HSPs (HSP27, HSP40, HSP60, HSP70, and HSP90) and the protein levels of HSPs (HSP60, HSP70, and HSP90). ABP supplementation during dietary exposure to Cd reduced the histopathological damage and decreased the contents of Cd and MDA and the expression of inflammatory cytokines and HSPs and improved the activities of antioxidant enzymes. The results indicated that ABP could partly ameliorate the toxic effects of Cd on chicken livers.
Collapse
Affiliation(s)
- Xuequan Hu
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ruili Zhang
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yingying Xie
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongmei Wang
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Ming Ge
- Department of Clinical Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|