1
|
Wei X, Zhang Z, Wang L, Yan L, Yan Y, Wang C, Peng H, Fan X. Enhancing osteoblast proliferation and bone regeneration by poly (amino acid)/selenium-doped hydroxyapatite. Biomed Mater 2024; 19:035025. [PMID: 38537374 DOI: 10.1088/1748-605x/ad38ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Among various biomaterials employed for bone repair, composites with good biocompatibility and osteogenic ability had received increasing attention from biomedical applications. In this study, we doped selenium (Se) into hydroxyapatite (Se-HA) by the precipitation method, and prepared different amounts of Se-HA-loaded poly (amino acid)/Se-HA (PAA/Se-HA) composites (0, 10 wt%, 20 wt%, 30 wt%) byin-situmelting polycondensation. The physical and chemical properties of PAA/Se-HA composites were characterized by x-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and their mechanical properties. XRD and FT-IR results showed that PAA/Se-HA composites contained characteristic peaks of PAA and Se-HA with amide linkage and HA structures. DSC and TGA results specified the PAA/Se-HA30 composite crystallization, melting, and maximum weight loss temperatures at 203.33 °C, 162.54 °C, and 468.92 °C, respectively, which implied good thermal stability. SEM results showed that Se-HA was uniformly dispersed in PAA. The mechanical properties of PAA/Se-HA30 composites included bending, compressive, and yield strengths at 83.07 ± 0.57, 106.56 ± 0.46, and 99.17 ± 1.11 MPa, respectively. The cellular responses of PAA/Se-HA compositesin vitrowere studied using bone marrow mesenchymal stem cells (BMSCs) by cell counting kit-8 assay, and results showed that PAA/Se-HA30 composites significantly promoted the proliferation of BMSCs at the concentration of 2 mg ml-1. The alkaline phosphatase activity (ALP) and alizarin red staining results showed that the introduction of Se-HA into PAA enhanced ALP activity and formation of calcium nodule. Western blotting and Real-time polymerase chain reaction results showed that the introduction of Se-HA into PAA could promoted the expression of osteogenic-related proteins and mRNA (integrin-binding sialoprotein, osteopontin, runt-related transcription factor 2 and Osterix) in BMSCs. A muscle defect at the back and a bone defect at the femoral condyle of New Zealand white rabbits were introduced for evaluating the enhancement of bone regeneration of PAA and PAA/Se-HA30 composites. The implantation of muscle tissue revealed good biocompatibility of PAA and PAA/Se-HA30 composites. The implantation of bone defect showed that PAA/Se-HA30 composites enhanced bone formation at the defect site (8 weeks), exhibiting good bone conductivity. Therefore, the PAA-based composite was a promising candidate material for bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaobo Wei
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Ziyue Zhang
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Lei Wang
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Lin Yan
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Yonggang Yan
- College of Physical Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| | - Cheng Wang
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Haitao Peng
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| | - Xiaoxia Fan
- Medical College, Yan'an University, Yan'an 716000, People's Republic of China
| |
Collapse
|
2
|
Yan Y, Guan Y, Luo L, Lu B, Chen F, Jiang B. Effects of immunoglobulin Y-loaded amorphous calcium phosphate on dentinal tubules occlusion and antibacterial activity. Front Bioeng Biotechnol 2022; 10:921336. [PMID: 36246386 PMCID: PMC9554463 DOI: 10.3389/fbioe.2022.921336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aim: This study aimed to evaluate the effects of immunoglobulin Y (IgY)-loaded amorphous calcium phosphate (ACP) (IgY@ACP) on dentinal tubule occlusion and antibacterial activity.Methodology: IgY@ACP was synthesized based on a biomimetic mineralization strategy. The structure was examined by transmission electron microscopy and Fourier transform infrared spectroscopy. The IgY release property was assessed in vitro. The cell biocompatibility of IgY@ACP was evaluated by CCK-8. The dentin disks were prepared using healthy human molars, and their dentinal tubules were exposed to EDTA. Subsequently, they were randomly selected and treated with or without IgY@ACP for 7 days. The tubule occlusion morphologies and newly formed layers were observed by scanning electron microscopy (SEM) and x-ray diffraction, respectively. To evaluate the acid resistance and abrasion resistance of IgY@ACP, dentin disks that were treated for 1 day were immersed in acid solution or subjected to a toothbrush. The antibacterial effects against Streptococcus mutans (S. mutans) were evaluated by colony-forming unit (CFU) counting, adhesion property assessment, and crystal violet and live/dead bacterial staining. Finally, the occlusion effect was evaluated in rat incisors in vivo. One-way analysis of variance (ANOVA) was performed for statistical analysis. The level of significance was set at 0.05.Results: IgY@ACP presented an amorphous phase with a nanosize (60–80 nm) and sustained release of protein within 48 h. The CCK-8 results showed that IgY@ACP had good biocompatibility. After treatment with IgY@ACP for 1 day, the majority of dentinal tubules were occluded by a 0.3-μm-thick mineralized layer. Seven days later, all dentinal tubules were occluded by mineralization with a thickness of 1.4 μm and a depth of 16 μm. The newly mineralized layer showed hydroxyapatite-like diffraction peaks. In addition, IgY@ACP had good acid and abrasion resistance. After treatment with IgY@ACP, the CFU counting and adhesion rate of S. mutans were significantly reduced, the crystal violet staining was lighter, and the S. mutans staining revealed more dead cells. Most importantly, IgY@ACP had a certain occluding property in rat incisors in vivo.Conclusion: IgY@ACP can effectively occlude dentinal tubules with acid-resistant stability and has prominent anti-S. mutans effects, rendering it a potentially suitable desensitization material in the clinic.
Collapse
Affiliation(s)
- Yanhong Yan
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yun Guan
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Linjuan Luo
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Bingqiang Lu
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Feng Chen
- Department of Orthopedic, Spinal Pain Research Institute, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Beizhan Jiang
- Department of Pediatric Dentistry, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
- *Correspondence: Beizhan Jiang,
| |
Collapse
|
3
|
Alrafai HA, Ali Al-Ahmed Z, Ahmed MK, Afifi M, Shoueir KR, Abu-Rayyan A. The degradation of methylene blue dye using copper-doped hydroxyapatite encapsulated into polycaprolactone nanofibrous membranes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01623g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methylene blue is degraded under visible light irradiation in the presence of the nanofibrous membranes of PCL containing modified HAP with different contents of Cu ions.
Collapse
Affiliation(s)
- H. A. Alrafai
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Zehbah Ali Al-Ahmed
- College of Art and Sciences, King Khalid University, Dhahran Al Jounb, Saudi Arabia
| | - M. K. Ahmed
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed 12588, Egypt
- Department of Physics, Faculty of Science, Suez University, Suez, Egypt
| | - M. Afifi
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, El-Sheikh Zayed 12588, Egypt
- Ultrasonic Laboratory, National Institute of Standards, Giza, Egypt
| | - Kamel R. Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Ahmed Abu-Rayyan
- Department of Chemistry, Faculty of Science, Applied Science Private University, P. O. BOX 166, Amman 11931, Jordan
| |
Collapse
|
4
|
Hassan AA, Radwan HA, Abdelaal SA, Al-Radadi NS, Ahmed MK, Shoueir KR, Hady MA. Polycaprolactone based electrospun matrices loaded with Ag/hydroxyapatite as wound dressings: Morphology, cell adhesion, and antibacterial activity. Int J Pharm 2020; 593:120143. [PMID: 33279712 DOI: 10.1016/j.ijpharm.2020.120143] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/13/2023]
Abstract
The development of a scaffold matrix that can inhibit bacterial infection and promote wound healing simultaneously is an essential demand to improve the health care system. Hydroxyapatite (HAP) doped with different concentrations of silver ions (Ag+) were incorporated into electrospun nanofibrous scaffolds of polycaprolactone (PCL) using the electrospinning technique. The formed phase was identified using XRD, while the morphological and roughness behavior were investigated using FESEM. It was shown that scaffolds were configured in randomly distributed nanofibers with diameters around of 0.19-0.40, 0.31-0.54, 1.36, 0.122-0.429 μm for 0.0Ag-HAP@PCL, 0.2Ag-HAP@PCL, 0.6Ag-HAP@PCL, and 0.8Ag-HAP@PCL, respectively. Moreover, the maximum roughness peak height increased significantly from 179 to 284 nm, with the lowest and highest contributions of Ag. The mechanical properties were examined and displayed that the tensile strength increased from 3.11 ± 0.21 MPa to its highest value at 3.57 ± 0.31 MPa for 0.4Ag-HAP@PCL. On the other hand, the cell viability also was enhanced with the addition of Ag and improved from 97.1 ± 4.6% to be around 102.3 ± 3.1% at the highest contribution of Ag. The antibacterial activity was determined, and the highest imbibition zones were achieved at the highest Ag dopant to be 12.5 ± 1.1 mm and 11.4 ± 1.5 mm against E. coli and S. aureus. The in vitro cell proliferation was observed through human fibroblasts cell lone (HFB4) and illustrated that cells were able to grow and spread not only on the fibers' surface but also, they were spreading and adhered through the deep pores.
Collapse
Affiliation(s)
- Abeer A Hassan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hyam A Radwan
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Said A Abdelaal
- Department of Chemistry, Faculty of Science, Jazan University, Saudi Arabia
| | - Najlaa S Al-Radadi
- Chemistry Department, Faculty of Science, Taibah University, P.O. Box 30002, Al-Madinah Monawara 14177, Saudi Arabia
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez 43518, Egypt; Egypt Nanotechnology Center (EGNC), Cairo University, El‑Sheikh Zayed 12588, Egypt.
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
5
|
Dye removal, antibacterial properties, and morphological behavior of hydroxyapatite doped with Pd ions. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
6
|
Afifi M, Ahmed MK, Fathi AM, Uskoković V. Physical, electrochemical and biological evaluations of spin-coated ε-polycaprolactone thin films containing alumina/graphene/carbonated hydroxyapatite/titania for tissue engineering applications. Int J Pharm 2020; 585:119502. [PMID: 32505577 DOI: 10.1016/j.ijpharm.2020.119502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 02/06/2023]
Abstract
Composite structures are at the frontier of materials science and engineering and polymeric/ceramic composites present one of their most prospective subsets. Prior studies have shown both improvements and deteriorations of properties of polymers upon the addition of ceramic phases to them, but not many studies have dealt with the direct comparison of chemically distinct inorganic additives. The goal of this study was to compare the properties of ε-polycaprolactone (PCL) thin films supplemented with alumina, graphene, carbonated hydroxyapatite or titania particles, individually, in identical amounts (12 wt%). The composite films were analyzed for their phase composition, grain size, morphology, surface roughness, porosity, cell response, mechanical properties and electrochemical performance. Each additive imparted one or more physical or biological properties onto PCL better than others. Thus, alumina increased the microhardness of the films better than any other additive, with the resulting values exceeding 10 MPa. It also led to the formation of a composite with the least porosity and the greatest stability to degradation in simulated body fluid based on open circuit potential (OCP) measurements and electrochemical impedance spectroscopy (EIS). Titania made the surface of PCL roughest, which in combination with its high porosity explained why it was the most conducive to the growth of human fibroblasts, alongside being most prone to degradation in wet, corrosive environments and having the highest Poisson's ratio. Graphene, in contrast, made the surface of PCL smoothest and the bulk structure most porous, but also most conductive, with the OCP of -37 mV. The OCP of PCL supplemented with carbonated hydroxyapatite had the highest OCP of -134 mV and also the highest mechanical moduli, including the longitudinal (781 MPa), the shear (106 MPa), the bulk (639 MPa), and the elastic (300 MPa). The only benefit of the deposition of multilayered PCL films supplemented with all four inorganic additives was to enable a relatively high resistance to degradation. This study demonstrates that the properties of thin PCL films could be effectively optimized through the simple choice of appropriate inorganic additives dispersed in them. There is no single additive that proves ideal for improving all the properties of interest in PCL thin films, but their choice should be adjusted to the actual application. One such method of compositional optimization could prove crucial in the effort to develop biocomposites for superior performance in tissue engineering applications.
Collapse
Affiliation(s)
- M Afifi
- Ultrasonic Laboratory, National Institute of Standards, Giza, Egypt.
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, Egypt.
| | - A M Fathi
- Physical Chemistry Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Vuk Uskoković
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, USA
| |
Collapse
|
7
|
Blend biopolymeric nanofibrous scaffolds of cellulose acetate/ε-polycaprolactone containing metallic nanoparticles prepared by laser ablation for wound disinfection applications. Int J Biol Macromol 2020; 155:636-644. [PMID: 32251752 DOI: 10.1016/j.ijbiomac.2020.03.257] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/20/2022]
Abstract
Laser ablation technique was utilized to synthesize versatile metallic nanoparticles including ZnO, Ag and CuO which were incorporated into the blend matrix of cellulose Acetate (CA) and ε-polycaprolactone (PCL) nanofibrous scaffold. The compositional, microstructural and morphological behaviors for the obtained nanofibers were investigated using X-ray diffraction (XRD), Fourier Transformed Infrared, Transmission Electron Microscope (TEM) and Field Emission-Scanning Electron Microscope (FESEM). The cell viability and antibacterial activity were investigated against Staphylococcus aureus (S. aureus) and Escherichia coli (E-coli). TEM micrographs refer that while CuONPs were involved in the middle of CA/PCL fibrous scaffold with diameters around 160 nm. The morphological investigations indicated the scaffolds were configured in a non-oriented form with diameters 0.45-0.9 μm in the case of ZnONPs involved in blend matrix fibers. The ratio of viable cells displays that compositions are biocompatible, while the antibacterial activity of both AgNPs and CuONPs showed an inhibition zone around 11.2.3 ± 2.2 mm and 9.4 ± 1.2 mm respectively. Bio-blend polymers matrices carrying nanoparticles could be tailored for a plethora of biomedical applications upon their compositions.
Collapse
|
8
|
Ahmed M, Mansour S, Al-Wafi R, Afifi M, Uskoković V. Gold as a dopant in selenium-containing carbonated hydroxyapatite fillers of nanofibrous ε-polycaprolactone scaffolds for tissue engineering. Int J Pharm 2020; 577:118950. [DOI: 10.1016/j.ijpharm.2019.118950] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/30/2019] [Accepted: 12/07/2019] [Indexed: 12/11/2022]
|
9
|
Šupová M. The Significance and Utilisation of Biomimetic and Bioinspired Strategies in the Field of Biomedical Material Engineering: The Case of Calcium Phosphat-Protein Template Constructs. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E327. [PMID: 31936830 PMCID: PMC7013803 DOI: 10.3390/ma13020327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
This review provides a summary of recent research on biomimetic and bioinspired strategies applied in the field of biomedical material engineering and focusing particularly on calcium phosphate-protein template constructs inspired by biomineralisation. A description of and discussion on the biomineralisation process is followed by a general summary of the application of the biomimetic and bioinspired strategies in the fields of biomedical material engineering and regenerative medicine. Particular attention is devoted to the description of individual peptides and proteins that serve as templates for the biomimetic mineralisation of calcium phosphate. Moreover, the review also presents a description of smart devices including delivery systems and constructs with specific functions. The paper concludes with a summary of and discussion on potential future developments in this field.
Collapse
Affiliation(s)
- Monika Šupová
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, The Czech Academy of Sciences, V Holešovičkách 41, 182 09 Prague, Czech Republic
| |
Collapse
|
10
|
Wang L, Pathak JL, Liang D, Zhong N, Guan H, Wan M, Miao G, Li Z, Ge L. Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications. Int J Biol Macromol 2019; 142:366-375. [PMID: 31593715 DOI: 10.1016/j.ijbiomac.2019.09.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/11/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
Osteoinductive bone filling biomaterials are in high demand for effective bone defect reconstruction. In this study, we aimed to design both organic and inorganic substances containing strontium-doped hydroxyapatite/silk fibroin (SrHA/SF) biocomposite nanospheres as an osteoinductive bone defect-filling biomaterial. SrHA/SF nanospheres were prepared with different concentration of Sr using ultrasonic coprecipitation method. The nanospheres were characterized using XRD, FTIR, SEM, TEM, ICP-AES and TGA. Solid and dense SrHA/SF nanospheres with 500-700 nm size and rough surfaces were synthesized successfully. Higher crystallinity and HA/SF phase were observed with the increase in Sr-concentration. The doping of different concentration of Sr did not affect the size and surface characteristics of the nanospheres. ICP-AES data showed that Sr/Ca ratio in SrHA/SF is very close to the nominal value. Nanospheres with higher concentration of Sr did not negatively affect the biocompatibility, but enhanced viability of mesenchymal stem cells (MSCs). Moreover, SrHA/SF nanospheres showed higher osteogenic differentiation potential compared to HA/SF nanospheres as indicated by the results from ALP staining, ALP activity, and Runx2, Alp, Col-1 and Opn gene expression assay in MSCs culture. Our findings suggest this novel design of biocompatible and osteoinductive SrHA/SF biocomposite nanospheres as a potential bone defect-filling biomaterial for bone regenerative applications.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Dongliang Liang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Ningying Zhong
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongbing Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Mianjia Wan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Guohou Miao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
11
|
Liu B, Gao X, Sun Z, Fang Q, Geng X, Zhang H, Wang G, Dou Y, Hu P, Zhu K, Wang D, Xing J, Liu D, Zhang M, Li R. Biomimetic porous silk fibroin/biphasic calcium phosphate scaffold for bone tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 30:4. [PMID: 30569403 DOI: 10.1007/s10856-018-6208-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The purpose of our study is to prepare a biomimetic porous silk fibroin (SF)/biphasic calcium phosphate (BCP) scaffold, and evaluate its performance in bone tissue regeneration. The differences in pore size, porosity, mechanical strength and biocompatibility of four different fibroin-containing scaffolds (0, 20, 40, and 60% SF) were studied in vitro. After inoculation with MC3T3-E1 cells, the ectopic bone formation ability of the SF/BCP bionic scaffold was evaluated in a rat model. The SEM and CT demonstrated that compared with pure BCP group (0% SF), the pore size and porosity of SF/BCP scaffolds were proportional to SF content, of which 40% of SF and 60% of SF groups were more suitable for cell growth. The compressive strength of SF/BCP scaffold was greater than that of the pure BCP scaffold, and showed a trend of first increasing and then decreasing with the increase of SF content, among which 40% of SF group had the maximum compressive strength (40.80 + 0.68) MPa. The SF/BCP scaffold had good biocompatibility, under the electron microscope, the cells can be smoothly attached to and propagated on the scaffold. After loading the osteoblasts, it showed excellent osteogenic capacity in the rat model. The SF/BCP scaffold can highly simulate the micro-environment of natural bone formation and can meet the requirements of tissue engineering. The SF/BCP biomimetic porous scaffold has excellent physical properties and biocompatibility. It can highly simulate the natural bone matrix composition and microenvironment, and can promote the adhesion and proliferation of osteoblasts. The SF/BCP scaffold has good ectopic osteogenesis after loading with osteoblasts, which can meet the requirements of scaffold materials in tissue engineering, and has broad application prospects in clinical application.
Collapse
Affiliation(s)
- Bin Liu
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Xiyuan Gao
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Zhaozhong Sun
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China.
| | - Qingmin Fang
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Xiaopeng Geng
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Hanli Zhang
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Guanglin Wang
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Yongfeng Dou
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Peng Hu
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Kai Zhu
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Dawei Wang
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Jianqiang Xing
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Dong Liu
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Min Zhang
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| | - Rui Li
- Department of Spine Surgery, Affiliated Hospital of Binzhou Medical University, No. 661, Huanghe 2nd Road, Shandong Province, Binzhou City, P. R. China
| |
Collapse
|
12
|
Laskus A, Zgadzaj A, Kolmas J. Selenium-Enriched Brushite: A Novel Biomaterial for Potential Use in Bone Tissue Engineering. Int J Mol Sci 2018; 19:E4042. [PMID: 30558119 PMCID: PMC6321228 DOI: 10.3390/ijms19124042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022] Open
Abstract
In this study, a novel biomaterial, i.e., brushite containing 0.67 wt% of selenium (Se-Bru) was synthesized via a wet precipitation method. Pure, unsubstituted brushite (Bru) was synthesized via the same method and used as a reference material. Different techniques of instrumental analysis were applied to investigate and compare physicochemical properties of both materials. Fourier-Transform Infrared Spectroscopy confirmed the chemical identity of both materials. Scanning Electron Microscopy (SEM) was used to study the morphology and indicated that both samples (Bru and Se-Bru) consisted of plate-like microcrystals. Powder X-ray Diffraction (PXRD) showed that Bru, as well as Se-Bru were crystallographically homogenous. What is more, the data obtained from PXRD studies revealed that the substitution of selenite ions into the crystal structure of the material had clearly affected its lattice parameters. The incorporation of selenium was also confirmed by solid-state ¹H→31P CP MAS kinetics experiments. Additionally, studies on the release kinetics of the elements forming Se-Bru and preliminary cytotoxicity tests were conducted. This preliminary research will favor a better understanding of ionic substitution in calcium phosphates and may be a starting point for the development of selenium-doped brushite cements for potential use in bone tissue impairments treatment.
Collapse
Affiliation(s)
- Aleksandra Laskus
- Department of Analytical Chemistry and Biomaterials, Analytical Group, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Anna Zgadzaj
- Department of Environmental Health Sciences, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| | - Joanna Kolmas
- Department of Analytical Chemistry and Biomaterials, Analytical Group, Medical University of Warsaw, ul. Banacha 1, 02-097 Warsaw, Poland.
| |
Collapse
|
13
|
Selenium-Doped Hydroxyapatite Nanocrystals–Synthesis, Physicochemical Properties and Biological Significance. CRYSTALS 2018. [DOI: 10.3390/cryst8050188] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|