1
|
Mashayekhi-Sardoo H, Sepahi S, Baradaran Rahimi V, Askari VR. Application of Nigella sativa as a functional food in diabetes and related complications: Insights on molecular, cellular, and metabolic effects. J Funct Foods 2024; 122:106518. [DOI: 10.1016/j.jff.2024.106518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
|
2
|
Atteia HH. Co-supplementation of Vitamin K2 and Selenium Synergistically Improves Metabolic Status and Reduces Cardiovascular Risk Markers in Dyslipidemic Rabbits. Biol Trace Elem Res 2023; 201:4758-4768. [PMID: 36696048 DOI: 10.1007/s12011-023-03569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
This work investigated the impact of vitamin K2 and selenium co-supplementation on metabolic profile and indicators of cardiovascular health in dyslipidemic rabbits. Fifty adult male rabbits were equally allocated into 5 groups: Control group, Dyslipidemic group: received 0.5% cholesterol in diet for 12 weeks, groups 3, 4 and 5 dyslipidemic rabbits daily treated with vitamin K2 (10 mg/kg bw) or/and selenium (1 mg/kg bw) for 8 weeks. Co-supplementation of vitamin K2 and selenium significantly decreased body weight gain and blood pressure elevation in dyslipidemic rabbits compared to un-treated ones. Consuming vitamin K2 plus selenium also markedly lowered serum lipids encompassing cholesterol, triglycerides and LDL and elevated HDL relative to placebo. Additionally, such co-supplementation reduced fasting glucose and insulin, enhancing insulin sensitivity with respect to placebo. Regarding cardiovascular risk markers, dyslipidemic rabbits received vitamin K2 concurrently with selenium displayed lower levels of atherogenic index (LDL/HDL), serum C-reactive protein, heart fatty acid-binding protein and asymmetric dimethylarginine as well as aortic ox-LDL, lipid peroxidation and calcium but higher levels of serum nitric oxide and aortic total antioxidants than un-treated ones. Concomitant administration of vitamin K2 and selenium improved metabolic profile, markers of cardiovascular health and atherosclerosis in dyslipidemic rabbits.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia.
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Sharkia, Egypt.
| |
Collapse
|
3
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
4
|
Ge X, He X, Liu J, Zeng F, Chen L, Xu W, Shao R, Huang Y, Farag MA, Capanoglu E, El-Seedi HR, Zhao C, Liu B. Amelioration of type 2 diabetes by the novel 6, 8-guanidyl luteolin quinone-chromium coordination via biochemical mechanisms and gut microbiota interaction. J Adv Res 2022; 46:173-188. [PMID: 35700921 PMCID: PMC10105086 DOI: 10.1016/j.jare.2022.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/17/2022] [Accepted: 06/08/2022] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Luteolin is a plant-derived flavonoid that exhibits a broad range of pharmacological activities. Studies on luteolin have mainly focused on its use for hyperlipidaemia prevention, whereas the capacity of the flavonoid to hinder hyperglycaemia development remains underexplored. OBJECTIVES To probe the anti-hyperglycemic mechanism of 6,8-guanidyl luteolin quinone-chromium coordination (GLQ.Cr), and to assess its regulatory effect on intestinal microbiota in type 2 diabetes mellitus (T2DM) mice. METHODS High-sucrose/high-fat diet-induced and intraperitoneal injection of streptozotocin was used to develop a T2DM model. Glycometabolism related indicators, histopathology, and gut microbiota composition in caecum samples were evaluated, and RNA sequencing (RNA-seq) of liver samples was conducted. Faecal microbiota transplantation (FMT) was further used to verify the anti-hyperglycemic activity of intestinal microbiota. RESULTS The administration of GLQ.Cr alleviated hyperglycaemia symptoms by improving liver and pancreatic functions and modulating gut microbe communities (Lactobacillus, Alistipes, Parabacteroides, Lachnoclostridium, and Desulfovibrio). RNA-seq analysis showed that GLQ.Cr mainly affected the peroxisome proliferative activated receptor (PPAR) signalling pathway in order to regulate abnormal glucose metabolism. FMT significantly modulated the abundance of Lactobacillus, Alloprevotella, Alistipes, Bacteroides, Ruminiclostridium, Brevundimonas and Pseudomonas in the caecum to balance blood glucose levels and counteract T2DM mice inflammation. CONCLUSION GLQ.Cr improved the abnormal glucose metabolism in T2DM mice by regulating the PPAR signalling pathway and modulating intestinal microbial composition. FMT can improve the intestinal microecology of the recipient and in turn ameliorate the symptoms of T2DM-induced hyperglycaemia.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xiaoyu He
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Junwei Liu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Rong Shao
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Ying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak 34469 Istanbul, Turkey
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Uppsala, Box 591, SE 751 24 Uppsala, Sweden
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
5
|
Rahmani A, Niknafs B, Naseri M, Nouri M, Tarighat-Esfanjani A. Effect of Nigella Sativa Oil on Oxidative Stress, Inflammatory, and Glycemic Control Indices in Diabetic Hemodialysis Patients: A Randomized Double-Blind, Controlled Trial. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2753294. [PMID: 35463059 PMCID: PMC9033343 DOI: 10.1155/2022/2753294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/18/2022] [Indexed: 12/13/2022]
Abstract
Background and Aims Diabetes is a leading cause of renal failure. High levels of oxidative stress and inflammation in patients with renal diabetes lead to various disorders and mortality. This study was performed to determine the effect of Nigella sativa (NS) supplementation on superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant capacity (TAC), high-sensitivity C-reactive protein (hs-CRP), glycosylated hemoglobin (HbA1c), fasting blood sugar (FBS), and insulin (INS) in patients with diabetes mellitus undergoing hemodialysis (HD). Methods In this randomized, double-blind, placebo-controlled clinical trial, a total of 46 diabetic HD patients were randomly divided into NS (n = 23) and placebo (n = 23) groups. NS group received 2 g/day of NS oil, and the placebo group received paraffin oil for 12 weeks. Serum levels of SOD, MDA, TAC, hs-CRP, HbA1C, FBS, and INS were measured before and after the study. Results Compared to baseline values, SOD, TAC, and INS levels increased, whereas MDA, hs-CRP, HbA1c, and FBS significantly decreased. After adjusting for covariates using the ANCOVA test, changes in the concentrations of SOD (p = .040), MDA (p = .025), TAC (p=<.001), hs-CRP (p = .017), HbA1c (p = .014), and FBS (p = .027) were statistically significant compared to the placebo group. Intergroup changes in INS were not significant. Additionally, there were no notable side effects during the research. Conclusions This study found that NS supplementation significantly enhanced the levels of SOD, MDA, TAC, hs-CRP, HbA1c, and FBS in diabetic HD patients.
Collapse
Affiliation(s)
- Alireza Rahmani
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Bahram Niknafs
- Department of Internal Medicine, School of Medicine, Imam Reza Medical Research and Training Hospital, Tabriz University of Medical Sciences, Tabriz, IR, Iran
| | - Mohsen Naseri
- Traditional Medicine Clinical Trial Research Center, Shahed University, Tehran, Iran
| | - Maryam Nouri
- Student Research Committee, Student Research Center, Tabriz University of Medical Sciences, Tabriz, IR, Iran
- Department of Nutrition Sciences, Varastegan Institute for Medical Sciences, Mashhad, IR, Iran
| | - Ali Tarighat-Esfanjani
- Nutrition Research Center, Clinical Nutrition Department, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Ge X, He X, Lin Z, Zhu Y, Jiang X, Zhao L, Zeng F, Chen L, Xu W, Liu T, Chen Z, Zhao C, Huang Y, Liu B. 6,8-(1,3-Diaminoguanidine) luteolin and its Cr complex show hypoglycemic activities and alter intestinal microbiota composition in type 2 diabetes mice. Food Funct 2022; 13:3572-3589. [PMID: 35262159 DOI: 10.1039/d2fo00021k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Flavonoid compounds such as luteolin exhibit hypolipidemic effects, and there are few reports on the hypoglycemic activity of luteolin derivatives. In this research, 6,8-(1,3-diaminoguanidine) luteolin (DAGL) and its Cr complex (DAGL·Cr) were obtained as a result of structural modifications to luteolin, and the hypoglycemic activities and the composition of intestinal microbiota in T2DM mice were investigated. This study found that DAGL and DAGL·Cr could significantly restore body weight, FBG, OGTT, AUC, and GSP in T2DM mice. Moreover, the pancreatic islet function index and the biochemical indicators of serum and the liver were also significantly improved. The histopathological results also showed that DAGL and DAGL·Cr had a stronger repair ability in the liver and the pancreas. It was also revealed that the potential hypoglycemic mechanism of DAGL and DAGL·Cr was involved in the simultaneous regulation of PI3K/AKT-1/GSK-3β/GLUT-4 and PI3K/AKT-1/mTOR/S6K1/IRS-1. Furthermore, DAGL and DAGL·Cr could also regulate the structure of the intestinal microbiota and increase the content of SCFA to relieve the symptoms of hyperglycemia in T2DM mice. This included a significant reduction in the ratio of Firmicutes and Bacteroidetes (F/B), and at the genus level, an increase in the relative abundance of Alistipe and Ruminiclostridium, and improvement in the content of SCFA in the feces of T2DM mice. In conclusion, in this study, DAGL and DAGL·Cr were found to improve hyperglycemia in T2DM mice by improving the pancreatic islet function index, regulating the biochemical indicators of serum and the liver, repairing damaged tissues, and regulating the PI3K/AKT-1 signaling pathway as well as reducing F/B, increasing the relative abundance of intestinal beneficial microbiota, and the content of SCFA in the feces. The hypoglycemic effect of DAGL·Cr on the body weight, serum IL-10, serum IL-6, and pancreatic islet function index was significantly better than that of DAGL.
Collapse
Affiliation(s)
- Xiaodong Ge
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaoyu He
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhenshan Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Yuxian Zhu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Xiaoqin Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Liyuan Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ligen Chen
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Wei Xu
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tingting Liu
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, Jiangsu 224051, China
| | - Zhigang Chen
- Clinical Pharmacy Department, Yancheng Second People's Hospital, Yancheng, Jiangsu 224051, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Ying Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Mokwena MAM, Engwa GA, Nkeh-Chungag BN, Sewani-Rusike CR. Athrixia phylicoides tea infusion (bushman tea) improves adipokine balance, glucose homeostasis and lipid parameters in a diet-induced metabolic syndrome rat model. BMC Complement Med Ther 2021; 21:292. [PMID: 34844584 PMCID: PMC8628465 DOI: 10.1186/s12906-021-03459-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Central obesity and insulin resistance are associated with metabolic syndrome (MetS) which is aggravated by diet and sedentary lifestyle. Athrixia phylicoides (AP) is reported by rural communities to have medicinal benefits associated with MetS such as obesity and type 2 diabetes. This study was aimed to investigate the effects of AP on diet-induced MetS in Wistar rats to validate its ethnopharmacological use. METHODS AP was profiled for phytochemicals by LC-MS. After induction of MetS with high energy diet (HED), 30 male rats were divided into five treatment groups (n = 6): normal diet control, HED control, HED + AP 50 mg/Kg BW, HED + AP 100 mg/Kg BW and HED + 50 mg/Kg BW metformin. The rats were treated daily for 8 weeks orally after which weight gain, visceral fat, total cholesterol, free fatty acids (FFAs) and adipokine regulation; leptin: adiponectin ratio (LAR) were assessed. Also, glucose homeostatic parameters including fasting blood glucose (FBG), oral glucose tolerance test (OGTT), glucose transporter 4 (GLUT 4), insulin and homeostatic model assessment of insulin resistance (HOMA-IR) were determined. RESULTS Findings showed that AP was rich in polyphenols. The HED control group showed derangements of the selected blood parameters of MetS. AP reversed diet-induced weight gain by reducing visceral fat, total blood cholesterol and circulating FFAs (p ≤ 0.05). Treatment with AP improved adipokine regulation depicted by reduced LAR (p<0.05). Treatment with AP improved parameters of glucose homeostasis as demonstrated by reduced FBG and HOMA-IR (p ≤ 0.05) and increased GLUT 4 (p<0.05). CONCLUSION Athrixia phylicoides tea infusion was shown to possess anti-obesity and anti-inflammatory properties, improved glucose uptake and reduce insulin resistance in diet-induced MetS in rats which could be attributed to its richness in polyphenols. Therefore, AP could have potential benefits against type 2 diabetes and obesity which are components of MetS validating its ethnopharmacological use.
Collapse
Affiliation(s)
- Madigoahle A M Mokwena
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Godwill Azeh Engwa
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Benedicta N Nkeh-Chungag
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa
| | - Constance R Sewani-Rusike
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University PBX1, Mthatha, 5117, South Africa.
| |
Collapse
|
8
|
Balbaa M, El-Zeftawy M, Abdulmalek SA. Therapeutic Screening of Herbal Remedies for the Management of Diabetes. Molecules 2021; 26:6836. [PMID: 34833928 PMCID: PMC8618521 DOI: 10.3390/molecules26226836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 02/07/2023] Open
Abstract
The study of diabetes mellitus (DM) patterns illustrates increasingly important facts. Most importantly, they include oxidative stress, inflammation, and cellular death. Up to now, there is a shortage of drug therapies for DM, and the discovery and the development of novel therapeutics for this disease are crucial. Medicinal plants are being used more and more as an alternative and natural cure for the disease. Consequently, the objective of this review was to examine the latest results on the effectiveness and protection of natural plants in the management of DM as adjuvant drugs for diabetes and its complex concomitant diseases.
Collapse
Affiliation(s)
- Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Marwa El-Zeftawy
- Biochemistry Department, Faculty of Veterinary Medicine, New Valley University, New Valley 72511, Egypt;
| | - Shaymaa A. Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
- Center of Excellency for Preclinical Study (CE-PCS), Pharmaceutical and Fermentation Industries Development Centre, The City of Scientific Research and Technological Applications, Alexandria 21511, Egypt
| |
Collapse
|
9
|
Salehi B, Quispe C, Imran M, Ul-Haq I, Živković J, Abu-Reidah IM, Sen S, Taheri Y, Acharya K, Azadi H, del Mar Contreras M, Segura-Carretero A, Mnayer D, Sethi G, Martorell M, Abdull Razis AF, Sunusi U, Kamal RM, Rasul Suleria HA, Sharifi-Rad J. Nigella Plants - Traditional Uses, Bioactive Phytoconstituents, Preclinical and Clinical Studies. Front Pharmacol 2021; 12:625386. [PMID: 33981219 PMCID: PMC8107825 DOI: 10.3389/fphar.2021.625386] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Nigella is a small genus of the family Ranunculaceae, which includes some popular species due to their culinary and medicinal properties, especially in Eastern Europe, Middle East, Western, and Central Asia. Therefore, this review covers the traditional uses and phytochemical composition of Nigella and, in particular, Nigella sativa. The pharmacological studies reported in vitro, in vivo, and in humans have also been reviewed. One of the main strength of the use of Nigella is that the seeds are rich in the omega-6 fatty acid linoleic acid and provide an extra-source of dietary phytochemicals, including the bioactive thymoquinone, and characteristics saponins, alkaloids, and flavonoids. Among Nigella species, N. sativa L. is the most studied plant from the genus. Due to the phytochemical composition and pharmacological properties, the seed and seed oil from this plant can be considered as good candidates to formulate functional ingredients on the basis of folklore and scientific knowledge. Nonetheless, the main limations are that more studies, especially, clinical trials are required to standardize the results, e.g. to establish active molecules, dosage, chemical profile, long-term effects and impact of cooking/incorporation into foods.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Muhammad Imran
- Faculty of Allied Health Sciences, University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Iahtisham Ul-Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Jelena Živković
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Belgrade, Serbia
| | - Ibrahim M. Abu-Reidah
- Department of Environmental Science/Boreal Ecosystem Research Initiative, Memorial University of Newfoundland, Corner Brook, NL, Canada
| | - Surjit Sen
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
- Department of Botany, Fakir Chand College, Diamond Harbour, India
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, India
| | - Hamed Azadi
- Department of Agronomy and Plant Breeding Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Jaén, Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
- Research and Development Functional Food Centre (CIDAF), Bioregión Building, Health Science Technological Park, Granada, Spain
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile
- Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Usman Sunusi
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Biochemistry, Bayero University Kano, Kano, Nigeria
| | - Ramla Muhammad Kamal
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Pharmacology, Federal University Dutse, Dutse, Nigeria
| | | | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
10
|
Abo El-Magd NF, El-Mesery M, El-Karef A, El-Shishtawy MM. Amelioration effect of black seed oil against high-fat diet-induced obesity in rats through Nrf2/HO-1 pathway. J Food Biochem 2021; 45:e13693. [PMID: 33719073 DOI: 10.1111/jfbc.13693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 02/01/2023]
Abstract
Obesity is a chronic inflammatory disease that represents a risk factor for number of diseases including diabetes, steatohepatitis, and cancer. Using safe natural compounds to ameliorate obesity and its related metabolic syndrome is an interesting spot for research. We investigated the regulatory role and the underlying mechanism of black seed oil (BSO) on high-fat diet (HFD)-induced obesity in rats. The study included two models: the first one aimed to study the prophylactic effect of BSO (BSO administration for 10 weeks along with HFD) while the second one aimed to study the treatment role of BSO (BSO administration starting from the 10th week for 4 weeks along with HFD). BSO significantly decreased insulin resistance and body weight characteristics in both models. It also normalized lipid profile. Moreover, histopathological examination confirmed these results as BSO significantly decreased adipocyte size and hepatic lipid deposition. Besides, BSO alleviated HFD-induced oxidative stress as indicated by significant increase in the total antioxidant capacity and significant decrease in liver malondialdehyde. Moreover, BSO decreased significantly liver gluconeogenic enzymes mRNA expressions (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) and increased significantly heme oxygenase-1 (HO-1), nuclear factor erythroid-2-related factor-2 (Nrf2) and insulin receptor mRNA expressions. In conclusion, BSO represents a natural therapy that has the ability to prevent and treat HFD-induced obesity in rats that may be mediated through Nrf2/HO-1 pathway's activation and insulin receptor expression's increase. To our best knowledge, this study represents a novel study that investigates the regulatory role of BSO on Nrf2 pathway in preventing and treating HFD-induced obesity. PRACTICAL APPLICATIONS: Black seed oil is a natural available safe supplement, thus it can be used for prevention from obesity and even treatment of obesity and obesity related complications. Introducing of black seed oil in the treatment regimen of obese patients may be promising.
Collapse
Affiliation(s)
- Nada F Abo El-Magd
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Amro El-Karef
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
11
|
Islam MT, Khan MR, Mishra SK. An updated literature-based review: phytochemistry, pharmacology and therapeutic promises of Nigella sativa L. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s13596-019-00363-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Nephan G, Coskun ZM, Bolkent S. Dipeptidyl peptidase-4 inhibition prevents cell death via extrinsic and intrinsic apoptotic pathways in rat pancreas with insulin resistance. Cell Biochem Funct 2018; 36:212-220. [DOI: 10.1002/cbf.3333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/21/2018] [Accepted: 04/13/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Gulay Nephan
- Department of Medical Biology, Faculty of Cerrahpasa Medicine; Istanbul University; Istanbul Turkey
| | - Zeynep Mine Coskun
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences; Istanbul Bilim University; Istanbul Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpasa Medicine; Istanbul University; Istanbul Turkey
| |
Collapse
|