1
|
Hu D, Wang HJ, Yu LH, Guan ZR, Jiang YP, Hu JH, Yan YX, Zhou ZH, Lou JS. The role of Ginkgo Folium on antitumor: Bioactive constituents and the potential mechanism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117202. [PMID: 37742878 DOI: 10.1016/j.jep.2023.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/16/2023] [Accepted: 09/16/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. is a well-known and highly regarded resource in Chinese traditional medicine due to its effectiveness and safety. Ginkgo Folium, the leaf of Ginkgo biloba L., contains biologically active constituents with diverse pharmacological activities. Recent studies have shown promising antitumor effects of the bioactive constituents found in Ginkgo Folium against various types of cancer cells, highlighting its potential as a natural source of antitumor agents. Further research is needed to elucidate the underlying mechanisms and optimize its therapeutic potential. AIM OF THE REVIEW To provide a detailed understanding of the pharmacological activities of Ginkgo Folium and its potential therapeutic benefits for cancer patients. MATERIALS AND METHODS In this study, we conducted a thorough and systematic search of multiple online databases, including PubMed, Web of Science, Medline, using relevant keywords such as "Ginkgo Folium," "flavonoids," "terpenoids," "Ginkgo Folium extracts," and "antitumor" to cover a broad range of studies that could inform our review. Additionally, we followed a rigorous selection process to ensure that the studies included in our review met the predetermined inclusion criteria. RESULTS The active constituents of Ginkgo Folium primarily consist of flavonoids and terpenoids, with quercetin, kaempferol, isorhamnetin, ginkgolides, and bilobalide being the major compounds. These active constituents exert their antitumor effects through crucial biological events such as apoptosis, cell cycle arrest, autophagy, and inhibition of invasion and metastasis via modulating diverse signaling pathways. During the process of apoptosis, active constituents primarily exert their effects by modulating the caspase-8 mediated death receptor pathway and caspase-9 mediated mitochondrial pathway via regulating specific signaling pathways. Furthermore, by modulating multiple signaling pathways, active constituents effectively induce G1, G0/G1, G2, and G2/M phase arrest. Among these, the pathways associated with G2/M phase arrest are particularly extensive, with the cyclin-dependent kinases (CDKs) being most involved. Moreover, active constituents primarily mediate autophagy by modulating certain inflammatory factors and stressors, facilitating the fusion stage between autophagosomes and lysosomes. Additionally, through the modulation of specific chemokines and matrix metalloproteinases, active constituents effectively inhibit the processes of epithelial-mesenchymal transition (EMT) and angiogenesis, exerting a significant impact on cellular invasion and migration. Synergistic effects are observed among the active constituents, particularly quercetin and kaempferol. CONCLUSION Active components derived from Ginkgo Folium demonstrate a comprehensive antitumor effect across various levels and pathways, presenting compelling evidence for their potential in new drug development. However, in order to facilitate their broad and adaptable clinical application, further extensive experimental investigations are required to thoroughly explore their efficacy, safety, and underlying mechanisms of action.
Collapse
Affiliation(s)
- Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zheng-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China; Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
2
|
Boateng ID. Polyprenols in Ginkgo biloba; a review of their chemistry (synthesis of polyprenols and their derivatives), extraction, purification, and bioactivities. Food Chem 2023; 418:136006. [PMID: 36996648 DOI: 10.1016/j.foodchem.2023.136006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
The Ginkgo biloba L. (GB) contains high bioactive compounds. To date, flavonoids and terpene trilactone have received the majority of attention in GB studies, and the GB has been utilized globally in functional food and pharmacological firms, with sales > $10 billion since 2017, while the other active components, for instance, polyprenols (a natural lipid) with various bioactivities have received less attention. Hence, this review focused on polyprenols' chemistry (synthesis of polyprenols and their derivatives) extraction, purification, and bioactivities from GB for the first time. The various extractions and purification methods (nano silica-based adsorbent, bulk ionic liquid membrane, etc.) were delved into, and their advantages and limitations were discussed. Besides, numerous bioactivities of the extracted Ginkgo biloba polyprenols (GBP) were reviewed. The review showed that GB contains some polyprenols in acetic esters' form. Prenylacetic esters are free of adverse effects. Besides, the polyprenols from GB have numerous bioactivities such as anti-bacterial, anti-cancer, anti-viral activity, etc. The application of GBPs in the food, cosmetics, and drugs industries such as micelles, liposomes, and nano-emulsions was delved into. Finally, the toxicity of polyprenol was reviewed, and it was concluded that GBP was not carcinogenic, teratogenic, or mutagenic, giving a theoretical justification for using GBP as a raw material for functional foods. This article will aid researchers to better understand the need to explore GBP usage.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, 1406 E Rollins Street, Columbia, MO 65211, United States.
| |
Collapse
|
3
|
Nalika N, Waseem M, Kaushik P, Salman M, Andrabi SS, Parvez S. Role of melatonin and quercetin as countermeasures to the mitochondrial dysfunction induced by titanium dioxide nanoparticles. Life Sci 2023:121403. [PMID: 36669677 DOI: 10.1016/j.lfs.2023.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
AIM Due to the growing commercialization of titanium dioxide nanoparticles (TNPs), it is necessary to use these particles in a manner that is safe, healthy and environmental friendly. Through reactive oxygen species (ROS) generation, it has been discovered that TNPs have a harmful effect on the brain. The aim of this study is to provide valuable insights into the possible mechanisms of TNPs induced mitochondrial dysfunction in brain and its amelioration by nutraceuticals, quercetin (QR) and melatonin (Mel) in in vitro and in vivo conditions. MATERIALS AND METHODS Whole brain mitochondrial sample was used for in-vitro evaluation. Pre-treatment of QR (30 μM) and Mel (100 μM) at 25 °C for 1 h was given prior to TNPs (50 μg/ml) exposure. For in-vivo study, male Wistar rats were divided into four groups. Group I was control and group II was exposed to TNPs (5 mg/kg b.wt., i.v.). QR (5 mg/kg b.wt.) and Mel (5 mg/kg b.wt.) were given orally as pre-treatment in groups III and IV, respectively. Biochemical parameters, neurobehavioural paradigms, mitochondrial respiration, neuronal architecture assessment were assessed. KEY FINDINGS QR and Mel restored the mitochondrial oxidative stress biomarkers in both the studies. Additionally, these nutraceuticals resuscitated the neurobehavioural alterations and restored the neuronal architecture alterations in TNPs exposed rats. The mitochondrial dysfunction induced by TNPs was also ameliorated by QR and Mel by protecting the mitochondrial complex activity and mitochondrial respiration rate. SIGNIFICANCE Results of the study demonstrated that QR and Mel ameliorated mitochondrial mediated neurotoxic effects induced by TNPs exposure.
Collapse
Affiliation(s)
- Nandini Nalika
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohammad Waseem
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Pooja Kaushik
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Mohd Salman
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Syed Suhail Andrabi
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Suhel Parvez
- Department of Toxicology, School of Life and Chemical Sciences, Jamia Hamdard, New Delhi 110 062, India.
| |
Collapse
|
4
|
Liu XG, Lu X, Gao W, Li P, Yang H. Structure, synthesis, biosynthesis, and activity of the characteristic compounds from Ginkgo biloba L. Nat Prod Rep 2021; 39:474-511. [PMID: 34581387 DOI: 10.1039/d1np00026h] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: 1928-2021Ginkgo biloba L. is one of the most distinctive plants to have emerged on earth and has no close living relatives. Owing to its phylogenetic divergence from other plants, G. biloba contains many compounds with unique structures that have served to broaden the chemical diversity of herbal medicine. Examples of such compounds include terpene trilactones (ginkgolides), acylated flavonol glycosides (ginkgoghrelins), biflavones (ginkgetin), ginkgotides and ginkgolic acids. The extract of G. biloba leaf is used to prevent and/or treat cardiovascular diseases, while many ginkgo-derived compounds are currently at various stages of preclinical and clinical trials worldwide. The global annual sales of G. biloba products are estimated to total US$10 billion. However, the content and purity of the active compounds isolated by traditional methods are usually low and subject to varying environmental factors, making it difficult to meet the huge demand of the international market. This highlights the need to develop new strategies for the preparation of these characteristic compounds from G. biloba. In this review, we provide a detailed description of the structures and bioactivities of these compounds and summarize the recent research on the development of strategies for the synthesis, biosynthesis, and biotechnological production of the characteristic terpenoids, flavonoids, and alkylphenols/alkylphenolic acids of G. biloba. Our aim is to provide an important point of reference for all scientists who research ginkgo-related compounds for medicinal or other purposes.
Collapse
Affiliation(s)
- Xin-Guang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Xu Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, #24 Tong Jia Xiang, Nanjing 210009, China.
| |
Collapse
|
5
|
Supercritical-CO 2 extraction, identification and quantification of polyprenol as a bioactive ingredient from Irish trees species. Sci Rep 2021; 11:7461. [PMID: 33811219 PMCID: PMC8018978 DOI: 10.1038/s41598-021-86393-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 03/10/2021] [Indexed: 12/13/2022] Open
Abstract
This study ascertained the accumulation of polyprenol from four Irish conifer species Picea sitchensis, Cedrus atlantica ‘Glauca’, Pinus sylvestris and Taxus baccata and one flowering tree Cotoneaster hybrida using supercritical fluid extraction with carbon dioxide (SFE-CO2) and solvent extraction. The effects of SFE-CO2 parameters such as temperature (ranged from 40 to 70 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ{\rm C}$$\end{document}∘C), pressure (ranged from 100 to 350 bars) and dynamic time (from 70 min to 7 h) were analysed on the extraction efficiency of polyprenol. Qualitative and quantitative analysis of polyprenol was examined using high-performance liquid chromatography. Results showed that P. sylvestris accumulated the highest polyprenol yield of 14.00 ± \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.4$$\end{document}0.4mg g−1 DW when extracted with hexane:acetone (1:1 v/v). However, with SFE-CO2 conditions of 200 bars, 70 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^\circ{\rm C}$$\end{document}∘C, 7 h, with absolute ethanol as a cosolvent with a flow rate of 0.05 ml min−1, P. sitchensis accumulated the highest polyprenol yield of 6.35 ± \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0.4$$\end{document}0.4 mg g−1DW. This study emphasised the potential application of SFE-CO2 in the extraction of polyprenol as an environmentally friendly method to be used in pharmaceutical and food industries.
Collapse
|
6
|
The construction of a green and efficient system for the separation of polyprenols from Ginkgo biloba leaves. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.10.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Upadhyay T, Ansari VA, Ahmad U, Sultana N, Akhtar J. Exploring Nanoemulsion for Liver Cancer Therapy. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394716666200302123336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is a leading cause of mortality worldwide, accounting for 8.8 million deaths in
2015. Among these, at least 0.78 million people died of liver cancer alone. The recognized risk
factors for liver cancer include chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection,
exposure to dietary aflatoxin, fatty liver disease, alcohol-induced cirrhosis, obesity, smoking,
diabetes, and iron overload. The treatment plan for early diagnosed patients includes radiation
therapy, tumour ablation, surgery, immunotherapy, and chemotherapy. Some sort of drug delivery
vehicles has to be used when the treatment plan is targeted chemotherapy. Nanoemulsions are a
class of biphasic liquid dosage form which are mixtures of oil and water stabilized by a surfactant.
They are either transparent or bluish in hue and serve as a wonderful carrier system for chemotherapeutic
drugs. These vehicles have a particle size in the range of 20-200 nm allowing them
to be delivered successfully in the deepest of tissues. Recent publications on nanoemulsions
reveal their acceptance and a popular choice for delivering both synthetic and herbal drugs to the
liver. This work focuses on some anti-cancer agents that utilized the advantages of nanoemulsion
for liver cancer therapy.
Collapse
Affiliation(s)
- Tanmay Upadhyay
- Faculty of Pharmacy, Integral University, Lucknow-226026, India
| | | | - Usama Ahmad
- Faculty of Pharmacy, Integral University, Lucknow-226026, India
| | - Nazneen Sultana
- Faculty of Pharmacy, Integral University, Lucknow-226026, India
| | - Juber Akhtar
- Faculty of Pharmacy, Integral University, Lucknow-226026, India
| |
Collapse
|
8
|
Rehman A, Jafari SM, Tong Q, Riaz T, Assadpour E, Aadil RM, Niazi S, Khan IM, Shehzad Q, Ali A, Khan S. Drug nanodelivery systems based on natural polysaccharides against different diseases. Adv Colloid Interface Sci 2020; 284:102251. [PMID: 32949812 DOI: 10.1016/j.cis.2020.102251] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Drug nanodelivery systems (DNDSs) are fascinated cargos to achieve outstanding therapeutic results of various drugs or natural bioactive compounds owing to their unique structures. The efficiency of several pharmaceutical drugs or natural bioactive ingredients is restricted because of their week bioavailability, poor bioaccessibility and pharmacokinetics after orally pathways. In order to handle such constraints, usage of native/natural polysaccharides (NPLS) in fabrication of DNDSs has gained more popularity in the arena of nanotechnology for controlled drug delivery to enhance safety, biocompatibility, better retention time, bioavailability, lower toxicity and enhanced permeability. The main commonly used NPLS in nanoencapsulation systems include chitosan, pectin, alginates, cellulose, starches, and gums recognized as potential materials for fabrication of cargos. Herein, this review is centered on different polysaccharide-based nanocarriers including nanoemulsions, nanohydrogels, nanoliposomes, nanoparticles and nanofibers, which have already served as encouraging candidates for entrapment of therapeutic drugs as well as for their sustained controlled release. Furthermore, the current article explicitly offers comprehensive details regarding application of NPLS-based nanocarriers encapsulating several drugs intended for the handling of numerous disorders, including diabetes, cancer, HIV, malaria, cardiovascular and respiratory as well as skin diseases.
Collapse
Affiliation(s)
- Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| | - Qunyi Tong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China.
| | - Tahreem Riaz
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Elham Assadpour
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Qayyum Shehzad
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Ahmad Ali
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi, China
| | - Sohail Khan
- National Institute of Food Science and Technology, Faculty of Food Nutrition and Home Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
9
|
Ding F, Fu J, Tao C, Yu Y, He X, Gao Y, Zhang Y. Recent Advances of Chitosan and its Derivatives in Biomedical Applications. Curr Med Chem 2020; 27:3023-3045. [DOI: 10.2174/0929867326666190405151538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/29/2022]
Abstract
Chitosan is the second-most abundant natural polysaccharide. It has unique characteristics,
such as biodegradability, biocompatibility, and non-toxicity. Due to the existence of its free amine
group and hydroxyl groups on its backbone chain, chitosan can undergo further chemical modifications
to generate Chitosan Derivatives (CDs) that permit additional biomedical functionality. Chitosan
and CDs can be fabricated into various forms, including Nanoparticles (NPs), micelles, hydrogels,
nanocomposites and nano-chelates. For these reasons, chitosan and CDs have found a tremendous
variety of biomedical applications in recent years. This paper mainly presents the prominent
applications of chitosan and CDs for cancer therapy/diagnosis, molecule biosensing, viral infection,
and tissue engineering over the past five years. Moreover, future research directions on chitosan are
also considered.
Collapse
Affiliation(s)
- Fei Ding
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Jiawei Fu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Chuang Tao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yanhua Yu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Xianran He
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yangguang Gao
- Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan, 430056, China
| | - Yongmin Zhang
- Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
10
|
Rajpoot K, Jain SK. Oral delivery of pH-responsive alginate microbeads incorporating folic acid-grafted solid lipid nanoparticles exhibits enhanced targeting effect against colorectal cancer: A dual-targeted approach. Int J Biol Macromol 2020; 151:830-844. [DOI: 10.1016/j.ijbiomac.2020.02.132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
|
11
|
Guo X, Seo JE, Li X, Mei N. Genetic toxicity assessment using liver cell models: past, present, and future. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:27-50. [PMID: 31746269 DOI: 10.1080/10937404.2019.1692744] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Genotoxic compounds may be detoxified to non-genotoxic metabolites while many pro-carcinogens require metabolic activation to exert their genotoxicity in vivo. Standard genotoxicity assays were developed and utilized for risk assessment for over 40 years. Most of these assays are conducted in metabolically incompetent rodent or human cell lines. Deficient in normal metabolism and relying on exogenous metabolic activation systems, the current in vitro genotoxicity assays often have yielded high false positive rates, which trigger unnecessary and costly in vivo studies. Metabolically active cells such as hepatocytes have been recognized as a promising cell model in predicting genotoxicity of carcinogens in vivo. In recent years, significant advances in tissue culture and biological technologies provided new opportunities for using hepatocytes in genetic toxicology. This review encompasses published studies (both in vitro and in vivo) using hepatocytes for genotoxicity assessment. Findings from both standard and newly developed genotoxicity assays are summarized. Various liver cell models used for genotoxicity assessment are described, including the potential application of advanced liver cell models such as 3D spheroids, organoids, and engineered hepatocytes. An integrated strategy, that includes the use of human-based cells with enhanced biological relevance and throughput, and applying the quantitative analysis of data, may provide an approach for future genotoxicity risk assessment.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|