1
|
Li S, Cao X, Zou T, Wang Z, Chen X, Chen J, You J. Integrated transcriptomics and untargeted metabolomics reveal bone development and metabolism of newly weaned mice in response to dietary calcium and boron levels. Food Funct 2024; 15:10853-10869. [PMID: 39405052 DOI: 10.1039/d4fo03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Epidemiological and animal studies have indicated that calcium and boron are essential for bone development and metabolism. However, limited information is available regarding the effects of boron supplementation on bone development and metabolism in newly weaned infants with either calcium deficiency or calcium sufficiency. This study assessed the effects of dietary boron supplementation (0 and 3 mg kg-1) on bone development and metabolism, in a newly weaned mouse model, under both calcium deficiency and sufficiency feeding conditions. The results show that mice fed a calcium sufficient diet exhibited lower fat percentage and final body weight than those fed a calcium deficient diet. Boron supplementation reduced the serum high-density lipoprotein cholesterol level and up-regulated the mRNA levels of FABP3, PPAR-γ, and CaMK in the intestinal mucosa. Importantly, boron supplementation increased the tibial weight in mice on a calcium-sufficient diet and enhanced the tibial volume in those on a calcium-deficient diet. Metabolomic analysis highlighted calcium and boron's impact on metabolites like carboxylic acids and derivatives, fatty acyls, steroids and steroid derivatives, benzene and substituted derivatives, organonitrogen compounds, organooxygen compounds, and phenols, and were related to lipid metabolism and the neural signaling pathway. Transcriptomic analysis corroborated the role of calcium and boron in modulating bone metabolism via the JAK-STAT, calcium signaling, lipid metabolism, and inflammatory pathways. Multi-omics analysis indicated a strong correlation between calcium signaling pathways, lipid metabolism signaling, and dietary calcium and boron contents. This research provides insights into these complex mechanisms, potentially paving the way for novel interventions against calcium and boron deficiencies and bone metabolism abnormalities in clinical settings.
Collapse
Affiliation(s)
- Shuo Li
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xuehai Cao
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Tiande Zou
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Zirui Wang
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Xingping Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jun Chen
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Jinming You
- Key Laboratory of Animal Nutrition and Feed in Jiangxi Province, Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
2
|
Huang T, Hao Y, Tan Y, Dai Q, Chen W, Cui K, Luo J, Zeng H, Shu W, Huang Y. Low-Mineral Water Diminishes the Bone Benefits of Boron. Nutrients 2024; 16:2881. [PMID: 39275197 PMCID: PMC11397211 DOI: 10.3390/nu16172881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
This study looked at how desalinated seawater, which has low minerals and high boron, could affect bone health. Prior research suggests that low mineral water may harm bone health and boron could be beneficial, but the overall impact on bone health is still unclear. Eighty-nine-week-old male Balb/C mice were allocated into eight groups and administered either tap water or purified water with varying boron concentrations (0, 5, 40, and 200 mg/L). They were kept in an environment mimicking tropical conditions (35-40 °C, 70-80% humidity) and underwent daily treadmill exercise for 13 weeks. At the 14th week, serum, femora, and lumbar vertebrae were collected for mineral metabolism, bone biomarker, microstructure, and biomechanics evaluation. Boron exposure improved bone formation, microstructure, and biomechanics initially but the benefits weakened with higher levels of exposure (p < 0.05). Co-exposure to purified water elevated serum boron but weakened the promotion of boron on bone minerals and the bone benefits of boron compared to tap water (p < 0.05). Thus, when studying the health effects of boron in desalinated seawater, it is crucial to look at various health effects beyond bone health. Furthermore, it is important to consider the mineral composition of drinking water when using boron for bone health benefits.
Collapse
Affiliation(s)
- Ting Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yuhui Hao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yao Tan
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Qijie Dai
- Department of Orthopedics, Southwest Hospital, Army Medical University, Chongqing 400038, China
| | - Weiyan Chen
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Ke Cui
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Jiaohua Luo
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Hui Zeng
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Weiqun Shu
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| | - Yujing Huang
- Department of Environmental Hygiene, College of Preventive Medicine, Army Medical University, Chongqing 400038, China
| |
Collapse
|
3
|
Pan X, Ji H, Gong XX, Yang WT, Jin Z, Zheng Y, Ding S, Xia H, Shen Z, Shao JF. Screening and evaluation of bamboo shoots: Comparing the content of trace elements from 100 species. Food Chem X 2024; 21:101071. [PMID: 38187944 PMCID: PMC10767165 DOI: 10.1016/j.fochx.2023.101071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Hundreds of bamboo shoots have been reported to be edible, but the accumulation of trace elements and hazardous elements in bamboo shoots is poorly understood. Here, 100 bamboo species have been evaluated by screening elements including B, Fe, Mn, Cu, Zn, Cd, Pb and As in bamboo shoots using different assessment systems. Bamboo shoots displayed different morphological characteristics, and large differences were found in the concentration of elements. Most bamboo shoots were rich in Fe and Zn and low concentrations of hazardous elements, but the concentration of Cd and Pb exceeded the maximum permissible limits of tuber vegetables in some bamboo species. Different bamboo shoots were ranked differently in the four assessment systems, and the comprehensive evaluation assigned final scores to all 100 bamboo shoots. This study provides valuable recommendations for selecting high-quality bamboo shoots that are rich in trace elements nutrition while minimizing the potential for hazardous element accumulation.
Collapse
Affiliation(s)
- Xianyu Pan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin’An 311300, China
| | - Haibao Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin’An 311300, China
| | - Xiu Xiu Gong
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin’An 311300, China
| | - Wang Ting Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin’An 311300, China
| | - Zetao Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin’An 311300, China
| | - Yiting Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin’An 311300, China
| | - Sijie Ding
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin’An 311300, China
| | - Haitao Xia
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zhenming Shen
- Agricultural and Forestry Technology Promotion Center of Lin’An 311300, China
| | - Ji Feng Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture & Forestry University, Lin’An 311300, China
| |
Collapse
|
4
|
Zhao C, Chen S, Han Y, Zhang F, Ren M, Hu Q, Ye P, Li X, Jin E, Li S. Proteomic Analysis of Rat Duodenum Reveals the Modulatory Effect of Boron Supplementation on Immune Activity. Genes (Basel) 2023; 14:1560. [PMID: 37628612 PMCID: PMC10454175 DOI: 10.3390/genes14081560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The proper supplementation of boron, an essential trace element, can enhance animal immune function. We utilized the method of TMT peptide labeling in conjunction with LC-MS/MS quantitative proteomics for the purpose of examining the effects of boric acid on a rat model and analyzing proteins from the duodenum. In total, 5594 proteins were obtained from the 0, 10, and 320 mg/L boron treatment groups. Two hundred eighty-four proteins that exhibit differential expression were detected. Among the comparison, groups of 0 vs. 10 mg/L, 0 vs. 320 mg/L, and 10 vs. 320 mg/L of boron, 110, 32, and 179 proteins, respectively, demonstrated differential expression. The results revealed that these differential expression proteins (DEPs) mainly clustered into two profiles. GO annotations suggested that most of the DEPs played a role in the immune system process, in which 2'-5'-oligoadenylate synthetase-like, myxovirus resistance 1, myxovirus resistance 2, dynein cytoplasmic 1 intermediate chain 1, and coiled-coil domain containing 88B showed differential expression. The DEPs had demonstrated an augmentation in the signaling pathways, which primarily include phagosome, antigen processing, and presentation, as well as cell adhesion molecules (CAMs). Our study found that immune responses in the duodenum were enhanced by lower doses of boron and that this effect is likely mediated by changes in protein expression patterns in related signaling pathways. It offers an in-depth understanding of the underlying molecular mechanisms that lead to immune modulation in rats subjected to dietary boron treatment.
Collapse
Affiliation(s)
- Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Shuqin Chen
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Yujiao Han
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Feng Zhang
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Xiaojin Li
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China; (C.Z.); (S.C.); (Y.H.); (F.Z.); (M.R.); (Q.H.); (P.Y.); (X.L.); (S.L.)
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9 Donghua Road, Fengyang County, Chuzhou 233100, China
| |
Collapse
|
5
|
Xu B, Dong F, Yang P, Wang Z, Yan M, Fang J, Zhang Y. Boric Acid Inhibits RANKL-Stimulated Osteoclastogenesis In Vitro and Attenuates LPS-Induced Bone Loss In Vivo. Biol Trace Elem Res 2023; 201:1388-1397. [PMID: 35397103 DOI: 10.1007/s12011-022-03231-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 04/04/2022] [Indexed: 02/07/2023]
Abstract
Boron and boric acid (BA) can promote osteogenic differentiation and reduce bone resorption, which controls bone growth and maintenance of bone tissue. It has been reported that BA activates PERK-eIF2α signaling to induce cytoplasmic stress granules and cell senescence in human prostate DU-145 cells. However, whether BA can affect osteoclasts formation and LPS-induced inflammatory bone loss, and the role of the PERK-eIF2α pathway in the process, remains unknown. In vitro, RAW264.7 cells were pre-treated with boric acid (BA, 1, 10, 100 μmol/L) for 4 h, and then incubated with receptor activator of nuclear factor-kappaB ligand (RANKL, 50 ng/mL) in the presence or absence of BA for 5 days. CCK-8 and tartrate-resistant acid phosphatase (TRAP) were used to examine cell viability, osteoclastogenesis, and bone resorption; quantitative real-time PCR was performed to examine mRNA levels of c-Fos, nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), TRAP, and cathepsin K; western blotting was used to examine protein expressions of glucose-regulated protein 78 (GRP78), protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), phosphorylated PERK (p-PERK), eukaryotic initiation factor 2α (eIF2α), and phosphorylated eIF2α (p-eIF2α). In vivo, lipopolysaccharide (LPS)-induced bone loss model in mice was established, and micro-computed tomography (micro-CT) scanning, bone biochemical analysis, and osteoclastogenic cytokines were detected to evaluate the effect of BA on LPS-induced bone loss. In our vitro results showed that BA treatment for 5 days inhibited osteoclasts formation as well as osteoclastic bone resorption in a dose-dependent manner. The expression of osteoclasts marker genes c-Fos, NFATc1, TRAP, and cathepsin K were attenuated by BA. Immunoblotting analysis demonstrated that BA attenuated RANKL-induced PERK-eIF2α pathway activation. The in vivo data indicated that BA significantly prevented lipopolysaccharide (LPS)-induced bone loss. Our findings strongly suggest that BA may be a promising agent for the treatment of bone destructive diseases caused by excessive osteoclastogenesis.
Collapse
Affiliation(s)
- Bingbing Xu
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Fanhe Dong
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Pei Yang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Zihan Wang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Ming Yan
- School of Automation, Hangzhou Dianzi University, Xiasha Higher Education Zone, 1158 2nd Avenue, Hangzhou, 310018, People's Republic of China
| | - Jian Fang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China
| | - Yun Zhang
- College of Medicine, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
6
|
Hakki SS, Kayis SA, Dundar N, Hamurcu M, Basoglu A, Nielsen FH. Nail Mineral Composition Changes Do Not Reflect Bone Mineral Changes Caused by Boron Supplementation. Biol Trace Elem Res 2023; 201:215-219. [PMID: 35157231 DOI: 10.1007/s12011-022-03151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/04/2022] [Indexed: 01/11/2023]
Abstract
Nails have been found to be a non-invasive and readily available tissue whose mineral content can change because of a change in dietary mineral intake. Thus, this study was undertaken to determine whether boron (B) supplementation would change the concentrations of some mineral elements in nails and whether these changes correlated with changes induced in bone. Female New Zealand White rabbits (aged 8 months, 2-2.5 kg weight) were fed a grain-based, high-energy diet containing 3.88 mg B/kg. The rabbits were divided into four treatment groups: controls receiving no supplemental B (N: 7; C) and three groups supplemented with 30 mg B/L in drinking water as borax decahydrate (Na2B4O7∙10H2O, N: 10; BD), borax anhydrous (Na2B4O7, N: 7; Bah), and boric acid (H3BO3, N: 7; BA). Boron, calcium (Ca), copper (Cu), iron (Fe), magnesium (Mg), phosphorus (P), potassium (K), sodium (Na), sulfur (S), and zinc (Zn) concentrations in nails were determined by inductively coupled plasma atomic emission spectroscopy. Parametric and non-parametric multiple group comparisons and post hoc tests were performed and whether a correlation between nail and tibia and femur mineral elements concentrations were determined. A p-value of < 0.05 was considered statistically significant. Boron was not detectable in control nails but was found in the nails of the three B supplemented groups. Boron supplementation markedly increased the Ca concentration in nails with the effect greatest in the BA and BD groups. The P and Mg concentrations also were increased by B supplementation with the effect most marked in the BA group. In contrast, B supplementation decreased the Na concentration with the effect most noticeable in the BD and Bah groups. The Zn concentration in nails was not affected by BA and BD supplementation but was decreased by Bah supplementation. Boron supplementation did not significantly affect the concentrations of Cu, Fe, Mo, K, and S in nails. No meaningful significant correlations were found between nail mineral elements and tibia and femur mineral elements found previously. Nails can be an indicator of the response to boron supplementation but are not useful to indicate changes in mineral elements in bone in response to B supplementation.
Collapse
Affiliation(s)
- Sema S Hakki
- Department of Periodontology, Faculty of Dentistry, Selcuk University, Konya, 42079, Turkey.
- Research Center of Faculty of Dentistry, Selcuk University, Konya, Turkey.
| | - Seyit Ali Kayis
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Niyazi Dundar
- Research Center of Faculty of Dentistry, Selcuk University, Konya, Turkey
| | - Mehmet Hamurcu
- Faculty of Agriculture, Soil Science and Plant Nutrition, Selcuk University, Konya, Turkey
| | - Abdullah Basoglu
- Department of Internal Medicine, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| | | |
Collapse
|
7
|
Zhao C, Han Y, Wang C, Ren M, Hu Q, Gu Y, Ye P, Li S, Jin E. Transcriptome Profiling of Duodenum Reveals the Importance of Boron Supplementation in Modulating Immune Activities in Rats. Biol Trace Elem Res 2022; 200:3762-3773. [PMID: 34773147 DOI: 10.1007/s12011-021-02983-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
As an essential trace element, appropriate boron supplementation can promote immune function of animals. To illustrate the effects of boron in a rat model, RNA-Seq was conducted for the RNA from duodenum after treatment with different concentration of boron in which boron was given in the form of boric acid. More than 47 million reads were obtained in 0, 10, and 320 mg/L boron (0, 57.21, and 1830.66 mg/L boric acid) treatment groups that produced 58 965 402, 48 607 328, and 46 760 660 clean reads, respectively. More than 95% of the clean reads were successfully matched to the rat reference genome and assembled to generate 32 662 transcripts. A total of 624 and 391 differentially expressed candidate genes (DEGs) were found between 0 vs.10 and 0 vs. 320 mg/L boron comparison groups. We also identified transcription start site, transcription terminal site, and skipped exons as the main alternative splicing events. GO annotations revealed most of DEGs were involved in the regulation of immune activity. The DEGs were enriched in influenza A, herpes simplex infection, cytosolic DNA-sensing pathway, and antigen processing and presentation signaling pathways. The expression levels of genes enriched in these signaling pathways indicate that lower doses of boron could achieve better effects on promoting immune response in the duodenum. These effects on the immune system appear to be mediated via altering the expression patterns of genes involved in the related signaling pathways in a dose-dependent pattern. These data provide more insights into the molecular mechanisms of immune regulation in rats in response to dietary boron treatment.
Collapse
Affiliation(s)
- Chunfang Zhao
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Yujiao Han
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Chenfang Wang
- College of Life and Health Science, Anhui Science and Technology University, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Man Ren
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Qianqian Hu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Youfang Gu
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Pengfei Ye
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China
| | - Shenghe Li
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| | - Erhui Jin
- College of Animal Science, Anhui Science and Technology University, No. 9 Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, No. 9, Donghua Road, Fengyang County, Chuzhou, Anhui Province, China.
| |
Collapse
|
8
|
Hakki SS, Götz W, Dundar N, Kayis SA, Malkoc S, Hamurcu M, Basoglu A, Nielsen FH. Borate and boric acid supplementation of drinking water alters teeth and bone mineral density and composition differently in rabbits fed a high protein and energy diet. J Trace Elem Med Biol 2021; 67:126799. [PMID: 34082267 DOI: 10.1016/j.jtemb.2021.126799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/16/2021] [Accepted: 05/26/2021] [Indexed: 11/30/2022]
Abstract
The reported beneficial effects of boron on mineralized tissues in animals and humans vary. Thus, a study was performed to assess whether the variability was the result of different forms of boron supplementation, method of supplementation, and increased adiposity of the rabbit experimental model. Thirty-one female New Zealand White rabbits, (aged 8 months, 2-2.5 kg weight) were fed a grain-based high energy diet containing 11.76 MJ/kg (2850 kcal/kg) and 3.88 mg boron/kg. The rabbits were randomly divided into four treatment groups: Control group was not supplemented with boron (n:7; C), and three groups supplemented with 30 mg boron/L in drinking water in the forms of borax decahydrate (Na2O4B7 10H2O, n:10; BD), borax anhydrous (Na2O4B7, n:7; Bah) or boric acid (H2BO3, n:7; BA). Cone beam micro computed tomographic (micro-CT), histological and elemental analysis was used to evaluate the bones/teeth. Results of the experiments demonstrated that boron supplementation had beneficial effects on mineralized tissue but varied with the type of treatment. Mineral density of the femur was increased by the Bah and BA treatments (p < 0.001), but only BA increased mineral density in the tibia (p = 0.015). In incisor teeth, mineral density of dentin was increased by all boron treatments (p < 0.001), and mineral density of enamel was increased by the BD and Bah treatments. Mineral analysis found that all boron treatments increased the boron concentration in tibia and femur. In the tibia, both the BD and Bah treatments decreased the iron concentration, and the BD treatment decreased the magnesium concentration. Sodium and zinc concentrations in the tibia were decreased by the Bah and BA treatments. The boron treatments did not significantly affect the calcium, copper, molybdenum, potassium phosphorus, and sulfur concentrations. The findings show that boron supplementation can have beneficial effects on mineralized tissues in an animal model with increased adiposity, which is a model of increased inflammatory stress. However, this effect varies with the form of boron supplemented, the method of supplementation, and the mineralized tissue examined.
Collapse
Affiliation(s)
- Sema S Hakki
- Selcuk University, Faculty of Dentistry, Department of Periodontology, Konya, 42079, Turkey; Selcuk University, Research Center of Faculty of Dentistry, Konya, Turkey.
| | - Werner Götz
- Bonn University, Medical Faculty, Department of Orthodontics, Oral Biology Lab, Bonn, Germany
| | - Niyazi Dundar
- Selcuk University, Research Center of Faculty of Dentistry, Konya, Turkey
| | - Seyit Ali Kayis
- Bolu Abant İzzet Baysal University, Faculty of Medicine, Department of Biostatistics and Medical İnformatics, Bolu, Turkey
| | - Siddik Malkoc
- Private Practice, Sancakdent Oral Health Center, Istanbul, Turkey
| | - Mehmet Hamurcu
- Selcuk University, Faculty of Agriculture, Soil Science and Plant Nutrition, Konya, Turkey
| | - Abdullah Basoglu
- Selcuk University, Faculty of Veterinary Medicine, Department of Internal Medicine, Konya, Turkey
| | | |
Collapse
|
9
|
Pazarçeviren AE, Tezcaner A, Keskin D, Kolukısa ST, Sürdem S, Evis Z. Boron-doped Biphasic Hydroxyapatite/β-Tricalcium Phosphate for Bone Tissue Engineering. Biol Trace Elem Res 2021; 199:968-980. [PMID: 32524334 DOI: 10.1007/s12011-020-02230-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 05/31/2020] [Indexed: 01/22/2023]
Abstract
Boron-doped hydroxyapatite/tricalcium phosphates (BHTs) were synthesized to study boron uptake and correlate structural alterations of incremental boron addition (0 to 10 mol%). BHTs with a Ca/P ratio of 1.6 were prepared by a wet precipitation/microwave reflux method, sieved (< 70 μm) and characterized. XRD and FTIR analyses revealed that boron slightly distorted apatite crystal, increased crystallinity (95.78 ± 2.08% for 5BHT) and crystallite size (103.39 ± 23.47 nm for 5BHT) and still, boron addition did not show any further detrimental effects. Total surface area (4.05 ± 0.82 m2/g for 10BHT) and mesoporosity (23.90 ± 7.92 μL/g for 10BHT) were expanded as boron content was increased. Moreover, boron addition made grains become smaller (0.21 ± 0.06 μm for 5BHT) and ordered while hardness (10.51 ± 0.86 GPa for 10BHT) increased. Boron incorporation enhanced bioactivity with significantly highest calcium phosphate deposition and protein adsorption (135.29 ± 29.58 μg on 10BHT). In return, boron favored highest alkaline phosphatase activity (4.80 ± 0.40 MALP/ngDNA.min), intracellular calcium (23.61 ± 0.68 g/gDNA), phosphate (31.84 ± 4.68 g/gDNA), and protein (23.70 ± 3.46 g/gDNA) storage in 5BHT without cytotoxicity (128 ± 18% viability compared to pure HT). Compared to literature, it can be pointed out that we successfully employed an optimal procedure for production of BHTs and incorporated significantly higher boron content in HT (5.23 mol%). Additionally, results tended to conclude that 5BHT samples (5 mol% boron in HT) demonstrated a very high potential to be used in composite bone tissue constructs.
Collapse
Affiliation(s)
| | - Ayşen Tezcaner
- Department of Engineering Sciences, Middle East Technical University, 06800, Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, 06800, Ankara, Turkey
| | - Dilek Keskin
- Department of Engineering Sciences, Middle East Technical University, 06800, Ankara, Turkey
- Center of Excellence in Biomaterials and Tissue Engineering, 06800, Ankara, Turkey
| | | | | | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, 06800, Ankara, Turkey.
| |
Collapse
|