1
|
Jiang H, Gong H, Li Q, Zhao L, Liu B, Gao J, Mao X. Differences in proteomic profiles and immunomodulatory activity of goat and cow milk fat globule membrane. Food Chem 2024; 455:139885. [PMID: 38850986 DOI: 10.1016/j.foodchem.2024.139885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to clarify the composition and bioactivity differences between goat and cow milk fat globule membrane (MFGM) protein by proteomic, and the immunomodulatory activity of MFGM proteins was further evaluated by using mouse splenic lymphocytes in vitro. A total of 257 MFGM proteins showed significant differences between goat and cow milk. The upregulated and unique MFGM proteins in goat milk were significantly enriched in the positive regulation of immune response, negative regulation of Interleukin-5 (IL-5) secretion, and involved in nucleotide-binding oligomerization domain (NOD)-like receptor signaling. The contents of IL-2 and Interferon-γ in the supernatant of spleen lymphocytes treated with goat MFGM proteins were much higher than those of IL-4 and IL-5, suggesting a Th1-skewed immune response. These results revealed that goat MFGM proteins could possess better immunomodulatory effects as compared to cow milk. Our findings may provide new insights to elucidate the physiological functions and nutritional of goat milk.
Collapse
Affiliation(s)
- Hui Jiang
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Han Gong
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qin Li
- National Center of Technology Innovation for Dairy, Hohhot 010110, China
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Biao Liu
- Inner Mongolia Yili Ind Grp Co Ltd, Yili Maternal & Infant Nutr Inst YMINI, Beijing 100070, China
| | - Jingxin Gao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xueying Mao
- Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
2
|
Gori A, Brindisi G, Daglia M, del Giudice MM, Dinardo G, Di Minno A, Drago L, Indolfi C, Naso M, Trincianti C, Tondina E, Brunese FP, Ullah H, Varricchio A, Ciprandi G, Zicari AM. Exploring the Role of Lactoferrin in Managing Allergic Airway Diseases among Children: Unrevealing a Potential Breakthrough. Nutrients 2024; 16:1906. [PMID: 38931261 PMCID: PMC11206375 DOI: 10.3390/nu16121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of allergic diseases has dramatically increased among children in recent decades. These conditions significantly impact the quality of life of allergic children and their families. Lactoferrin, a multifunctional glycoprotein found in various biological fluids, is emerging as a promising immunomodulatory agent that can potentially alleviate allergic diseases in children. Lactoferrin's multifaceted properties make it a compelling candidate for managing these conditions. Firstly, lactoferrin exhibits potent anti-inflammatory and antioxidant activities, which can mitigate the chronic inflammation characteristic of allergic diseases. Secondly, its iron-binding capabilities may help regulate the iron balance in allergic children, potentially influencing the severity of their symptoms. Lactoferrin also demonstrates antimicrobial properties, making it beneficial in preventing secondary infections often associated with respiratory allergies. Furthermore, its ability to modulate the immune response and regulate inflammatory pathways suggests its potential as an immune-balancing agent. This review of the current literature emphasises the need for further research to elucidate the precise roles of lactoferrin in allergic diseases. Harnessing the immunomodulatory potential of lactoferrin could provide a novel add-on approach to managing allergic diseases in children, offering hope for improved outcomes and an enhanced quality of life for paediatric patients and their families. As lactoferrin continues to capture the attention of researchers, its properties and diverse applications make it an intriguing subject of study with a rich history and a promising future.
Collapse
Affiliation(s)
- Alessandra Gori
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Giulia Brindisi
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Michele Miraglia del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Giulio Dinardo
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Lorenzo Drago
- Laboratory of Clinical Microbiology & Microbiome, Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy;
- UOC Laboratory of Clinical Medicine, MultiLab Department, IRCCS Multimedica, 20138 Milan, Italy
| | - Cristiana Indolfi
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.M.d.G.); (G.D.); (C.I.)
| | - Matteo Naso
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Chiara Trincianti
- Allergy Center, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.N.); (C.T.)
| | - Enrico Tondina
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; (M.D.); (A.D.M.); (H.U.)
| | - Attilio Varricchio
- Department of Otolaryngology, University of Molise, 86100 Campobasso, Italy;
| | - Giorgio Ciprandi
- Allergy Clinic, Casa di Cura Villa Montallegro, 16145 Genoa, Italy;
| | - Anna Maria Zicari
- Department of Mother-Child, Urological Science, Sapienza University of Rome, 00161 Rome, Italy; (A.G.); (G.B.)
| |
Collapse
|
3
|
Evaluation of the Multifunctionality of Soybean Proteins and Peptides in Immune Cell Models. Nutrients 2023; 15:nu15051220. [PMID: 36904220 PMCID: PMC10005611 DOI: 10.3390/nu15051220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Inflammatory and oxidative processes are tightly regulated by innate and adaptive immune systems, which are involved in the pathology of a diversity of chronic diseases. Soybean peptides, such as lunasin, have emerged as one of the most hopeful food-derived peptides with a positive impact on health. The aim was to study the potential antioxidant and immunomodulatory activity of a lunasin-enriched soybean extract (LES). The protein profile of LES was characterized, and its behavior under simulated gastrointestinal digestion was evaluated. Besides its in vitro radical scavenging capacity, LES and lunasin's effects on cell viability, phagocytic capacity, oxidative stress, and inflammation-associated biomarkers were investigated in both RAW264.7 macrophages and lymphocytes EL4. Lunasin and other soluble peptides enriched after aqueous solvent extraction partially resisted the action of digestive enzymes, being potentially responsible for the beneficial effects of LES. This extract scavenged radicals, reduced reactive oxygen species (ROS) and exerted immunostimulatory effects, increasing nitric oxide (NO) production, phagocytic activity, and cytokine release in macrophages. Lunasin and LES also exerted dose-dependent immunomodulatory effects on EL4 cell proliferation and cytokine production. The modulatory effects of soybean peptides on both immune cell models suggest their potential protective role against oxidative stress, inflammation, and immune response-associated disorders.
Collapse
|
4
|
Lin YR, Guan QY, Li LY, Tang ZM, Zhang Q, Zhao XH. In Vitro Immuno-Modulatory Potentials of Purslane ( Portulaca oleracea L.) Polysaccharides with a Chemical Selenylation. Foods 2021; 11:foods11010014. [PMID: 35010140 PMCID: PMC8750528 DOI: 10.3390/foods11010014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/13/2021] [Accepted: 12/18/2021] [Indexed: 02/06/2023] Open
Abstract
The soluble polysaccharides from a non-conventional and edible plant purslane (Portulaca oleracea L.), namely PSPO, were prepared by the water extraction and ethanol precipitation methods in this study. The obtained PSPO were selenylated using the Na2SeO3-HNO3 method to successfully prepare two selenylated products, namely SePSPO-1 and SePSPO-2, with different selenylation extents. The assay results confirmed that SePSPO-1 and SePSPO-2 had respective Se contents of 753.8 and 1325.1 mg/kg, while PSPO only contained Se element about 80.6 mg/kg. The results demonstrated that SePSPO-1 and SePSPO-2 had higher immune modulation than PSPO (p < 0.05), when using the two immune cells (murine splenocytes and RAW 264.7 macrophages) as two cell models. Specifically, SePSPO-1 and SePSPO-2 were more active than PSPO in the macrophages, resulting in higher cell proliferation, greater macrophage phagocytosis, and higher secretion of the immune-related three cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β. Meanwhile, SePSPO-1 and SePSPO-2 were more potent than PSPO in the concanavalin A- or lipopolysaccharide-stimulated splenocytes in cell proliferation, or more able than PSPO in the splenocytes to promote interferon-γ secretion but suppress IL-4 secretion, or more capable of enhancing the ratio of T-helper (CD4+) cells to T-cytotoxic (CD8+) cells for the T lymphocytes than PSPO. Overall, the higher selenylation extent of the selenylated PSPO mostly caused higher immune modulation in the model cells, while a higher polysaccharide dose consistently led to the greater regulation effect. Thus, it is concluded that the employed chemical selenylation could be used in the chemical modification of purslane or other plant polysaccharides, when aiming to endow the polysaccharides with higher immuno-modulatory effect on the two immune cells.
Collapse
Affiliation(s)
- Ya-Ru Lin
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Qing-Yun Guan
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Ling-Yu Li
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
| | - Zhi-Mei Tang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qiang Zhang
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xin-Huai Zhao
- School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China; (Y.-R.L.); (Q.-Y.G.); (L.-Y.L.); (Z.-M.T.); (Q.Z.)
- Research Centre of Food Nutrition and Human Healthcare, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong University of Petrochemical Technology, Maoming 525000, China
- Correspondence:
| |
Collapse
|
5
|
Odatsu T, Kuroshima S, Shinohara A, Valanezhad A, Sawase T. Lactoferrin with Zn-ion protects and recovers fibroblast from H 2O 2-induced oxidative damage. Int J Biol Macromol 2021; 190:368-374. [PMID: 34487781 DOI: 10.1016/j.ijbiomac.2021.08.214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Lactoferrin (LF) has attracted great attention due to its various bioactivities, which depend on the degree of saturation with different cations. This study focused on the synergistic effect of LF and Zn2+ on human gingival fibroblasts (hGFs), considering antioxidant activities, cell proliferation, and collagen gene expression levels in these cells to improve the wound healing. The hGFs were cultured in an experimental medium, containing 1000 μg/mL of LF and various concentrations of ZnCl2. The cells were subjected to oxidative damage by exposure to 600 μM H2O2 for 30 min before incubation in the experimental medium. The cell proliferation rate and the relative gene expression levels of genes associated with apoptosis, antioxidant enzymes, and collagen were compared. H2O2 decomposition by LF was also measured using a colorimetric assay. LF enhanced hGF proliferation and the expression of collagen. Furthermore, LF directly scavenged H2O2 and prevented lipid peroxidation by enhancing the expression of glutathione peroxidase 4 gene expression, resulting in the prevention of apoptosis and recovery of the cells from H2O2-induced oxidative damage. The addition of ZnCl2 enhanced these results. The results indicated that LF with Zn-ion could play an important role in modulating the functions related to wound healing.
Collapse
Affiliation(s)
- Tetsurou Odatsu
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan.
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Ayano Shinohara
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Alireza Valanezhad
- Department of Dental and Biomaterials Science, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| | - Takashi Sawase
- Department of Applied Prosthodontics, Institute of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki 852-8588, Japan
| |
Collapse
|