1
|
Xu M, Li M, Benz F, Merchant M, McClain CJ, Song M. Ileum Proteomics Identifies Distinct Pathways Associated with Different Dietary Doses of Copper-Fructose Interactions: Implications for the Gut-Liver Axis and MASLD. Nutrients 2024; 16:2083. [PMID: 38999831 PMCID: PMC11242941 DOI: 10.3390/nu16132083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
The interactions of different dietary doses of copper with fructose contribute to the development of metabolic dysfunction-associated steatotic liver disease (MASLD) via the gut-liver axis. The underlying mechanisms remain elusive. The aim of this study was to identify the specific pathways leading to gut barrier dysfunction in the ileum using a proteomics approach in a rat model. Male weanling Sprague Dawley rats were fed diets with adequate copper (CuA), marginal copper (CuM), or supplemented copper (CuS) in the absence or presence of fructose supplementation (CuAF, CuMF, and CuSF) for 4 weeks. Ileum protein was extracted and analyzed with an LC-MS. A total of 2847 differentially expressed proteins (DEPs) were identified and submitted to functional enrichment analysis. As a result, the ileum proteome and signaling pathways that were differentially altered were revealed. Of note, the CuAF is characterized by the enrichment of oxidative phosphorylation and ribosome as analyzed with the KEGG; the CuMF is characterized by an enriched arachidonic acid metabolism pathway; and focal adhesion, the regulation of the actin cytoskeleton, and tight junction were significantly enriched by the CuSF. In conclusion, our proteomics analysis identified the specific pathways in the ileum related to the different dietary doses of copper-fructose interactions, suggesting that distinct mechanisms in the gut are involved in the development of MASLD.
Collapse
Affiliation(s)
- Manman Xu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.X.); (C.J.M.)
| | - Ming Li
- Department of Medicine, Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.L.); (M.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Frederick Benz
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
| | - Michael Merchant
- Department of Medicine, Division of Nephrology and Hypertension, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.L.); (M.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Craig J. McClain
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.X.); (C.J.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA;
- University of Louisville Alcohol Research Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Robley Rex Louisville VAMC, Louisville, KY 40206, USA
| | - Ming Song
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Louisville School of Medicine, Louisville, KY 40202, USA; (M.X.); (C.J.M.)
- Hepatobiology & Toxicology Center, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
2
|
Dai X, Han YX, Shen QY, Tang H, Cheng LZ, Yang FP, Wei WH, Yang SM. Effect of Food Restriction on Food Grinding in Brandt's Voles. Animals (Basel) 2023; 13:3424. [PMID: 37958179 PMCID: PMC10647212 DOI: 10.3390/ani13213424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Food grinding is supposed to be influenced by multiple factors. However, how those factors affecting this behavior remain unclear. In this study, we investigated the effect of food restriction on food grinding in Brandt's voles (Lasiopodomys brandtii), as well as the potential role of the gut microbiota in this process, through a comparison of the variations between voles with different food supplies. Food restriction reduced the relative amount of ground food to a greater extent than it lowered the relative food consumption, and altered the abundance of Staphylococcus, Aerococcus, Jeotgalicoccus, and Un--s-Clostridiaceae bacterium GM1. Fecal acetate content for the 7.5 g-food supply group was lower than that for the 15 g-food supply group. Our study indicated that food restriction could effectively inhibit food grinding. Further, Un--s-Clostridiaceae bacterium GM1 abundance, Aerococcus abundance, and acetate content were strongly related to food grinding. Variations in gut microbial abundance and short-chain fatty acid content induced by food restriction likely promote the inhibition of food grinding. These results could potentially provide guidance for reducing food waste during laboratory rodent maintenance.
Collapse
Affiliation(s)
- Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Yu-Xuan Han
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Qiu-Yi Shen
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Hao Tang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Li-Zhi Cheng
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Feng-Ping Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (X.D.); (Y.-X.H.); (Q.-Y.S.); (H.T.); (L.-Z.C.); (F.-P.Y.); (W.-H.W.)
| |
Collapse
|
3
|
Huang X, Gao Y, Zhang Y, Wang J, Zheng N. Strontium Chloride Improves Reproductive Function and Alters Gut Microbiota in Male Rats. Int J Mol Sci 2023; 24:13922. [PMID: 37762223 PMCID: PMC10531462 DOI: 10.3390/ijms241813922] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Strontium (Sr) is an essential trace element in the human body and plays an important role in regulating male reproductive health. Recent studies have shown that gut flora plays a key role in maintaining spermatogenesis, as well as testicular health, through the gut-testis axis. At present, it is unclear whether gut microbiota can mediate the effects of Sr on sperm quality, and what the underlying mechanisms may be. We investigated the effects of different concentrations of strontium chloride (SrCl2) solutions (0, 50, 100, and 200 mg/kg BW) on reproductive function and gut microbiota in male Wistar rats (6-8 weeks, 250 ± 20 g). All the animals were euthanized after 37 days of treatment. The Sr-50 group significantly increased sperm concentration, sperm motility, and sperm viability in rats. After Sr treatment, serum and testicular testosterone (T) and Sr levels increased in a dose-dependent manner with increasing Sr concentration. At the same time, we also found that testicular marker enzymes (ACP, LDH) and testosterone marker genes (StAR, 3β-HSD, and Cyp11a1) increased significantly in varying degrees after Sr treatment, while serum NO levels decreased significantly in a dose-dependent manner. Further investigation of intestinal flora showed that SrCl2 affected the composition of gut microbiome, but did not affect the richness and diversity of gut microbiota. Sr treatment reduced the number of bacteria with negative effects on reproductive health, such as Bacteroidetes, Tenericutes, Romboutsia, Ruminococcaceae_UCG_014, Weissella, and Eubacterium_coprostanoligenes_group, and added bacteria with negative effects on reproductive health, such as Jeotgalicoccus. To further explore the Sr and the relationship between the gut microbiota, we conducted a Spearman correlation analysis, and the results showed that the gut microbiota was closely correlated with Sr content in serum and testicular tissue, sex hormone levels, and testicular marker enzymes. Additionally, gut microbiota can also regulate each other and jointly maintain the homeostasis of the body's internal environment. However, we found no significant correlation between intestinal flora and sperm quality in this study, which may be related to the small sample size of our 16S rDNA sequencing. In conclusion, the Sr-50 group significantly increased T levels and sperm quality, and improved the levels of testicular marker enzymes and testosterone marker genes in the rats. Sr treatment altered the gut flora of the rats. However, further analysis of the effects of gut microbiota in mediating the effects of SrCl2 on male reproductive function is needed. This study may improve the current understanding of the interaction between Sr, reproductive health, and gut microbiota, providing evidence for the development of Sr-rich foods and the prevention of male fertility decline.
Collapse
Affiliation(s)
- Xulai Huang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanan Gao
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yangdong Zhang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Milk and Milk Products Inspection Center, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Liu Y, Zhang S, Deng H, Chen A, Chai L. Lead and copper influenced bile acid metabolism by changing intestinal microbiota and activating farnesoid X receptor in Bufo gargarizans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160849. [PMID: 36521604 DOI: 10.1016/j.scitotenv.2022.160849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb) and copper (Cu) are ubiquitous metal contaminants and can pose a threat to ecosystem and human health. Bile acids have recently received considerable attention for their role in the maintenance of health. However, there were few studies on whether Pb and Cu affect bile acid metabolism in amphibians. In this study, a combination approach of histological analysis, targeted metabolomics, 16S rDNA sequencing and qPCR was used to explore the impacts of Pb, Cu and their mixture (Mix) on bile acid in Bufo gargarizans tadpoles. The results showed that Pb, Cu, and Mix resulted in intestinal damage and altered the bile acid profiles. Specifically, Pb and Mix exposure decreased total bile acid concentrations while increased toxic bile acid levels; in contrast, Cu exposure increased total bile acid levels. And hydrophilic bile acids were reduced in all treated tadpoles. Moreover, Pb and/or Cu changed the composition of intestinal microbiota, especially Clostridia, Bacteroides and Eubacterium involved in bile acid biotransformation. qPCR revealed that the decreased total bile acid concentrations in Pb- and Mix-treated tadpoles were most likely attributed to the activation of intestinal farnesoid X receptor (Fxr), which suppressed bile acid synthesis and reabsorption. While activated fxr in the Cu treatment group may be a regulatory mechanism in response to increased bile excretion, which is a detoxification route of tadpoles under Cu stress. Collectively, Pb, Cu and Mix changed bile acid profiles by affecting intestinal microbial composition and activating Fxr signaling. This study provided insight into the impacts of Pb and Cu on bile acid metabolism and contributed to the assessment of the potential ecotoxicity of heavy metals on amphibians.
Collapse
Affiliation(s)
- Yutian Liu
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Siliang Zhang
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Hongzhang Deng
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Aixia Chen
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
5
|
Zhang L, Yang Z, Yang M, Yang F, Wang G, Liu D, Li X, Yang L, Wang Z. Copper-induced oxidative stress, transcriptome changes, intestinal microbiota, and histopathology of common carp (Cyprinus carpio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114136. [PMID: 36242823 DOI: 10.1016/j.ecoenv.2022.114136] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Copper (Cu) is a common contaminant in aquatic environments, which could cause physiological dysfunction in aquatic organisms. However, few studies have comprehensively examined the impact of copper toxicity in freshwater fish over the past decade. In this research, the oxidative stress, liver transcriptome, intestinal microbiota, and histopathology of common carp (C. carpio) in response to Cu exposure were studied, by exposing juvenile carp to 0.2 mg/ml Cu2+ for 30 days. The results revealed that Cu2+ could induce significant changes in malondialdehyde (MDA) content and antioxidant enzyme (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)) activity. The changes in antioxidant enzyme activities indicate that Cu can induce oxidative stress by generating reactive oxygen species (ROS) content. RNA-seq analysis of the liver identified 1069 differentially expressed genes (DEGs) after treatment with 2.0 mg/L Cu2+. Among the DEGs, 490 genes were upregulated and 579 genes were downregulated. GO functional enrichment analysis revealed that Cu could affect the fatty acid biosynthetic process, carnitine biosynthetic process, and activity of carboxylic acid transmembrane transporter. Meanwhile, the most significantly enriched KEGG pathway also included the lipid metabolism pathway. In addition, Cu2+ exposure increased bacterial richness and changed bacterial composition. At the phylum level, we found that the ratio of Bacteroidetes to Firmicutes was increased in the treatment carps, which can regulate intestinal epithelium function and reduce inflammation and immune responses. At the genus level, the abundances of 11 genera were significantly altered after exposure to Cu2+. The altered composition of the microbial community caused by Cu exposure may play a useful role in compensation of the intestinal lesions by Cu exposure. Furthermore, we found that Cu2+ exposure could cause histological alterations such as structural damage to the liver and intestines. The results of this research contribute to a better understanding of mechanisms related to Cu toxicity in fish.
Collapse
Affiliation(s)
- Lixia Zhang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China; Puyang Field Scientific Observation and Research Station for Yellow River Wetland Ecosystem; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang 453007, China.
| | - Zi Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Mengxiao Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Fan Yang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Gege Wang
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Dandan Liu
- Department of Ecology, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Lianlian Yang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China.
| |
Collapse
|
6
|
Bioactive compounds, antibiotics and heavy metals: effects on the intestinal structure and microbiome of monogastric animals – a non-systematic review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
The intestinal structure and gut microbiota are essential for the animals‘ health. Chemical components taken with food provide the right environment for a specific microbiome which, together with its metabolites and the products of digestion, create an environment, which in turn is affects the population size of specific bacteria. Disturbances in the composition of the gut microbiota can be a reason for the malformation of guts, which has a decisive impact on the animal‘ health. This review aimed to analyse scientific literature, published over the past 20 years, concerning the effect of nutritional factors on gut health, determined by the intestinal structure and microbiota of monogastric animals. Several topics have been investigated: bioactive compounds (probiotics, prebiotics, organic acids, and herbal active substances), antibiotics and heavy metals (essentaial minerals and toxic heavy metals).
Collapse
|
7
|
Yin D, Zhai F, Lu W, Moss AF, Kuang Y, Li F, Zhu Y, Zhang R, Zhang Y, Zhang S. Comparison of Coated and Uncoated Trace Minerals on Growth Performance, Tissue Mineral Deposition, and Intestinal Microbiota in Ducks. Front Microbiol 2022; 13:831945. [PMID: 35495727 PMCID: PMC9039745 DOI: 10.3389/fmicb.2022.831945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Abnormally low or high levels of trace elements in poultry diets may elicit health problems associated with deficiency and toxicity, and impact poultry growth. The optimal supplement pattern of trace mineral also impacts the digestion and absorption in the body. For ducks, the limited knowledge of trace element requirements puzzled duck production. Thus, the objective of this study was to investigate the influence of dietary inclusions of coated and uncoated trace minerals on duck growth performance, tissue mineral deposition, serum antioxidant status, and intestinal microbiota profile. A total of 1,080 14-day-old Cherry Valley male ducks were randomly divided into six dietary treatment groups in a 2 (uncoated or coated trace minerals) × 3 (300, 500, or 1,000 mg/kg supplementation levels) factorial design. Each treatment was replicated 12 times (15 birds per replicate). Coated trace minerals significantly improved average daily gain (p < 0.05), increased Zn, Se, and Fe content of serum, liver, and muscle, increased serum antioxidant enzyme (p < 0.05) and decreased the excreta Fe, Zn, and Cu concentrations. Inclusions of 500 mg/kg of coated trace minerals had a similar effect on serum trace minerals and tissue metal ion deposition as the 1,000 mg/kg inorganic trace minerals. Higher concentrations of Lactobacillus, Sphaerochatea, Butyricimonas, and Enterococcus were found in birds fed with coated trace minerals. In conclusion, diets supplemented with coated trace minerals could reduce the risk of environmental contamination from excreted minerals without affecting performance. Furthermore, coated trace minerals may improve the bioavailability of metal ions and the colonization of probiotic microbiota to protect microbial barriers and maintain gut health.
Collapse
Affiliation(s)
- Dafei Yin
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Feng Zhai
- Yichun Tequ Feed Company, Yichun, China
| | - Wenbiao Lu
- Fujian Syno Biotech Co., Ltd., Fuzhou, China
| | - Amy F Moss
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | | | - Fangfang Li
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yujing Zhu
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Ruiyang Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yong Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
8
|
Belli CB, Fernandes WR, Torres LN, Sucupira MCA, de Sá LRM, Maiorka PC, Neuenschwander HM, de Barros ADMC, Baccarin RYA. Copper Toxicity in Horses: Does it Exist? J Equine Vet Sci 2021; 106:103752. [PMID: 34670692 DOI: 10.1016/j.jevs.2021.103752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022]
Abstract
Copper toxicity is thought to be a rare condition in horses. However, the number of cases diagnosed in Brazil is growing. This article aims to describe cases of copper toxicity involving horses from different geographic locations and discuss findings of physical examinations, differential diagnoses and potential causes. Five cases referred from 4 different properties where at least 15 other horses were affected were described. Hemolytic anemia and hemoglobinuria, presence of Heinz bodies and elevated aspartate aminotransferase and gamaglutamil transferase levels were detected in all cases. The diagnosis was based on clinical history and signs, laboratory tests results, copper level determination in feed and/or soil and histopathological findings. Two horses progressed to acute death; remaining horses responded to clinical management with or without blood transfusion, depending on disease severity. However, one of these horses, after several returns to the veterinary hospital, was euthanized due to complications. One horse was treated with ammonium tetrathiomolybdate. Two horses had several recurring episodes over the course of several months, an uncommon presentation in ruminants suffering from copper toxicity. Excess copper was associated with soil fertilization with poultry litter or treatment of previous or neighbor crops with copper-containing products. It can be concluded that copper toxicity does occur in horses and may arise from several sources and/or be associated with predisposing dietary factors. Given the growing number of cases, the condition should be included in the differential diagnosis list and proper preventive dietary and pasture fertilization measures adopted.
Collapse
Affiliation(s)
- Carla Bargi Belli
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil
| | - Wilson Roberto Fernandes
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil
| | - Luciana Neves Torres
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil
| | - Maria Claudia Araripe Sucupira
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil
| | - Lilian Rose Marques de Sá
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil
| | - Paulo Cesar Maiorka
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil
| | - Henrique Macedo Neuenschwander
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil
| | - Aline de Matos Curvelo de Barros
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil.
| | - Raquel Yvonne Arantes Baccarin
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo - SP, Brazil
| |
Collapse
|
9
|
Huang C, Shi Y, Zhou C, Guo L, Liu G, Zhuang Y, Li G, Hu G, Liu P, Guo X. Effects of Subchronic Copper Poisoning on Cecal Histology and Its Microflora in Chickens. Front Microbiol 2021; 12:739577. [PMID: 34566941 PMCID: PMC8456085 DOI: 10.3389/fmicb.2021.739577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/09/2021] [Indexed: 11/25/2022] Open
Abstract
Copper (Cu) is an important trace element with a two-sided effect on the growth performance of animals, which depends on the timing and dosage of Cu addition, etc. The purpose of this study was to determine the effects of oral copper sulfate (CuSO4, 350 ppm) on growth performance, cecal morphology, and its microflora of chickens (n = 60) after 30, 60, and 90 days. The results showed that after 90 days of copper exposure, the chickens lost weight, the cecum mucosa was detached, and vacuolation and inflammatory infiltration occurred at the base of the lamina propria. In addition, using the 16S rDNA sequencing method, we observed that copper exposure changed the richness and diversity of intestinal microorganisms. At the phylum level, Proteobacteria and Actinobacteria both significantly increased, while Bacteroidetes significantly decreased in the Cu group compared with control check (CK) group. At the genus level, the relative abundance of Rikenellaceae_RC9_gut_group decreased significantly, while Ruminococcaceae_UCG-014, Lachnoclostridium, and [Eubacterium]_coprostanoligenes_group increased significantly after copper exposure, and the change in microflora was most significant at 90 days. Moreover, the relevance of genus-level bacteria was altered. PICRUST analysis revealed potential metabolic changes associated with copper exposure, such as Staphylococcus aureus infection and metabolic disorders of nutrients. To sum up, these data show that subchronic copper exposure not only affects the growth and development of chickens but also causes the imbalance of intestinal microflora, which may further induce metabolic disorders in chickens.
Collapse
Affiliation(s)
- Cheng Huang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yan Shi
- School of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Changming Zhou
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lianying Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guohui Liu
- Animal Husbandry and Veterinary Department of Ganzhou, Ganzhou, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
10
|
Zheng R, Wu M, Wang H, Chai L, Peng J. Copper-induced sublethal effects in Bufo gargarizans tadpoles: growth, intestinal histology and microbial alternations. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:502-513. [PMID: 33587250 DOI: 10.1007/s10646-021-02356-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is one of the environmental contaminations which can pose significant risks for organisms. The current study explores the effects of Cu exposure on the growth, intestinal histology and microbial ecology in Bufo gargarizans. The results revealed that 0.5-1 μM Cu exposure induced growth retardation (including reduction of total body length and wet weight) and intestinal histological injury (including disordered enterocyte, changes in the villi and vacuoles) of tadpoles. Also, high-throughput sequencing analysis showed that Cu exposure caused changes in richness, diversity and structure of intestinal microbiota. Moreover, the composition of intestinal microbiota was altered in tadpoles exposed to different concentrations of Cu. At the phylum level, we observed the abundance of proteobacteria was increased, while the abundance of fusobacteria was decreased in the intestinal microbiota of tadpoles exposed to 1 μM Cu. At the genus level, a reduced abundance of kluyvera and aeromonas was observed in the intestinal microbiota of tadpoles under the exposure of 0-0.5 μM Cu. Finally, functional predictions revealed that tadpoles exposed to copper may be at a higher risk of developing metabolic disorders or diseases. Above all, our results will develop a comprehensive view of the Cu exposure in amphibians and will yield a new consideration for sublethal effects of Cu on aquatic organisms.
Collapse
Affiliation(s)
- Rui Zheng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Lihong Chai
- School of Water and Environment, Chang'an University, Xi'an, 710054, People's Republic of China
- Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an, 710062, People's Republic of China
| | - Jufang Peng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| |
Collapse
|