1
|
Wang X, Yuan X, Yan R, Song J, Ren C, Li H, Li H, Yu J. Purification, characterization, and functional validation of a novel casein complex enzyme hydrolysate-binding calcium. Food Chem 2025; 476:143438. [PMID: 39983476 DOI: 10.1016/j.foodchem.2025.143438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Food Peptide Calcium Chelate was an excellent calcium supplement. The aim of this study was to isolate peptides with high calcium binding activity from a mixture of casein hydrolyzed peptides, to determine their structural characteristics and to verify their function. Firstly, micellar casein was hydrolyzed by a combination of flavor protease and trypsin. Casein hydrolysate peptides (CHP) with high calcium chelating activity were obtained by three purifications and characterized by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS), mass spectrometry (MS/MS), and fourier transform infrared spectroscopy (FTIR). The results showed that the purified polypeptide (Tyr-Gln-Glu-Pro) had high calcium binding capacity (70.10 ± 4.23 μg/mg). Animal experiments confirmed that YQEP-Ca was effective in improving the bone microarchitecture of rats, and that the low-calcium-content's medium-dose group also had better utilization than the inorganic and unchelated calcium groups. Therefore, the YQEP-Ca obtained in this study provides new clues for the development of various products.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xianwei Yuan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruyu Yan
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jianchen Song
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuan Ren
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongbo Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Hongjuan Li
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Jinghua Yu
- College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Akl EM, Mohamed RS, Abdelgayed SS, Fouda K, Abdel-Wahhab MA. Characterization and antioxidant activity of flaxseed mucilage and evaluation of its dietary supplementation in improving calcium absorption in vivo. BIOACTIVE CARBOHYDRATES AND DIETARY FIBRE 2024; 32:100444. [DOI: 10.1016/j.bcdf.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
3
|
Hu G, Sun X, Hao S, Li X, Qian M, Dou L, Zhang M, Hou P, Su L, Zhao L, Sun L, Jin Y. Effect of sheep bone protein hydrolysate on promoting calcium absorption and enhancing bone quality in low-calcium diet fed rats. Food Chem 2024; 446:138763. [PMID: 38428077 DOI: 10.1016/j.foodchem.2024.138763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Calcium deficiency is prone to fractures, osteoporosis and other symptoms. In this study, sheep bone protein hydrolysates (SBPHs) were obtained by protease hydrolysis. A low-calcium-diet-induced calcium-deficiency rat model was established to investigate the effects of SBPHs on calcium absorption and intestinal flora composition. The results showed that an SBPHs + CaCl2 treatment significantly increased the bone calcium content, bone mineral density, trabecular bone volume, and trabecular thickness, and reduced trabecular separation, and changed the level of bone turnover markers (P < 0.05). Supplementation of SBPHs + CaCl2 can remarkably enhance the bone mechanical strength, and the microstructure of bone was improved, and the trabecular network was more continuous, complete, and thicker. Additionally, SBPHs + CaCl2 dietary increased the abundance of Firmicutes and reduced the abundance of Proteobacteria and Verrucomicrobiota, and promoted the production of short chain fatty acids. This study indicated that SBPHs promoted calcium absorption and could be applied to alleviate osteoporosis.
Collapse
Affiliation(s)
- Guanhua Hu
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xueying Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Shiqi Hao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Xiaotong Li
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Min Qian
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lu Dou
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Min Zhang
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Puxin Hou
- Science and Technology Achievement Transformation Center, Bayan nur 015000, China
| | - Lin Su
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lihua Zhao
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China
| | - Lina Sun
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| | - Ye Jin
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Integrative Research Base of Beef and Lamb Processing Technology, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Hohhot 010018, China.
| |
Collapse
|
4
|
Oku Y, Noda S, Ishii S, Yamada A, Nakaoka K, Goseki-Sone M. Calcium restriction for 28 days markedly and negatively influences bone mineral density of the femur and lumbar vertebrae regardless of the high-fat diet ingestion in young adult male rats. Nutr Res 2024; 124:55-64. [PMID: 38387406 DOI: 10.1016/j.nutres.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Calcium (Ca) is necessary for bone calcification, and Ca deficiency leads to decreased bone mineral density (BMD). Epidemiological studies have reported a correlation between Ca intake and BMD. Although the influences of Ca deficiency on BMD have been reported, the effects of Ca restriction on bone during high-fat diet ingestion remain unclear. Therefore, we hypothesized that high-fat diet ingestion would potentiate the negative effects of Ca restriction on bone. Sprague-Dawley strain male rats (aged 11 weeks) were divided into 4 groups: basic control diet (Cont.) (11% lipid energy rate, 0.5% calcium), basic control diet with Ca restriction (CaR) (11% lipid energy rate, 0.02% calcium), high-fat diet (HF) (40% lipid energy rate, 0.5% calcium), and high-fat diet with Ca restriction (HFCaR) (40% lipid energy rate, 0.02% calcium). At 28 days after starting the experimental diets, body weights were higher in the high-fat diet groups (HF and HFCaR) than in the standard-fat diet groups (Cont. and CaR) on 2-way analysis of variance. The apparent Ca absorption rate in the Ca-restricted groups (CaR and HFCaR) was higher than in the Ca-sufficient groups (Cont. and HF). BMD and bone strength parameters of the femur and lumbar vertebrae in the Ca-restricted groups were markedly lower than in the Ca-sufficient groups, whereas there were no significant differences between the standard-fat diet and HF diet groups. These results suggest that 28 days of Ca restriction increases the risk of bone fracture and osteoporosis.
Collapse
Affiliation(s)
- Yuno Oku
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Seiko Noda
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Shiho Ishii
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Asako Yamada
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan
| | - Kanae Nakaoka
- Department of Food and Nutrition, Faculty of Human Life, Jumonji University, Saitama, Japan
| | - Masae Goseki-Sone
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women's University, Tokyo, Japan.
| |
Collapse
|
5
|
Chen CK, Lee YS, Kong ZL, Chien YW. Amorphous Calcium Carbonate from Plants Can Promote Bone Growth in Growing Rats. BIOLOGY 2024; 13:201. [PMID: 38534470 DOI: 10.3390/biology13030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
OBJECTIVES This study aimed to investigate the effect of amorphous calcium carbonate (ACC) supplementation on bone growth in growing rats. METHODS We used 3-week-old male Wistar rats to simulate childhood and adolescent growth stages. Rats were divided into four groups as follows: a control group (C), a low-dose group (L, 20.65 mg/kg body weight (BW) ACC), a medium-dose group (M, 206.5 mg/kg BW ACC), and a high-dose group (H, 413 mg/kg BW ACC) administered by gavage. Body length (BL) and BW were measured weekly. The bone mineral density (BMD) of two lumbar vertebrae (L3 and L4) and the left femur were analyzed by micro-computed tomography (μCT) at 0, 4, 8, and 12 weeks. At the end of 12 weeks, the rats were sacrificed. After that, blood samples were collected from the abdominal aorta. Femurs and tibias were collected and weighed, and their lengths were measured. Then, bone samples were used to perform histopathological and histomorphometric analyses. RESULTS It showed that ACC supplementation in growing rats increased the trabecular bone thickness and serum bone formation biomarkers. Furthermore, high-dose ACC decreased serum bone resorption biomarkers and increased BMD. CONCLUSIONS ACC supplementation can enhance osteoblast metabolism and inhibit osteoclast metabolism, resulting in a higher bone formation rate compared to bone resorption. This led to increased trabecular bone thickness, a higher BMD, and supported bone growth.
Collapse
Affiliation(s)
- Chun-Kai Chen
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yu-Shan Lee
- Department of Nutrition and Health Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Zwe-Ling Kong
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yi-Wen Chien
- Department of Nutrition and Health Science, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Geriatric Nutrition, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
6
|
Sun L, Liu J, Pei H, Shi M, Chen W, Zong Y, Zhao Y, Li J, Du R, He Z. Structural characterisation of deer sinew peptides as calcium carriers, their promotion of MC3T3-E1 cell proliferation and their effect on bone deposition in mice. Food Funct 2024; 15:2587-2603. [PMID: 38353975 DOI: 10.1039/d3fo04627c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Deer sinew as a by-product has high collagen and nutritional value. This study focuses on its hydrolysate being used as a calcium carrier to develop functional foods. The chelation mechanism was analyzed by SEM, EDS, UV-vis, FTIR, and fluorescence spectroscopy and zeta potential analysis after using peptide-sequenced deer sinew peptides for chelation with calcium ions. The results showed that the chelation of deer sinew peptides with calcium ions occurs mainly at the O and N atoms of carboxyl, amino and amide bonds. In vitro and in vivo studies revealed that deer sinew peptide-calcium chelate (DSPs-Ca) promoted the proliferation of MC3T3-E1 cells without toxic side effects and increased the alkaline phosphatase activity. The DSPs-Ca group improved the bone microstructure induced by low calcium, as well as up-regulated the expression of genes responsible for calcium uptake in the kidneys, as evidenced by serum markers, bone sections, bone parameters, and gene expression analyses in low-calcium-fed mice. From the above, it can be concluded that DSPs-Ca is expected to be a calcium supplement food for promoting bone health.
Collapse
Affiliation(s)
- Li Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jinze Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Hongyan Pei
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meiling Shi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Weijia Chen
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ying Zong
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jianming Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Rui Du
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Centre for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China.
| | - Zhongmei He
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial Engineering Research Centre for Efficient Breeding and Product Development of Sika Deer, Changchun 130118, China.
| |
Collapse
|
7
|
Jiang S, Zou X, Mao M, Zhang M, Tu W, Jin M. Low Ca diet leads to increased Ca retention by changing the gut flora and ileal pH value in laying hens. ANIMAL NUTRITION 2023; 13:270-281. [PMID: 37168452 PMCID: PMC10164782 DOI: 10.1016/j.aninu.2023.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/27/2023]
Abstract
Osteoporosis is a common degenerative metabolic bone disease in caged laying hens. Intensive egg production mobilizing large amounts of Ca from bone for eggshell formation, consequently leading to Ca deficiency, has been recognized as a critical factor causing osteoporosis in commercial laying hens. The aim of this study was to examine the effect of Ca deficiency on the function of the gut microbiota-bone axis and related egg production traits and bone health in laying hens. Twenty-four 48-week-old laying hens were fed a control diet (Control, 3.72%) or a low Ca diet (LC, 2.04%) for 60 d (n = 12). Compared to the Control hens, the LC hens had higher levels of alkaline phosphatase and tartrate resistant acid phosphatase (P < 0.05) with lower bone strength, eggshell thickness, and eggshell strength (P < 0.05). In addition, the LC hens had higher plasma estradiol concentrations, while having lower concentrations of interleukin-1 (IL-1) and IL-6. The LC hens also had a lower pH value in the ileum with an increased Ca retention. The principal co-ordinates analysis showed significantly separate cecal microbiota populations between the Control and LC hens. The Prevotellaceae_UCG-001, Subdoligranulum, Peptococcus, and Eubacterium_hallii_group (P < 0.05) were higher, while the CHKC1001 and Sutterella (P < 0.05) were lower at the genus level in the LC hens. In addition, Prevotellaceae_UCG-001, Subdoligranulum and Eubacterium_hallii_group had a negative correlation, while Sutterella was positively correlated with ileal pH values. The transcriptome analysis revealed that the low Ca diet caused 20 and 31 genes to be significantly up- and down-regulated, respectively. The gene expressions of cystic fibrosis transmembrane conductance regulator, solute carrier family 26 member 3 of the anion exchangers, and mitogen-activated protein kinase 12 of pro-inflammatory factors were lower in the LC birds, which was correlated with the lower ileal pH values. These results suggest that the hens with low Ca diet-induced osteoporosis have an increased intestinal Ca retention with a decreased ileal pH value, correlated with the changes in Prevotellaceae_UCG-001, Subdoligranulum, and Eubacterium_hallii_group of beneficial genera. The results provide insights for further understanding and preventing osteoporosis in laying hens.
Collapse
Affiliation(s)
- Sha Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
- Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, 402460, China
| | - Xinyu Zou
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Miao Mao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Mi Zhang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Wenjun Tu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Meilan Jin
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
- Corresponding author.
| |
Collapse
|
8
|
Zhao M, Ahn DU, Li S, Liu W, Yi S, Huang X. Effects of phosvitin phosphopeptide-Ca complex prepared by efficient enzymatic hydrolysis on calcium absorption and bone deposition of mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Proton pump inhibitors and osteoporosis risk: exploring the role of TRPM7 channel. Eur J Clin Pharmacol 2021; 78:35-41. [PMID: 34714373 DOI: 10.1007/s00228-021-03237-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Long-term use of proton pump inhibitors (PPIs) has been linked to an increased risk of osteoporosis, with various indirect mechanisms so far identified. Although no direct underlying mechanism for effect on bone cells have been investigated with the use of PPIs. Melastatin-like transient receptor potential 7 (TRPM7)channel has been engaged in the proliferation of bone cells. TRPM7 channel is regulated by extracellular Mg2+ and Ca2+ level, that further encourages to analyse if any imbalance with pantoprazole usage could alter bone remodelling process mediated by TRPM7. OBJECTIVES The present study was conducted to investigate the effect of pantoprazole on the calcium and magnesium level, the cations involved in the bone remodelling process, as well as role of the TRPM7 channel in the proliferation of bone cells. METHODS A cytotoxicity study was carried out to study the effect of pantoprazole on the bone cell using MC3T3-E1 cell line, together with the expression of TRPM7 was determined post-pantoprazole treatment. An in vivo study in rats was carried out for estimation of Ca2+, Mg2+ and Ca2+/Mg2+ ratio as well as bone strength was measured over a duration of 4 weeks and 8 weeks with the treatment of pantoprazole. A pilot-scale clinical study was carried out in patients with a fracture to support the evidence of preliminary findings from in-vitro and in vivo studies. RESULTS MC3T3-E1 cell line treated with pantoprazole showed decreased cell viability in a dose-dependent manner and reduced expression of TRPM7 channel, evidencing interaction of TRPM7 and pantoprazole in the bone remodelling process. A pilot study conducted on 12 patients having major fractures showed changes in serum Mg2+ and Ca2+ levels over a period of 1 month as well as the animal study also showed ionic imbalance over 8-week treatment with pantoprazole. Bone density measured for the patient at the end of the 1-month treatment was found to be in the osteopenic category, together with the animal study which showed a decrease in femur bone strength for the animal treated with pantoprazole over a period of 8 weeks. CONCLUSION The study findings proved a negative impact of pantoprazole use on Ca2+ and Mg2+ levels, which can impact TRPM7-mediated bone remodelling which serves to be a possible mechanism for osteoporosis upon pantoprazole use.
Collapse
|
10
|
Yadav S, Porwal K, Sinha RA, Chattopadhyay N, Gupta SK. Moderate/subclinical calcium deficiency attenuates trabecular mass, microarchitecture and bone growth in growing rats. Biochem Biophys Rep 2021; 26:101033. [PMID: 34124397 PMCID: PMC8175268 DOI: 10.1016/j.bbrep.2021.101033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 11/30/2022] Open
Abstract
Adequate dietary calcium (Ca) intake is essential for bone accretion, peak bone mass (PBM) attainment, bone quality and strength during the mammalian growth period. Severe Ca deficiency during growing age results in secondary hyperparathyroidism (SHPT) and poor bone quality and strength. However, the impact of moderate Ca deficiency during rats early growth period on bone health and the reversibility with supplementing calcium later in adult life remains unclear. Female Sprague-Dawley (SD) rats (postnatal 28th day, P28) were initiated either with a moderate calcium-deficient diet (MCD, 0.25% w/w Ca) or a control diet (0.8% w/w Ca, control group) till P70. Thereafter, MCD rats were continued either with MCD diet or supplemented with calcium diet (0.8% w/w Ca, calcium supplemented group, CaS) till P150. Another group (control rats) were fed 0.8% w/w Ca containing diet from P28 till P150. MCD group, as compared to the control group, had significantly reduced serum ionized Ca and procollagen type 1 N-terminal propeptide (P1NP) at P70 while no significant change was observed in serum corrected Ca, inorganic phosphate (P), alkaline phosphatase (ALP), 25-hydroxy vitamin D [25(OH)D], intact parathyroid hormone (iPTH), and urinary C-terminal telopeptide of collagen 1 (CTX-1), Ca, and P. Femoral and tibial metaphysis in MCD rats had significantly reduced linear growth, cortical and trabecular volumetric BMD (vBMD), trabecular microarchitecture (BV/TV%, trabecular thickness, separation and number, structural model index and connectivity density), cortical thickness, and bone stiffness despite the absence of secondary hyperparathyroidism (SHPT). Continued MCD at P70–P150 results in persistence of compromised bone strength while calcium supplementation (CaS group) improved all the parameters related to bone strength and microarchitecture. Our results indicate that uncorrected moderate/subclinical calcium deficiency in growing rats can result in poor bone quality and strength despite the absence of SHPT. This finding could have relevance in children with poor calcium intake in childhood and adolescence. Moderate Ca intake impairs bone growth and stiffness in critical growth phase via subclinical Ca deficiency. Ca supplementaion reverses the effects subclinical Ca deficiency on bone health. Conclusively, moderate Ca intake imposes different effects on the bone at different phases of life.
Collapse
Affiliation(s)
- Shivmurat Yadav
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow -226014, India
| | - Konica Porwal
- Division of Endocrinology and Centre for ASTHI, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow -226014, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for ASTHI, CSIR-Central Drug Research Institute, (CSIR-CDRI), BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Sushil Kumar Gupta
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow -226014, India
| |
Collapse
|
11
|
Gutiérrez-Cortez E, Hernadez-Becerra E, Londoño-Restrepo SM, Rodriguez-García ME. Physicochemical characterization of Amaranth starch insulated by mechanical separations. Int J Biol Macromol 2021; 177:430-436. [PMID: 33621570 DOI: 10.1016/j.ijbiomac.2021.02.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 01/06/2023]
Abstract
This work focused on the physicochemical properties of isolated Amaranth starch. Inductively coupled plasma (ICP) showed that amaranth is low-lipid calcium and magnesium source for the human diet. Scanning Electron Microscopy showed that isolated granules are in the range of sub and micro size. DSC starch thermogram showed a gelatinization temperature of 67.9 °C and an enthalpy of 10. 6 J/g suggesting the presence of an ordered crystalline structures. High-resolution X-ray diffraction showed the isolated starch contents nanocrystals with an orthorhombic crystalline structure whose pattern was indexed. The pasting profile showed that this kind of starch has an end cold viscosity as a custard, making it useful for infantile formulations. It does not present dynamic viscosity and would not be a problem when swallowed. A very important finding in this work was that the orthorhombic nanocrystals, after solvation during gelatinization, do not contribute to the apparent viscosity development.
Collapse
Affiliation(s)
- Elsa Gutiérrez-Cortez
- Departamento de Ingeniería y Tecnología, FES-Cuautitlán, Universidad Nacional Autónoma de México, Laboratorio de Procesos de Transformación y Tecnologías Emergentes de Alimentos, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, Edo de México CP.54714, Mexico.
| | - Ezequiel Hernadez-Becerra
- Ciencias de la Salud, Universidad del Valle de México, Campus Querétaro, Naranjos Punta Juriquilla 1000, Santa Rosa Jáuregui, 76230 Querétaro, Qro, Mexico
| | - Sandra M Londoño-Restrepo
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. C.P. 76230, Mexico.
| | - Mario E Rodriguez-García
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro. C.P. 76230, Mexico
| |
Collapse
|
12
|
Mendoza-Ávila M, Gutiérrez-Cortez E, Quintero-García M, Real AD, Rivera-Muñoz EM, Ibarra-Alvarado C, Rubio E, Jiménez-Mendoza D, Rojas-Molina I. Calcium Bioavailability in the Soluble and Insoluble Fibers Extracted from Opuntia ficus indica at Different Maturity Stages in Growing Rats. Nutrients 2020; 12:nu12113250. [PMID: 33114068 PMCID: PMC7690665 DOI: 10.3390/nu12113250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Abstract
Childhood and adolescence are crucial stages of life for bone health. Therefore, an adequate calcium intake and a healthy life style constitute the main strategies to prevent the risk of osteoporosis-related fractures during adulthood. It has been demonstrated that inclusion of indigestible carbohydrates in foods can help improve calcium absorption in growing stages. The objective of this study was to evaluate the effect of supplementation of soluble and insoluble fibers extracted from O. ficus indica cladodes on calcium bioavailability. Male Wistar rats 4-week old were fed diets added with soluble and insoluble fibers extracted from O. ficus indica cladodes at early and late maturity stages, as the only source of calcium. The mineral content, bone mineral density (BMD), physical, microstructural, and biomechanical properties of rat femurs were determined. The bones of rats fed with diets containing a soluble fiber extracted from O. ficus indica at early and late maturity stages exhibited better bone properties (resistance to fracture, microarchitecture, and calcium content) than control rats and rats fed with an insoluble fiber from O. ficusindica cladodes at both maturity stages. As expected, based on these results, the BMD values were higher in adolescent and pubertal rats fed with a diet containing the O. ficus indica soluble fiber. These results demonstrate that the soluble fiber from O. ficus indica cladodes is indeed a valuable source of bioavailable calcium, which contributes to improve physical, densitometric, biomechanical, and microstructural properties of bone in growing rats.
Collapse
Affiliation(s)
- Monsserrat Mendoza-Ávila
- Programa de Maestría en Ciencias de la Nutrición Humana, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla C.P. 76230, Querétaro, Mexico;
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico; (M.Q.-G.); (C.I.-A.)
| | - Elsa Gutiérrez-Cortez
- Laboratorio de Procesos de Transformación y Tecnologías Emergentes en Alimentos, Facultad de Estudios Superiores-Cuautitlán, Universidad Nacional Autónoma de Mexico, Km 2.5 Carretera Cuautitlán–Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli C.P. 54714, Mexico;
| | - Michelle Quintero-García
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico; (M.Q.-G.); (C.I.-A.)
- Programa de Maestría en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico
| | - Alicia Del Real
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de Mexico, Jurqiuilla C.P. 7600, Querétaro, Mexico; (A.D.R.); (E.M.R.-M.)
| | - Eric M. Rivera-Muñoz
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de Mexico, Jurqiuilla C.P. 7600, Querétaro, Mexico; (A.D.R.); (E.M.R.-M.)
| | - César Ibarra-Alvarado
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico; (M.Q.-G.); (C.I.-A.)
| | - Efraín Rubio
- Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Centro Universitario, Col. San Manuel S/N, Puebla C.P. 72540, Mexico;
| | - Daniel Jiménez-Mendoza
- Departamento de Ingeniería Física, División de Ciencias e Ingenierías, Universidad de Guanajuato, Campus León, Lomas del Bosque 103, Col. Lomas del Campestre, León C.P. 37150, Guanajuato, Mexico;
- Departamento de Ingeniería Electromecánica, Tecnológico Nacional de México/ITS de Purísima del Rincón. Blvd. Del Valle 2301, Col. Guardarrayas, Purísima del Rincón, Purísima del Rincón Guanajuato C.P. 36413, Mexico
| | - Isela Rojas-Molina
- Laboratorio de Química Medicinal, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro C.P. 76010, Mexico; (M.Q.-G.); (C.I.-A.)
- Correspondence: ; Tel.: +52-442-1921200 (ext. 5529); Fax: +52-442-1921302
| |
Collapse
|