1
|
Rind KH, Arshad M, Majeed S, Habib SS, Al-Rejaie SS, Mohany M, Aragona F, Fazio F. Impact of heavy metals on health and quality of Oreochromis niloticus cultured in biofloc and earthen pond systems. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2025:1-9. [PMID: 40013663 DOI: 10.1080/03601234.2025.2468065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Heavy metal contamination in aquaculture threatens fish health and consumer safety, with bioaccumulation differing between farming systems. The study compares heavy metal (Cd, Cr, Pb and Cu) contamination in fish feed, water and organs (muscle, gills and liver) of Nile tilapia (Oreochromis niloticus) from biofloc and pond farming systems. Samples were collected from ten biofloc tanks and ten earthen ponds, with heavy metals quantified using atomic absorption spectrophotometry. Heavy metal levels in fish feed were below permissible limits, while pond water showed significantly higher (P < 0.05) contamination than biofloc water. Pond-reared tilapia exhibited higher heavy metal accumulation in muscles, gills and liver compared to biofloc-reared fish. The liver showed the highest bioaccumulation, followed by gills, in both systems. Cd levels exceeded standard limits in the liver and gills of pond-reared fish. Principal component analysis (PCA) and cluster analysis revealed strong correlations between heavy metals in gills, water and liver, while muscles and feed formed a separate cluster. Pb, Cd and Cu were closely associated, suggesting a common contamination source. The health index (HI) for muscle was <1 in both systems, indicating safety for consumption. Overall, biofloc-reared tilapia was found safer for human consumption compared to pond-reared fish.
Collapse
Affiliation(s)
- Khalid Hussain Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, Sindh, Pakistan
| | - Madeeha Arshad
- Department of Zoology, Division of Science and Technology, University of Education Lahore, Faisalabad, Punjab, Pakistan
| | - Saima Majeed
- Department of Maritime Sciences, Bahria University Karachi Campus, Karachi, Sindh, Pakistan
| | | | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Francesca Aragona
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Jovičić K, Đikanović V, Radenković M, Vranković JS. Evaluation of the Impact of Selected Metallic Contaminants on Wild Rutilus rutilus Through Integrated Antioxidant Biomarker Responses. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:178-188. [PMID: 39922932 DOI: 10.1007/s00244-025-01114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/19/2025] [Indexed: 02/10/2025]
Abstract
The application of biomarkers is often used to better understand the assessment of the toxicity in aquatic organisms within their natural environment. To this end, we examined the gills and liver of roach (Rutilus rutilus) to measure changes in the activity of the antioxidant enzymes superoxide dismutase, catalase (CAT), glutathione peroxidase, glutathione reductase and the phase II biotransformation enzyme glutathione-S-transferase (GST), as well as changes in the concentration of lipid peroxides (LPOs). Roach were collected at two localities, Veliko Ratno ostrvo and Višnjica (VIS), on the Danube River, where the concentrations of dissolved metals (Cu, Cd, Zn, Fe, Mn, Hg, Ni, As, Pb) in both fish tissues were quantified. This paper describes the integrated reaction of antioxidant enzymes and LPO levels of roach from two sampling localities in the Danube River. Principal component analysis revealed obvious differences of the antioxidant biomarkers investigated between tissues and localities, while integrated biomarker response showed that the liver of the VIS locality had the stronger antioxidant biomarker response. Despite the concordant hypothesized antioxidant induction at the VIS locality in both tissues studied, the effects as a sign of contaminant exposure appear to be mediated in part by suppression of the antioxidant system, with CAT and GST as potential candidate tissue toxicity biomarkers of contaminants.
Collapse
Affiliation(s)
- Katarina Jovičić
- Department of Hydroecology and Water Protection, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia.
| | - Vesna Đikanović
- Department of Hydroecology and Water Protection, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| | - Marina Radenković
- "Vinča" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Department of Physical Chemistry, University of Belgrade, Belgrade, 11351, Serbia
| | - Jelena S Vranković
- Department of Hydroecology and Water Protection, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, Belgrade, 11108, Serbia
| |
Collapse
|
3
|
Tabassum A, Hasan MM, Islam SM, Al Mamun MZU, Roy CK, Roy NR, Hassan MT. Evaluation of Aflatoxins and Heavy Metals Exposure in the Local Feeds of Fish and Shrimp in Bangladesh. Biol Trace Elem Res 2025; 203:1129-1141. [PMID: 38780856 DOI: 10.1007/s12011-024-04235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
This study aims to comprehensively assess the presence of aflatoxins, pervasive fungal toxins, and heavy metals (lead, chromium, cadmium) in the local feed of fish and shrimp. Forty-eight samples of the fish and shrimp feed were collected from the Dhaka and Sathkhira districts of Bangladesh respectively. Aflatoxins (B1, B2, G1, G2) were analyzed by high-performance liquid chromatography (HPLC) with fluorescence detector, and atomic absorption spectrophotometry (AAS) was used for the heavy metal detection after sample digestion. The standard analytical methods of the Association of Official Analytical Chemists were followed for analyzing the proximate composition of the feed samples. The findings revealed the high toxic concentration of total aflatoxins particularly in fish feed (196.25 μg/kg). Concurrently, varying concentrations of heavy metals, including lead (Pb) and chromium (Cr), were detected, with the highest levels found in shrimp feed at 3.324 and 174.6 mg/kg, respectively. In comparison, highest contamination of cadmium (Cd) was found in fish feed at 0.398 mg/kg. The outcomes are growing concerns regarding the quality of locally sourced feed and emphasizing the need for prompt corrective actions. Otherwise, neglecting this concern may lead to the possibility of both fish and, ultimately, humans who consume them being vulnerable to the absorption and accumulation of these assessed toxic compounds.
Collapse
Affiliation(s)
- Anika Tabassum
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Mahfujul Hasan
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Shiek Muzahidul Islam
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Zia Uddin Al Mamun
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Chapol Kumar Roy
- BCSIR Laboratories, Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Nishith Ranjon Roy
- Department of Statistics and Analytics, University of Arkansas, Fayetteville, USA
| | - Mohammad Tariqul Hassan
- Institute of Food Science and Technology (IFST), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh.
| |
Collapse
|
4
|
Rajar AB, Malik Z, Ujan JA, Rind KH, Ullah R, Naz S, Ullah M, Zahid M, Khan K, Khayyam K, Al-Rejaie SS, Mohany M. Implications of Heavy Metal Accumulation in Fish Feed, Water, Sediment, and Different Fish Species in a Polyculture System. Biol Trace Elem Res 2025; 203:1085-1096. [PMID: 38709368 DOI: 10.1007/s12011-024-04217-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Heavy metal bioaccumulation in organisms is primarily a result of dietary uptake. The current study examines the concentrations of heavy metals (Pb, Cd, Cr, and Cu) in fish feed, water, sediment, and three fish species (Catla catla, Labeo rohita, and Cyprinus carpio) from different feeding zones in a polyculture pond system. Furthermore, associated human health risks were also evaluated. The fish samples (n = 25 for each species) were collected from 10 different fish ponds in the Kohat district, Pakistan. Heavy metals were determined using an atomic absorption spectrometer. Results revealed higher concentrations of heavy metals in sediment, followed by water. However, the concentration of heavy metals in fish feed was lower than the standard limits. In the case of fish, the bottom feeder (C. carpio) notably exhibited higher (P < 0.05) levels of heavy metals than the column feeder (L. rohita) and surface feeder (C. catla) fish. Moreover, in the liver of all fish species, the bioaccumulation of heavy metals was higher, followed by the gills. Principal component analysis (PCA) demonstrated a strong correlation of heavy metals in C. carpio gills, flesh, feed, and pond water, while the heavy metals in the liver correlated with the detected metals in sediment. The human health risk analysis shows that bottom feeder fish had higher estimated daily intake (EDI), target hazard quotient (THQ), and hazard index (HI) values (> 1). Consequently, the exposed population may experience adverse health effects. The findings of this study suggest that the bottom feeder (C. carpio) bioaccumulates a higher concentration of heavy metals than column (L. rohita) and surface feeder (C. catla) in the polyculture system.
Collapse
Affiliation(s)
- Allah Bachayo Rajar
- Muhammad Medical College Mirpurkhas/Ibn-e-Sina University, Mirpurkhas, 69012, Sindh, Pakistan
| | - Zainab Malik
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad, 38040, Punjab, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University Khairpur, Khairpur, 66020, Sindh, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Khalid Hussian Rind
- Department of Molecular Biology and Genetics, Shaheed Benazir Bhutto University, Shaheed Benazirabad, 67450, Sindh, Pakistan
| | - Raqeeb Ullah
- Department of Zoology, Bacha Khan University Charsadda, Charsadda, 24540, Khyber Pakhtunkhwa, Pakistan
| | - Saira Naz
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China.
- Department of Zoology, University of Lahore, Sargodha, 40100, Punjab, Pakistan.
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khayyam Khayyam
- Department of Zoology, Islamia College University Peshawar, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Shafiujjaman M, Mandal SC, Moniruzzaman M, Habibullah-Al-Mamun M, Shaikh MAA, Watanabe K, Hossain A. Environmental and human health risk of potentially toxic metals in freshwater and brackish water Nile tilapia (Oreochromis niloticus) aquaculture. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:477. [PMID: 39404803 DOI: 10.1007/s10653-024-02249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/25/2024] [Indexed: 11/07/2024]
Abstract
Tilapia aquaculture is rapidly expanding worldwide, particularly in Bangladesh. However, metal pollution in aquaculture presents significant environmental and human health risks. This study aimed to evaluate the concentrations of 13 potentially toxic metals (As, Be, Cd, Co, Cr, Cu, Hg, Ni, Pb, V, Mn, Se, and Zn) in Nile tilapia (Oreochromis niloticus), surface water, and sediment from freshwater and brackish water aquaculture ponds. The study also assessed the associated environmental and human health risks. Samples of tilapia, water, and sediment were collected between October and November 2021 and analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The estimated daily intake (EDI) of As, Cr, Pb, Se, and Zn in tilapia muscle of both freshwater and brackish water, as well as Cd and Ni in brackish water, exceeded recommended EDI values. The Target Hazard Quotient (THQ) was less than 1 for most metals, except for As in brackish water tilapia and Cr in both freshwater and brackish water tilapia, indicating potential health risks. The Target Cancer Risk (TR) values for As in both freshwater and brackish water tilapia, and for Cr and Ni in freshwater tilapia, exceeded acceptable ranges. While the concentrations of metals in surface water of both freshwater and brackish water tilapia farms varied, all mean concentrations were below WHO recommended limits. The contamination factor (Cf) values were less than 1 for all metals in both types of aquaculture ponds, except for Zn in freshwater sediment and Se in brackish water sediment. Additionally, the calculated risk indices including the Pollution Load Index (PLI), Geoaccumulation Index (Igeo), Ecological Risk Factor (Er), and Potential Ecological Risk Factor (PER) for sediment were below the risk thresholds values (PLI < 1, Igeo < 0, Er < 40, and PER < 150). The significant positive correlations were found between tilapia muscle and the sediment of the respective ponds for arsenic (As) (ρ= 0.8, p<0.002) and Cr (ρ= 0.7, p<0.02). Although the levels of studied metals in water and sediment from freshwater and brackish water aquaculture ponds were generally within recommended guidelines, this study underscores the need for continuous monitoring and preventative measures, particularly to address elevated levels of As and Cr in tilapia muscle, which may pose potential risks to human health.
Collapse
Affiliation(s)
- Md Shafiujjaman
- Center for Marine Environmental Studies, Ehime University, Bunkyo-Cho 3, Matsuyama, Ehime, 790-8577, Japan
- Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | | | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
- Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Kozo Watanabe
- Center for Marine Environmental Studies, Ehime University, Bunkyo-Cho 3, Matsuyama, Ehime, 790-8577, Japan
| | - Anwar Hossain
- Center for Marine Environmental Studies, Ehime University, Bunkyo-Cho 3, Matsuyama, Ehime, 790-8577, Japan.
- Department of Fisheries, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
6
|
Channa MJ, Ayub H, Ujan JA, Habib SS, Ullah M, Attaullah S, Khayyam K, Khan K. Human Health Risk Assessment due to the Incidence of Heavy Metals in Different Commercial Feeds Used for the Culturing of Biofloc Fish (Nile tilapia: Oreochromis niloticus). Biol Trace Elem Res 2024; 202:1741-1751. [PMID: 37452268 DOI: 10.1007/s12011-023-03767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Fish meat is a major and rich source of white protein; its quality is determined by the fish feed. However, the low-quality feed may contribute to a source of contamination if it does not fulfill the standard protocol. Biofloc is considered one of the most efficient, successful aquacultures, but this system is still under investigation for its efficiency and safety. Thus, current study focused on the heavy metal contamination in biofloc fish fed on different commercial feeds and human health risk analysis. Samples of extensively used three feeds (Supreme™, Hitech™, and MH-Aqua™), tanks water, and biofloc fish (gills, liver muscle) were collected for heavy metals (Cu, Cd, Pb, and Cr) analysis using atomic absorption spectrometry. An experiment was designed by dividing the fish into three groups: group 1 (Supreme™), group 2 (Hitech™), and group 3 (MH-Aqua™). A bioaccumulation factor and human health risk assessment have been calculated to measure fish and human health. Results revealed that most of the heavy metal concentration was higher (P < 0.05) in MH-Aqua™ feed compared to others. Similarly, heavy metal concentration was higher (P < 0.05) in the water of group 3, where fish was cultured on MH-Aqua™ feed. However, in the fish gills, liver, and muscle, the heavy metal concentration was significantly greater in group 3 fed on MH-Aqua™ feed, followed by group 1. Heavy metals in all feeds were positively correlated to the heavy metal concentration of the fish muscles. The bioaccumulation factor for Cu and Pb was higher in the fish liver, Cd and Cr in the case of fish gills, and least in the fish muscle. EDI and THQ values vary in all the groups, while the HI value was found lower than 1 in group 1 and group 2 but higher in group 3 fed on MH-Aqua™ feed. Strict checks and balances in formulating a diet will be helpful to progressively lower the amount of dangerous heavy metals.
Collapse
Affiliation(s)
| | - Huma Ayub
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University, Khairpur, 66111, Sindh, Pakistan
| | - Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Attaullah
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khayyam Khayyam
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
7
|
Zhang X, Hua J, Song Z, Li K. A review: Marine aquaculture impacts marine microbial communities. AIMS Microbiol 2024; 10:239-254. [PMID: 38919720 PMCID: PMC11194620 DOI: 10.3934/microbiol.2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 06/27/2024] Open
Abstract
Marine aquaculture is key for protein production but disrupts marine ecosystems by releasing excess feed and pharmaceuticals, thus affecting marine microbes. Though vital, its environmental impact often remains overlooked. This article delves into mariculture's effects on marine microbes, including bacteria, fungi, viruses, and antibiotic-resistance genes in seawater and sediments. It highlights how different mariculture practices-open, pond, and cage culture-affect these microbial communities. Mariculture's release of nutrients, antibiotics, and heavy metals alters the microbial composition, diversity, and functions. Integrated multi-trophic aquaculture, a promising sustainable approach, is still developing and needs refinement. A deep understanding of mariculture's impact on microbial ecosystems is crucial to minimize pollution and foster sustainable practices, paving the way for the industry's sustainable advancement.
Collapse
Affiliation(s)
| | | | | | - Kejun Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
8
|
Hazaimeh M. Phycoremediation of heavy metals and production of biofuel from generated algal biomass: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109955-109972. [PMID: 37801245 DOI: 10.1007/s11356-023-30190-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Due to human activity and natural processes, heavy metal contamination frequently affects the earth's water resources. The pollution can be categorized as resistant and persistent since it poses a significant risk to terrestrial and marine biological systems and human health. Because of this, several appeals and demands have been made worldwide to try and clean up these contaminants. Through bioremediation, algal cells are frequently employed to adsorb and eliminate heavy metals from the environment. Bioremediation is seen as a desirable strategy with few adverse effects and low cost. Activities and procedures for bioremediation involving algal cells depend on various environmental factors, including salinity, pH, temperature, the concentration of heavy metals, the amount of alga biomass, and food availability. Additionally, the effectiveness of removing heavy metals from the environment by assessing how environmental circumstances affect algal activities. The main issues discussed are (1) heavy metal pollution of water bodies, the role of algal cells in heavy metal removal, the methods by which algae cells take up and store heavy metals, and the process of turning the algae biomass produced into biofuel. (2) To overcome the environmental factors and improve heavy metals bioremediation, many strategies are applied, such as immobilizing the cells, consortium culture, and using dry mass rather than living cells. (3) The processes for converting produced algal biomass into biofuels like biodiesel and biomethanol. The present study discusses the life cycle assessment and the limitations of biofuel products from algae biomass.
Collapse
Affiliation(s)
- Mohammad Hazaimeh
- Department of Biology, College of Science in Zulfi, Majmaah University, Majmaah, ah-11952, Saudi Arabia.
| |
Collapse
|
9
|
Biswas A, Kanon KF, Rahman MA, Alam MS, Ghosh S, Farid MA. Assessment of human health hazard associated with heavy metal accumulation in popular freshwater, coastal and marine fishes from south-west region, Bangladesh. Heliyon 2023; 9:e20514. [PMID: 37822622 PMCID: PMC10562925 DOI: 10.1016/j.heliyon.2023.e20514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
An analysis was conducted on both freshwater, coastal and marine fish species to evaluate the concentrations of heavy metals, with the aim of assessing their levels and examining the potential health risks for humans linked to the consumption of contaminated fish. This study estimate concentrations of Cr, Fe, Cu, As, Cd and Pb in 60 individuals belonging to 20 species (10 species for freshwater and another 10 for coastal and marine fishes) by using Atomic Absorption Spectrophotometer. Metal concentrations of Cr, Fe, and Pb in freshwater fishes and Cr, Fe, As, and Pb in marine fishes were exceeded the maximum allowable concentration (MAC). The Estimated Daily Intake (EDI), Average Pollution Load Index (APLI), Target Hazard Quotient (THQ), Hazard Index (HI) and Target Cancer Risk (TCR) of heavy metals were determined for the assessment of human health risk. Ranking order of the values of EDI for freshwater fishes, coastal and marine fishes were Cd > Fe > Pb > Cr > Cu > As and Cd > Fe > Pb > Cr > As > Cu. Highest APLI value of 8.14 (Puntius ticto) that is seriously polluted and 3.003 observed in Otolichthoides pama in freshwater and marine fishes, respectively. THQPb and THQAs for all the fish species were exceed the safe limit (THQ>1) suggesting potential health risk to consumers. The hazard index for both the fish samples were exceeded the USEPA (United States Environmental Protection Agency) permitted risk level (HI > 1). The target carcinogenic risk value for Cr and As were crossed the USEPA standard limit (TCR> 1E-04), which denotes that continuous consumption of studied fishes may cause health risk to the consumers. On the other hand, sensitivity analysis of freshwater, coastal and marine fishes indicates that all the metal concentrations were responsible factor for health risk.
Collapse
Affiliation(s)
- Anusree Biswas
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Kaniz Fatema Kanon
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md. Anisur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Mohammad Shafiqul Alam
- Department of Genetics and Fish Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Sudipta Ghosh
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md. Almamun Farid
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
10
|
Sarker MJ, Sultana S, Hossain S, Yu J, Arai T, Hossain MB. Heavy metals in wild and cultured shrimp, supplied feeds, and their habitats: Assessing public health risk. Heliyon 2023; 9:e19455. [PMID: 37681166 PMCID: PMC10481285 DOI: 10.1016/j.heliyon.2023.e19455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
The contamination and risk assessment of heavy metals (HMs) in highly priced tiger shrimp and its associated ecosystems and farming conditions (hatcheries and commercial grow-out ponds) were scarcely investigated in South Asian countries. In this study, we determined the five HMs (Cu, Zn, Pb, Cd, and Cr) concentrations in PL14 (fourteen days of Post-Larva) of Penaeus monodon, commercial diets, surface water, and sediments from hatcheries, farms, rivers using ICP-MS for two years. The results revealed that surface sediments of rivers and hatcheries had the highest amounts of Cr (65.85 ± 0.82 and 72.50 ± 0.42 mg/kg), Cu (18.82 ± 3.96 and 19.26 ± 4.61 mg/kg), and Zn (63.74 ± 11.14 and 87.42 ± 17.96 mg/kg), whereas commercial farms had the greatest levels of Cd (0.09 ± 0.05 mg/kg). Pb was significantly higher in sediment of hatcheries and farms than in other sites. Except for Zn in surface waters, all metals were found above the recommended limit. In case of supplied feed, all values were in the safe limit excepting Cr (3.39 ± 1.45 to 108.92 ± 3.49 mg/kg). On the other hand, among the metals, only Cr (VI) ranging from 1.75 ± 1.39 mg/kg in P. monodon samples exceeded the suggested international guidelines. The Igeo values of all the metals were Igeo <0, indicating that the study areas were practically unpolluted. PLI values in every station were found to be below 1 which indicates the perfection of the sediment. The Potential Risk Index (PERI) values were less than 150 suggesting low risk of metals in sediments. The public health risk assessment estimated through the calculated daily intake (EDI), target hazard quotient (THQ) and hazard index (HI) has shown that the shrimp was safe for consumers except for Cd and Cr. The THQ for Cd and Cr were higher than the threshold (>1) indicating potential health hazards. The low CR values for Cd, Cr Pb were 3.1 × 10-4, 3.7 × 10-4 and 1.6 × 10-4, respectively indicates no cancer risks upon consuming P. monodon.
Collapse
Affiliation(s)
- Md. Jahangir Sarker
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Saima Sultana
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Sohana Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Jimmy Yu
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| | - Takaomi Arai
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - M. Belal Hossain
- Department of Fisheries and Marine Science, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
- School of Engineering and Built Environment, Griffith University, Brisbane, QLD, 4111, Australia
| |
Collapse
|
11
|
Muhib MI, Rahman MM. Microplastics contamination in fish feeds: Characterization and potential exposure risk assessment for cultivated fish of Bangladesh. Heliyon 2023; 9:e19789. [PMID: 37809616 PMCID: PMC10559114 DOI: 10.1016/j.heliyon.2023.e19789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Fish feed is becoming an increasingly vital source of nourishment for farmed fish, which are mainly coming from marine fish and agricultural sources. Anthropogenic particles, such as microplastics, are abundant in both marine fish and agricultural byproducts that are utilized to make fish feed. This study investigated whether fish feed could be a source of microplastic contamination, and revealed that a 20 weeks adult farmed tilapia fish might consume up to 268.45 ± 1.438 microplastic particles via fish feed where finisher type feeds were found to be mostly contributory in this number. The microplastics were initially observed with a stereomicroscope and FESEM-EDS. Polymeric composition of microplastics was determined to be polypropylene (PP), nylon-6 (NY-6), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl alcohol (PVA), polyethylene (PE), high- and low-density polyethylene (HDPE, LDPE), ethylene vinyl acetate (EVA), polycarbonate (PC), poly vinyl acetate (PVAc), poly urethane (PU) and polyvinyl chloride (PVC) by FTIR. Results also revealed that the size of microplastic particles in all fish feed ranged from 14 μm to 4480 μm, with 550 ± 45.45 to 11,600 ± 56.1 microplastic particles/kg of fish feed. The FESEM-EDS data demonstrated to overlook the microplastic surface along with attachment of heavy metals onto that surface such as Pb, Ni, and Co in finisher type feed that could create additional health risks.
Collapse
Affiliation(s)
- Md Iftakharul Muhib
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
12
|
Jing Z, Yi LK, Lin GC, Jian-Min Z, Bing X. Assessment of potential ecological risk based on the vertical characteristics of potential toxic elements in sediments from a high-density cage culture reservoir in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115136. [PMID: 37315363 DOI: 10.1016/j.ecoenv.2023.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
The pollution of sediments around Lu Ban Island is a serious environmental issue that is threatening human health. The concentration of As, Cd, Cu, Cr, Hg, Ni, Pb, and Zn at 73 layer points were investigated, vertical distribution characteristics, correlation among potential toxic elements and potential ecological risks of sediments at different depth were analyzed. The following results were obtained, (1) the hypothesis that there was a linear relationship between concentration of potential toxic elements and the reciprocal of deep was reasonable. Based on hypothesis, the ultimate value of concentration by making depth go to infinity was regarded as the background concentration. The background concentration of As, Cd, Cu, Cr, Hg, Ni, Pb, and Zn are respectively 4.94 mg/kg, 0.20 mg/kg, 15.48 mg/kg, 58.41 mg/kg, 0.062 mg/kg, 26.96 mg/kg, 20.29 mg/kg, and 53.31 mg/kg. (2) But correlation between Ni and As was relatively weak, high degree of correlation among other potential toxic elements were found. Based on their correlation, eight potential toxic elements were classified into three groups. First group included Ni and Cr, mainly releasing by coal burning; Cu, Pb, Zn, Hg, and Cd were grouped together, possibly due to their shared source of fish cage culture; Arsenic with relatively weak correlation with other potential toxic elements was classified as a separate class, which was usually one important mineral resource associated with phosphate. (3) Potential ecological risk index (PERI) of sediment above - 0.40 m belonged to moderate risk, the PERI of sediment in - 0.10 m, - 0.20 m, and - 0.40 m were 289.06, 254.33, and 201.44, respectively. Sediment below - 0.40 m belonged to low risk with average PERI value 112.82, with no significant changes in PERI values. The order of contribution to PERI was Hg > Cd > As > Cu > Pb > Ni > Cr > Zn. (4) According to result of cluster analysis and potential ecological risk, the potential ecological risk of sediment above - 0.40 m mainly contributed by potential toxic elements of Cu, Cd, Hg, Pb, and Zn sharing source of fish cage culture.
Collapse
Affiliation(s)
- Zhang Jing
- College of He Hai, Chong Qing Jiao Tong University, Chongqing 400074, PR China
| | - Liu Kun Yi
- College of He Hai, Chong Qing Jiao Tong University, Chongqing 400074, PR China
| | - Guo Chen Lin
- College of He Hai, Chong Qing Jiao Tong University, Chongqing 400074, PR China
| | - Zhang Jian-Min
- State Key Laboratory of Hydraulics & Mountain River Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Xing Bing
- College of He Hai, Chong Qing Jiao Tong University, Chongqing 400074, PR China
| |
Collapse
|
13
|
Jamil Emon F, Rohani MF, Sumaiya N, Tuj Jannat MF, Akter Y, Shahjahan M, Abdul Kari Z, Tahiluddin AB, Goh KW. Bioaccumulation and Bioremediation of Heavy Metals in Fishes-A Review. TOXICS 2023; 11:510. [PMID: 37368610 DOI: 10.3390/toxics11060510] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/06/2023] [Accepted: 03/10/2023] [Indexed: 06/29/2023]
Abstract
Heavy metals, the most potent contaminants of the environment, are discharged into the aquatic ecosystems through the effluents of several industries, resulting in serious aquatic pollution. This type of severe heavy metal contamination in aquaculture systems has attracted great attention throughout the world. These toxic heavy metals are transmitted into the food chain through their bioaccumulation in different tissues of aquatic species and have aroused serious public health concerns. Heavy metal toxicity negatively affects the growth, reproduction, and physiology of fish, which is threatening the sustainable development of the aquaculture sector. Recently, several techniques, such as adsorption, physio-biochemical, molecular, and phytoremediation mechanisms have been successfully applied to reduce the toxicants in the environment. Microorganisms, especially several bacterial species, play a key role in this bioremediation process. In this context, the present review summarizes the bioaccumulation of different heavy metals into fishes, their toxic effects, and possible bioremediation techniques to protect the fishes from heavy metal contamination. Additionally, this paper discusses existing strategies to bioremediate heavy metals from aquatic ecosystems and the scope of genetic and molecular approaches for the effective bioremediation of heavy metals.
Collapse
Affiliation(s)
- Farhan Jamil Emon
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Fazle Rohani
- Department of Aquaculture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Nusrat Sumaiya
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst Fatema Tuj Jannat
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Yeasmin Akter
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
- Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, Jeli 17600, Malaysia
| | - Albaris B Tahiluddin
- College of Fisheries, Mindanao State University-Tawi-Tawi College of Technology and Oceanography, Sanga-Sanga, Bongao 7500, Philippines
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia
| |
Collapse
|
14
|
Habib SS, Batool AI, Rehman MFU, Naz S. Evaluation and Association of Heavy Metals in Commonly Used Fish Feed with Metals Concentration in Some Tissues of O. niloticus Cultured in Biofloc Technology and Earthen Pond System. Biol Trace Elem Res 2023; 201:3006-3016. [PMID: 35939231 DOI: 10.1007/s12011-022-03379-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022]
Abstract
For successful aquaculture, the primary need is the quality of fish feed, which determines fish flesh quality. The current study was conducted to evaluate the number and concentration of heavy metals in commonly used fish feeds and fish gills, liver, and muscle of biofloc technology and earthen pond systems. Besides this, the correlation between heavy metals in fish feeds with detected metals in the gills, liver, and muscle of fish was also determined. Results revealed that heavy metals concentration, including Cu and Cd, in feed B was significantly greater than in feed A, but the Zn level in feed A was significantly higher than in feed B. Furthermore, the concentration of heavy metals in fish of both aquaculture systems was significantly higher in the liver than in the gills and muscle. The metal concentration in fish feeds and fish edible parts (muscle) was lower than the WHO standard level; however, the amount of Pb was higher in the fish muscle, which is harmful for human consumption. Though the correlation test revealed that all of the metals from the feeds were positively correlated to the metals detected in the fish, but most of the estimated correlation was insignificant. From the current study, it can be concluded that the fish feed producers need to measure feed quality adequately to avoid hazardous contamination by heavy metals in the feed. The ultimate consumer, fish and humans, may, otherwise, be predisposed to assimilate and accumulate these heavy metals.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan.
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, Punjab, 40100, Pakistan
| | | | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, Punjab, 40100, Pakistan
| |
Collapse
|
15
|
Abdel-Kader HH, Mourad MH. Estimation of Cadmium in Muscles of Five Freshwater Fish Species from Manzalah Lake, and Possible Human Risk Assessment of Fish Consumption (Egypt). Biol Trace Elem Res 2023; 201:937-945. [PMID: 35325364 PMCID: PMC9849296 DOI: 10.1007/s12011-022-03188-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/01/2022] [Indexed: 01/22/2023]
Abstract
The Egyptian government devised a plan in 2016 to improve the unique ecological significance of northern lakes, which mentioned Manzalah Lake in the Egypt Vision 2030. In this regard, this study investigated cadmium (Cd) content in five freshwater fish species collected from Manzalah Lake in Egypt at 2018 by local fishermen. According to the findings, Clarias gariepinus recorded the highest concentration of Cd (1.40 ± 0.2 μg/g) and the lowest concentration was recorded in O. aureus (1.19 ± 0.2 μg/g). Cadmium contents of all species were largely above the permissible level of the Food Agricultural Organization (FAO)/World Health Organization (WHO) and Commission Regulation (EC). The estimated daily intake (EDI), the estimated weekly intake (EWI), and the percentages of provisional tolerable weekly intake (PTWI %) values for Cd in the C. gariepinus > Sarotherodon galilaeus > Tilapia zillii > Oreochromis niloticus > Oreochromis aureus which consumed by children, teenagers, and adults were much higher than the PTWI values established by FAO/WHO. In addition, C. gariepinus consumed by children showed the highest value of the target hazard quotient (THQ) (5.83 a day or 40.81 a week) while O. aureus that ingested by adults showed the lowest level (1.06 a day or 7.42a week). The target carcinogenic risk (TCR) of C. gariepinus in children had the greatest level (2.21 × 10-3 a day or 1.55 × 10-2 a week), whereas O. aureus in adults had the lowest level of TCR (4 × 10-4 a day or 2.81 × 10-3 a week). THQs values of Cd in the five studied species were found higher than one. Moreover, TCRs values of Cd in the five species were exceeded the US Environmental Protection Agency guideline USEPA permissible limits suggesting that a daily or weekly consumption of these species could lead to a high risk non-carcinogenic and carcinogenic for humans.
Collapse
Affiliation(s)
- Heba H Abdel-Kader
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt.
| | - Mohamed H Mourad
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
16
|
Jiang S, Ni X, Cheng H, Zhao G. Geochemical characteristics of heavy metals in surface sediments of the Bohai Strait, China. MARINE POLLUTION BULLETIN 2023; 186:114436. [PMID: 36473248 DOI: 10.1016/j.marpolbul.2022.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/19/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The heavy metal (Cr, Cu, Ni, Pb, and Zn) content and particle size of surface sediment samples taken from 123 sites in the Bohai Strait of China were analyzed. All five heavy metals showed a similar distribution in the Bohai Strait, with lower concentrations in the middle and higher concentrations at the sides of the strait. The amount of heavy metals was lowest in the Laotieshan Channel due to the rapid current in this channel. According to our calculated values of the pollution index (Pi), only 1.6 % of the sample sites were polluted by Cr and Cu. The calculated geo-accumulation index (Igeo) values showed that few of the sites were polluted by heavy metals. The level of Pb was controlled by both terrigenous inputs and clay adsorption, while the levels of the other heavy metals (Cr, Cu, Ni, and Zn) were mainly controlled by terrigenous inputs.
Collapse
Affiliation(s)
| | - Xin Ni
- Ocean University of China, Qingdao 266100, PR China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, PR China
| | - Haiyan Cheng
- Qingdao Geological Exploration Institute, China Metallurgical Geology Bureau, Qingdao 266100, PR China
| | - Guangming Zhao
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, PR China; Shandong University of Science and Technology, Qingdao 266590, PR China; The Key Laboratory of Coastal Wetlands Biogeosciences, Qingdao 266071, PR China.
| |
Collapse
|
17
|
Chakraborty TK, Chandra Ghosh G, Hossain MR, Islam MS, Habib A, Zaman S, Bosu H, Nice MS, Haldar M, Khan AS. Human health risk and receptor model-oriented sources of heavy metal pollution in commonly consume vegetable and fish species of high Ganges river floodplain agro-ecological area, Bangladesh. Heliyon 2022; 8:e11172. [PMID: 36325133 PMCID: PMC9618996 DOI: 10.1016/j.heliyon.2022.e11172] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
This study was intended to assess heavy metal contents and sources in commonly consumed vegetables and fish collected from the Jashore district of Bangladesh and to evaluate the probable human health risks via the ingesting of those vegetables and fish species. A total of 130 vegetable and fish samples were analyzed for As, Mn, Cu, Cr, Ni, and Pb concentration by an atomic absorption spectrophotometer. Metals and metalloids like As, Pb, and Cr in vegetable species were greater than the maximum allowable concentration (MAC), while Pb and cu in fish species exceeded the MAC. Pollution evaluation index values were ranges from 0.40-10.35 and 1.53–2.78 for vegetable and fish species, respectively, indicating light to serious pollution. Lactuca sativa followed by Cucurbita moschata, Amaranthus gangeticus for vegetables and Channa punctate, Oreochromis mossambicus, followed by Dendrobranchiata for fish are the most contaminated food items. The positive matrix factorization model showed that As (81.9%), Ni (48%), Cr (49.6%), Mn (46%), Pb (44.3%), and Cu (44.4%) for vegetable species and As (86.9%), Ni (90.5%), Mn (67.6%), Pb (65.3%), Cr (57%) and Cu (46.2%) for fish species were resulting from agrochemical, atmospheric emission, irrigation, contaminated feed, and mixed sources. The self-organizing map and principle component analysis indicates three spatial patterns e.g., As–Mn–Cu, Pb–Cr, and Ni in vegetables and As–Mn–Cr, Cu–Ni, and Pb in fish samples. The THQ values for single elements were less than 1 (except As for vegetables and Pb for fish species) for all food items but the HI values for all of the vegetables (2.18E+00 to 2.04E+01) and fish (1.07E+00 to 9.39E+00) samples were exceeded the USEPA acceptable risk level (HI > 1E+00). While the cancer risks only induced by As for all vegetables and fish species, which exceeded the USEPA safe level (TCR>1E-04). Sensitivity analysis indicates that metal concentration was the most responsible factor for carcinogenic risk.
Collapse
Affiliation(s)
- Tapos Kumar Chakraborty
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh,Corresponding author.
| | - Gopal Chandra Ghosh
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Ripon Hossain
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Shahnul Islam
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Ahsan Habib
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Samina Zaman
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Himel Bosu
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Simoon Nice
- Department of Environmental Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monisankar Haldar
- Department of Computer Science and Engineering, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Abu Shamim Khan
- Environmental Laboratory, Asia Arsenic Network, Arsenic Center, Benapole Road, Krishnobati, Pulerhat, Jashore 7400, Bangladesh
| |
Collapse
|
18
|
Habib SS, Batool AI, Rehman MFU, Naz S. Assessment and Bioaccumulation of Heavy Metals in Fish Feeds, Water, and Some Tissues of Cyprinus carpio Cultured in Different Environments (Biofloc Technology and Earthen Pond System). Biol Trace Elem Res 2022; 201:3474-3486. [PMID: 36201118 DOI: 10.1007/s12011-022-03415-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022]
Abstract
Fish feed quality is the main determinant of fish flesh quality, so it is important for successful aquaculture. The current study determines the concentration of heavy metals in fish feeds (A and B), water, and their bioaccumulation in gills, liver, and muscle of C. carpio cultured in different environments (biofloc technology and earthen pond systems). In addition, the correlation between heavy metals in fish feeds with bioaccumulated metals in fish tissues was also determined. Results revealed that most heavy metal concentration was significantly greater (P < 0.05) in feed B than in feed A but in permissible range, while all the heavy metal concentration was notably higher in earthen ponds than in biofloc technology. Result from the bioaccumulation factor and concentration of the metals showed that heavy metals were highly accumulated in the fish liver followed by gills. The metal concentration in fish feeds and fish edible parts (muscle) was lower than the WHO standard level; however, the amount of Pb was higher in the fish muscle, liver, and gills, which is harmful for human consumption and also for fish health. Though the correlation test revealed that all of the metals from the feeds were positively correlated to the metals in fish tissues, but most of the estimated correlation was significant and linearly correlated. It can be concluded that producers must measure feed quality correctly to avoid heavy metal contamination because it may assimilate and accumulate in the food chain.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
| | - Aima Iram Batool
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan
| | | | - Saira Naz
- Institute of Molecular Biology and Biotechnology, University of Lahore Sargodha Campus, Sargodha, 40100, Punjab, Pakistan
| |
Collapse
|
19
|
Emenike EC, Iwuozor KO, Anidiobi SU. Heavy Metal Pollution in Aquaculture: Sources, Impacts and Mitigation Techniques. Biol Trace Elem Res 2022; 200:4476-4492. [PMID: 34813030 DOI: 10.1007/s12011-021-03037-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/15/2021] [Indexed: 01/28/2023]
Abstract
Aquaculture is one of the fastest growing agro-industries as it presently accounts for nearly 50% of all fish for direct human consumption and 43% of total seafood supply. Fish provide about 20% average daily intake of animal protein for about 3.2 billion people globally. The treatment of aquaculture in recent years for the mitigation of heavy metals and other contaminants has been gaining traction due to the benefits of aquaculture to both man and the environment. This paper provides a review of the sources, impacts, and the various methods that have been deployed in recent years by various researchers for the treatment of heavy metal contaminated aquaculture. Related works of literature were obtained and compiled from academic search databases and were carefully analysed in this study. The dangers these metals pose to the sustainability of aquaculture were studied in this review. Studies indicate that some heavy metals, such as mercury, lead, and cadmium, due to their long-term persistence in the environment, allow them to accumulate in the food chain. Mitigation techniques such as adsorption, bio-sorption, and phytoremediation have been deployed for the treatment of heavy metal contaminated aquaculture. Some research gaps were also highlighted which could form the basis for future research, such as research centred on the effects of these metals on the embryonic development of aquaculture organisms and the alterations the metals caused in their stages of development.
Collapse
Affiliation(s)
- Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
| | - Kingsley O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
| | - Stella Ukamaka Anidiobi
- Department of Chemistry, University of Lagos, P. M. B. 1029, Lagos, Nigeria
- Federal College of Fisheries and Marine Technology, Lagos, Nigeria
| |
Collapse
|
20
|
Shahjahan M, Taslima K, Rahman MS, Al-Emran M, Alam SI, Faggio C. Effects of heavy metals on fish physiology - A review. CHEMOSPHERE 2022; 300:134519. [PMID: 35398071 DOI: 10.1016/j.chemosphere.2022.134519] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
The pollution by heavy metals poses a serious threat to the aquatic environment and to the organisms if the concentration of heavy metals in the environment exceeds the safe limits. Due to their non-biodegradable and long persistence nature in the environment, heavy metals cause toxicity in fish by producing oxygen reactive species through oxidizing radical production. In this review, we investigated the effects of heavy metals on fish physiology with special emphasis on hemato-biochemical properties, immunological parameters especially hormones and enzymes, histopathology of different major organs and underlying molecular mechanisms. All those parameters are significantly affected by heavy metal exposure and are found to be important bio-monitoring tools to assess heavy metal toxicity. Hematological and biochemical alterations have been documented including cellular and nuclear abnormalities in different fish species exposed to different concentrations of heavy metals. Major fish organs (gills, liver, kidneys) including intestine, muscles showed different types of pathology specific to organs in acute and chronic exposure to different heavy metals. This study also revealed the expression of different genes involved in oxidative stress and detoxification of heavy metals. In a nutshell, this article shades light on the manipulation of fish physiology by the heavy metals and sought attention in the prevention and maintenance of aquatic environments particularly from heavy metals contaminations.
Collapse
Affiliation(s)
- Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.
| | - Khanam Taslima
- Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Shadiqur Rahman
- Bangamata Sheikh Fojilatunnesa Mujib Science and Technology University, Melandah, Jamalpur, Bangladesh
| | - Md Al-Emran
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Shanon Iffat Alam
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S.Agata-Messina, Italy
| |
Collapse
|