1
|
Zhou J, Zheng X, Xi C, Tang X, Jiang Y, Xie M, Fu X. Cr(VI) induced hepatocyte apoptosis through the CTH/H 2S/Drp1 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175332. [PMID: 39117219 DOI: 10.1016/j.scitotenv.2024.175332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/04/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Hexavalent chromium [Cr(VI)] is a highly hazardous heavy metal with multiple toxic effects. Occupational studies indicate that its accumulation in humans can lead to liver damage. However, the exact mechanism underlying Cr(VI)-induced hepatotoxicity remains unknown. In this study, we explored the role of CTH/H2S/Drp1 pathway in Cr(VI)-induced oxidative stress, mitochondrial dysfunction, apoptosis, and liver injury. Our data showed that Cr(VI) triggered apoptosis, accompanied by H2S reduction, reactive oxygen species (ROS) accumulation, and mitochondrial dysfunction in both AML12 cells and mouse livers. Moreover, Cr(VI) reduced cystathionine γ-lyase (CTH) and dynamin related protein 1 (Drp1) S-sulfhydration levels, and elevated Drp1 phosphorylation levels at Serine 616, which promoted Drp1 mitochondrial translocation and Drp1-voltage-dependent anion channel 1 (VDAC1) interactions, ultimately leading to mitochondria-dependent apoptosis. Elevated hydrogen sulfide (H2S) levels eliminated Drp1 phosphorylation at Serine 616 by increasing Drp1 S-sulfhydration, thereby preventing Cr(VI)-induced Drp1-VDAC1 interaction and hepatotoxicity. These findings indicated that Cr(VI) induced mitochondrial apoptosis and hepatotoxicity by inhibiting CTH/H2S/Drp1 pathway and that targeting either CTH/H2S pathway or Drp1 S-sulfhydration could serve as a potential therapy for Cr(VI)-induced liver injury.
Collapse
Affiliation(s)
- Jie Zhou
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China.
| | - Xin Zheng
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Chen Xi
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Xinyi Tang
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Yinjie Jiang
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Minjuan Xie
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| | - Xiaoyi Fu
- School of Medicine, Yichun University,576 XueFu Road, Yuanzhou District, Yichun 336000, PR China
| |
Collapse
|
2
|
Zhao Y, Song JY, Feng R, Hu JC, Xu H, Ye ML, Jiang JD, Chen LM, Wang Y. Renal Health Through Medicine-Food Homology: A Comprehensive Review of Botanical Micronutrients and Their Mechanisms. Nutrients 2024; 16:3530. [PMID: 39458524 PMCID: PMC11510533 DOI: 10.3390/nu16203530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/18/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND As an ancient concept and practice, "food as medicine" or "medicine-food homology" is receiving more and more attention these days. It is a tradition in many regions to intake medicinal herbal food for potential health benefits to various organs and systems including the kidney. Kidney diseases usually lack targeted therapy and face irreversible loss of function, leading to dialysis dependence. As the most important organ for endogenous metabolite and exogenous nutrient excretion, the status of the kidney could be closely related to daily diet. Therefore, medicinal herbal food rich in antioxidative, anti-inflammation micronutrients are ideal supplements for kidney protection. Recent studies have also discovered its impact on the "gut-kidney" axis. METHODS Here, we review and highlight the kidney-protective effects of botanicals with medicine-food homology including the most frequently used Astragalus membranaceus and Angelica sinensis (Oliv.) Diels, concerning their micronutrients and mechanism, offering a basis and perspective for utilizing and exploring the key substances in medicinal herbal food to protect the kidney. RESULTS The index for medicine-food homology in China contains mostly botanicals while many of them are also consumed by people in other regions. Micronutrients including flavonoids, polysaccharides and others present powerful activities towards renal diseases. CONCLUSIONS Botanicals with medicine-food homology are widely speeded over multiple regions and incorporating these natural compounds into dietary habits or as supplements shows promising future for renal health.
Collapse
Affiliation(s)
- Yi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Ye Song
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ru Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia-Chun Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Meng-Liang Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Li-Meng Chen
- Department of Nephrology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
3
|
Zhu H, Duan Y, Yang Y, Chen E, Huang H, Wang X, Zhou J. Sodium aescinate induces renal toxicity by promoting Nrf2/GPX4-mediated ferroptosis. Chem Biol Interact 2024; 391:110892. [PMID: 38364601 DOI: 10.1016/j.cbi.2024.110892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Sodium aescinate (SA) is extracted from Aesculus wilsonii Rehd seeds and was first marketed as a medicament in German. With the wide application of SA in clinical practice, reports of adverse drug reactions and adverse events have gradually increased, including renal impairment. However, the pathogenic mechanisms of SA have not yet been fully elucidated. The toxic effects and underlying mechanisms of SA were explored in this study. Our data showed that SA significantly elevated the levels of blood urea nitrogen (BUN), serum creatinine (Scr) and Kidney injury molecule 1 (Kim-1), accompanied by pathologically significant changes in renal tissue. SA induced NRK-52E cell death and disrupted the integrity of the cell membrane. Moreover, SA caused significant reductions in FTH, Nrf2, xCT, GPX4, and FSP1 levels, but increased TFR1 and ACSL4 levels. SA decreased glutathione peroxidase (GPx), glutathione (GSH) and cysteine (Cys) levels, but improved Fe2+, malondialdehyde (MDA), reactive oxygen species (ROS) and lipid peroxidation levels, ultimately leading to the induction of ferroptosis. Importantly, inhibition of ferroptosis or activation of the Nrf2/GPX4 pathway prevented SA-induced nephrotoxicity. These findings indicated that SA induced oxidative damage and ferroptosis-mediated kidney injury by suppressing the Nrf2/GPX4 axis activity.
Collapse
Affiliation(s)
- Haiyan Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yenan Duan
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yijing Yang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Enqing Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Hanxin Huang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
4
|
Xing M, Ma X, Wang X, Wang H, Xie M, Zhang Z, Zhou J. Emodin disrupts the Notch1/Nrf2/GPX4 antioxidant system and promotes renal cell ferroptosis. J Appl Toxicol 2023; 43:1702-1718. [PMID: 37393915 DOI: 10.1002/jat.4509] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
Emodin has been demonstrated to possess multiple pharmacological activities. However, emodin has also been reported to induce nephrotoxicity at high doses and with long-term use, and the underlying mechanism has not been fully disclosed. The current study aimed to investigate the roles of oxidative stress and ferroptosis in emodin-induced kidney toxicity. Mice were intraperitoneally treated with emodin, and NRK-52E cells were exposed to emodin in the presence or absence of treatment with Jagged1, SC79, or t-BHQ. Emodin significantly upregulated the levels of blood urea nitrogen, serum creatinine, malondialdehyde, and Fe2+ , reduced the levels of superoxide dismutase and glutathione, and induced pathological changes in the kidneys in vivo. Moreover, the viability of NRK-52E cells treated with emodin was reduced, and emodin induced iron accumulation, excessive reactive oxygen species production, and lipid peroxidation and depolarized the mitochondrial membrane potential (ΔΨm). In addition, emodin treatment downregulated the activity of neurogenic locus notch homolog protein 1 (Notch1), reduced the nuclear translocation of nuclear factor erythroid-2 related factor 2 (Nrf2), and decreased glutathione peroxidase 4 protein levels. However, Notch1 activation by Jagged1 pretreatment, Akt activation by SC79 pretreatment, or Nrf2 activation by t-BHQ pretreatment attenuated the toxic effects of emodin in NRK-52E cells. Taken together, these results revealed that emodin-induced ferroptosis triggered kidney toxicity through inhibition of the Notch1/Nrf2/glutathione peroxidase 4 axis.
Collapse
Affiliation(s)
- Miao Xing
- School of Medicine, Yichun University, Yichun, China
| | - Xiaoyu Ma
- School of Medicine, Yichun University, Yichun, China
| | - Xi Wang
- School of Medicine, Yichun University, Yichun, China
| | - Haoze Wang
- School of Medicine, Yichun University, Yichun, China
| | - Minjuan Xie
- School of Medicine, Yichun University, Yichun, China
| | - Ziwen Zhang
- School of Medicine, Yichun University, Yichun, China
| | - Jie Zhou
- School of Medicine, Yichun University, Yichun, China
| |
Collapse
|
5
|
Zhu L, Zhang H, Zhang X, Xia L, Zhang J. Research progress on antisepsis effect of apigenin and its mechanism of action. Heliyon 2023; 9:e22290. [PMID: 38045180 PMCID: PMC10689953 DOI: 10.1016/j.heliyon.2023.e22290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Sepsis is an abnormal immune response to infections and can trigger MODS. Despite the availability of advanced clinical techniques and monitoring methods, the mortality rate of the disease is still high, posing a heavy burden to patients and the whole society. Hence, the research on novel drugs and targets is particularly important. As a natural phyto-flavonoid, apigenin boasts anti-inflammatory, antioxidant, anti-cancer, anti-viral, and anti-bacterial effects. Besides, in-vitro experiments and animal models have also revealed the crucial role of apigenin in the treatment of infectious diseases and sepsis. In this context, this paper reviews the pharmacological activity and underlying mechanisms of action of apigenin in sepsis treatment and organ protection, as well as the potential apigenin-based therapeutic strategies against sepsis. Therefore, this review will shed new light on the scientific research and clinical treatment of sepsis.
Collapse
Affiliation(s)
- Lin Zhu
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Hairong Zhang
- Shandong Provincial Third Hospital, Shandong University, Jinan 250031, PR China
| | - Xiaoyu Zhang
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - Lei Xia
- Department of Pathology, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China
| | - JiaJia Zhang
- Shandong Provincial Third Hospital, Shandong University, Jinan 250031, PR China
| |
Collapse
|
6
|
Wang X, Zhu W, Xing M, Zhu H, Chen E, Zhou J. Matrine disrupts Nrf2/GPX4 antioxidant system and promotes hepatocyte ferroptosis. Chem Biol Interact 2023; 384:110713. [PMID: 37716422 DOI: 10.1016/j.cbi.2023.110713] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Matrine (MT) is an alkaloid isolated from Sophora flavescens with various bioactivities and is widely used clinically. However, the broader its clinical use, the greater its toxicity concerns. We investigate the role of ferroptosis in MT-induced liver injury caused by an imbalance in the antioxidant pathway. Our results showed that MT could cause pathological changes in liver tissues and lead to a significant reduction in L02 cell viability. MT also reduced superoxide dismutase (SOD) and glutathione (GSH), increased malondialdehyde (MDA), reactive oxygen species (ROS), and lipid peroxidation levels, and disrupted iron homeostasis, leading to ferroptosis. In addition, MT decreased the protein levels of FTH, Nrf2, xCT, GPX4, HO-1 and ferroptosis suppressor protein 1 (FSP1) and increased the protein levels of TRF1 and DMT1, characteristic indicators of ferroptosis. Interestingly, the cytotoxic effects of MT were alleviated by ferroptosis inhibitor, Nrf2 agonist, or selenium supplementation. These results revealed that MT triggers hepatocyte ferroptosis by inhibiting the Nrf2/GPX4 antioxidant system.
Collapse
Affiliation(s)
- Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Wenjing Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Miao Xing
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Haiyan Zhu
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Enqing Chen
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
7
|
Chen F, Sun J, Wang Y, Grunberger JW, Zheng Z, Khurana N, Xu X, Zhou X, Ghandehari H, Zhang J. Silica nanoparticles induce ovarian granulosa cell apoptosis via activation of the PERK-ATF4-CHOP-ERO1α pathway-mediated IP3R1-dependent calcium mobilization. Cell Biol Toxicol 2023; 39:1715-1734. [PMID: 36346508 PMCID: PMC10604358 DOI: 10.1007/s10565-022-09776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022]
Abstract
Ambient particulate matters (PMs) have adverse effects in human and animal female reproductive health. Silica nanoparticles (SNPs), as a major component of PMs, can induce follicular atresia via the promotion of ovarian granulosa cell apoptosis. However, the molecular mechanisms of apoptosis induced by SNPs are not very clear. This work focuses on revealing the mechanisms of ER stress on SNP-induced apoptosis. Our results showed that spherical Stöber SNPs (110 nm, 25.0 mg/kg b.w.) induced follicular atresia via the promotion of granulosa cell apoptosis by intratracheal instillation in vivo; meanwhile, SNPs decreased the viability and increase apoptosis in granulosa cells in vitro. SNPs were taken up and accumulated in the vesicles of granulosa cells. Additionally, our results found that SNPs increased calcium ion (Ca2+) concentration in granulosa cell cytoplasm. Furthermore, SNPs activated ER stress via an increase in the PERK and ATF6 pathway-related protein levels and IP3R1-dependent calcium mobilization via an increase in IP3R1 level. In addition, 4-PBA restored IP3R1-dependent calcium mobilization and decreased apoptosis via the inhibition of ER stress. The ATF4-C/EBP homologous protein (CHOP)-ER oxidoreductase 1 alpha (ERO1α) pathway regulated SNP-induced IP3R1-dependent calcium mobilization and cell apoptosis via ATF4, CHOP, and ERO1α depletion in ovarian granulosa cells. Herein, we demonstrate that ER stress cooperated in SNP-induced ovarian toxicity via activation of IP3R1-mediated calcium mobilization, leading to apoptosis, in which the PERK-ATF4-CHOP-ERO1α pathway plays an essential role in ovarian granulosa cells.
Collapse
Affiliation(s)
- Fenglei Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Jiarong Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yujing Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Jason William Grunberger
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Zhen Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Nitish Khurana
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
| | - Xianyu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Xin Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, USA
- Utah Center for Nanomedicine, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Jinlong Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Wang T, Zhang J, Wei H, Wang X, Xie M, Jiang Y, Zhou J. Matrine-induced nephrotoxicity via GSK-3β/nrf2-mediated mitochondria-dependent apoptosis. Chem Biol Interact 2023; 378:110492. [PMID: 37075934 DOI: 10.1016/j.cbi.2023.110492] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/05/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Matrine (MT), an ingredient extracted from the Chinese herb Sophora flavescens, can result in nephrotoxicity because of long-term exposure. However, the underlying mechanism by which MT leads to kidney injury remains unclear. This study aimed to investigate the roles of oxidative stress and mitochondria in MT-induced kidney toxicity both in vitro and in vivo. METHODS Mice were exposed to MT for 20 days, and NRK-52E cells were exposed to MT with or without LiCl (a GSK-3β inhibitor), tert-Butylhydroquinone (t-BHQ, an Nrf2 activator), or small interfering RNA. RESULTS The results showed that MT caused nephrotoxicity accompanied by an increase in reactive oxygen species (ROS) accumulation and mitochondrial dysfunction. Meanwhile, MT significantly upregulated glycogen synthase kinase-3β (GSK-3β) activity, released cytochrome c (Cyt C) and cleaved caspase-3, decreased the activity of nuclear factor-erythroid 2-related Factor 2 (Nrf2), and reduced the expression of heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1), which led to the inactivation of antioxidant enzymes and the activation of apoptosis. In addition, GSK-3β inhibition by LiCl or small interfering RNA pretreatment or Nrf2 activation by t-BHQ pretreatment attenuated the toxic effects of MT in NRK-52E cells. CONCLUSIONS Taken together, these results revealed that MT-induced apoptosis triggered kidney toxicity and that GSK-3β or Nrf2 might serve as a promising nephroprotective target for MT-induced kidney injury.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jian Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Haokai Wei
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Xi Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Yinjie Jiang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, PR China.
| |
Collapse
|
9
|
Wen SY, Wei BY, Ma JQ, Wang L, Chen YY. Phytochemicals, Biological Activities, Molecular Mechanisms, and Future Prospects of Plantago asiatica L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:143-173. [PMID: 36545763 DOI: 10.1021/acs.jafc.2c07735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Plantago asiatica L. has been used as a vegetable and nutritious food in Asia for thousands of years. According to recent phytochemical and pharmacological research, the active compositions of the plant contribute to various health benefits, such as antioxidant, anti-inflammatory, antibacterial, antiviral, and anticancer. This article reviews the 87 components of the plant and their structures, as well as their biological activities and molecular research progress, in detail. This review provides valuable reference material for further study, production, and application of P. asiatica, as well as its components in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Bing-Yan Wei
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Jie-Qiong Ma
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030000, China
| | - Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
10
|
α-Cyperone Protects Cardiomyocytes against Oxygen-Glucose Deprivation-Induced Inflammation and Oxidative Stress by Akt/FOXO3a/NF-κB Pathway. DISEASE MARKERS 2022; 2022:8205707. [PMID: 36072899 PMCID: PMC9444414 DOI: 10.1155/2022/8205707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/06/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Objective. This study is aimed at investigating the mechanism of α-cyperone in oxygen and glucose deprivation- (OGD-) induced myocardial injury. Methods. Cardiomyocytes were exposed to OGD and then treated with α-cyperone. The cell counting kit-8 (CCK-8) assay and flow cytometry were performed to determine cell proliferation and apoptosis, respectively. The expression of inflammatory factors was monitored by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The profiles of apoptosis-related proteins, inflammatory proteins, and the Akt/FOXO3a/NF-κB pathway were determined by western blot. The phosphorylation of Akt, FOXO3a, and NF-κB was determined by immunofluorescence assay. The superoxide dismutase (SOD) activity and the malondialdehyde (MDA) content were gauged by the colorimetric method, and the reactive oxygen species (ROS) content was measured. Results. α-Cyperone hindered OGD-induced inflammation, oxidative stress, and apoptosis in cardiomyocytes. OGD activated the FOXO3a/NF-κB pathway and hampered the Akt phosphorylation. α-cyperone reversed OGD-mediated FOXO3a/NF-κB pathway activation. Treatment with MK-2206 abated the protective effect of α-cyperone against OGD-induced myocardial injury. The addition of α-cyperone to cardiomyocytes following Bay11-7082 treatment had no conspicuous effect on the viability and apoptosis. Conclusions. α-Cyperone protected cardiomyocytes against OGD-induced inflammation and oxidative stress via the Akt/FOXO3a/NF-κB axis.
Collapse
|
11
|
Xie D, Hu J, Wu T, Xu W, Meng Q, Cao K, Luo X. Effects of Flavonoid Supplementation on Nanomaterial-Induced Toxicity: A Meta-Analysis of Preclinical Animal Studies. Front Nutr 2022; 9:929343. [PMID: 35774549 PMCID: PMC9237539 DOI: 10.3389/fnut.2022.929343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
BackgroundNanomaterials, widely applied in various fields, are reported to have toxic effects on human beings; thus, preventive or therapeutic measures are urgently needed. Given the anti-inflammatory and antioxidant activities, supplementation with flavonoids that are abundant in the human diet has been suggested as a potential strategy to protect against nanomaterial-induced toxicities. However, the beneficial effects of flavonoids remain inconclusive. In the present study, we performed a meta-analysis to comprehensively explore the roles and mechanisms of flavonoids for animals intoxicated with nanomaterials.MethodsA systematic literature search in PubMed, EMBASE, and Cochrane Library databases was performed up to April 2022. STATA 15.0 software was used for meta-analyses.ResultsA total of 26 studies were identified. The results showed that flavonoid supplementation could significantly increase the levels of antioxidative enzymes (superoxide dismutase, catalase, glutathione, glutathione peroxidase, and glutathione-S-transferase), reduce the production of oxidative agents (malonaldehyde) and pro-inflammatory mediators (tumor necrosis factor-α, interleukin-6, IL-1β, C-reactive protein, immunoglobulin G, nitric oxide, vascular endothelial growth factor, and myeloperoxidase), and alleviate cell apoptosis (manifested by decreases in the mRNA expression levels of pro-apoptotic factors, such as caspase-3, Fas cell surface death receptor, and Bax, and increases in the mRNA expression levels of Bcl2), DNA damage (reductions in tail length and tail DNA%), and nanomaterial-induced injuries of the liver (reduced alanine aminotransferase and aspartate aminotransferase activities), kidney (reduced urea, blood urea nitrogen, creatinine, and uric acid concentration), testis (increased testosterone, sperm motility, 17β-hydroxysteroid dehydrogenase type, and reduced sperm abnormalities), and brain (enhanced acetylcholinesterase activities). Most of the results were not changed by subgroup analyses.ConclusionOur findings suggest that appropriate supplementation of flavonoids may be effective to prevent the occupational detriments resulting from nanomaterial exposure.
Collapse
Affiliation(s)
- Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
| | - Tong Wu
- Shanghai Jing Rui Yang Industrial Co., Ltd, Shanghai, China
| | - Wei Xu
- Shanghai Nutri-woods Bio-Technology Co., Ltd, Shanghai, China
| | - Qingyang Meng
- Shanghai Pechoin Daily Chemical Co., Ltd, Shanghai, China
| | - Kangli Cao
- Shanghai Institute of Spacecraft Equipment, Shanghai, China
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, China
- *Correspondence: Xiaogang Luo,
| |
Collapse
|
12
|
Yang HB, Lu ZY, Yuan W, Li WD, Mao S. Selenium Attenuates Doxorubicin-Induced Cardiotoxicity Through Nrf2-NLRP3 Pathway. Biol Trace Elem Res 2022; 200:2848-2856. [PMID: 34462843 DOI: 10.1007/s12011-021-02891-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/19/2022]
Abstract
Selenium (Se), an essential nutrient for humans, has been reported to possess cardioprotective effect. However, the protective effects of Se against doxorubicin (DOX)-induced cardiotoxicity and the underlying mechanism are rarely reported. In this study, we sought to explore whether Se protected against DOX-induced cardiotoxicity by inhibiting Nrf2-NLRP3 pathway. We found that Se treatment effectively alleviated DOX-induced myocardial dysfunctions, decreasing plasma markers associated with myocardial injury. Moreover, Se treatment significantly inhibited DOX-induced oxidative damages and pro-inflammatory cytokine expression in heart tissues. Furthermore, Se treatment markedly promoted the expression of Nrf2 and prevented the activation of NLRP3 inflammasome. Importantly, suppression of Nrf2 abolished the cardioprotective effects of Se and diminished the inhibition of Se on NLRP3 inflammasome. Collectively, our study demonstrated that Se might protect against DOX-induced cardiotoxicity via regulating Nrf2-NLRP3 pathway. Se supplementation may be a potential therapeutic strategy to protect against DOX-induced cardiac injury.
Collapse
Affiliation(s)
- Hai-Bing Yang
- Department of Cardiology, Yingshang First Hospital, Yingli Road, Fuyang, 236000, China.
| | - Zhao-Yang Lu
- Department of Cardiology, The Second Hospital of Shanxi Medical University, 382 Wuyi Road, Taiyuan, 030001, China.
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Jie Fang Road 438, Zhenjiang, 212001, China
| | - Wei-Dong Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Jie Fang Road 438, Zhenjiang, 212001, China
| | - Shang Mao
- Department of Cardiology, Yingshang First Hospital, Yingli Road, Fuyang, 236000, China
| |
Collapse
|
13
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7244677. [PMID: 34820054 PMCID: PMC8608524 DOI: 10.1155/2021/7244677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
14
|
Mihailovic V, Katanic Stankovic JS, Selakovic D, Rosic G. An Overview of the Beneficial Role of Antioxidants in the Treatment of Nanoparticle-Induced Toxicities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: https://doi.org/10.1155/2021/7244677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nanoparticles (NPs) are used in many products and materials for humans such as electronics, in medicine for drug delivery, as biosensors, in biotechnology, and in agriculture, as ingredients in cosmetics and food supplements. Besides that, NPs may display potentially hazardous properties on human health and the environment as a consequence of their abundant use in life nowadays. Hence, there is increased interest of researchers to provide possible therapeutic agents or dietary supplements for the amelioration of NP-induced toxicity. This review summarizes the new findings in the research of the use of antioxidants as supplements for the prevention and alleviation of harmful effects caused by exposure of organisms to NPs. Also, mechanisms involved in the formation of NP-induced oxidative stress and protective mechanisms using different antioxidant substances have also been elaborated. This review also highlights the potential of naturally occurring antioxidants for the enhancement of the antioxidant defense systems in the prevention and mitigation of organism damage caused by NP-induced oxidative stress. Based on the presented results of the most recent studies, it may be concluded that the role of antioxidants in the prevention and treatment of nanoparticle-induced toxicity is unimpeachable. This is particularly important in terms of oxidative stress suppression.
Collapse
Affiliation(s)
- Vladimir Mihailovic
- University of Kragujevac, Faculty of Science, Department of Chemistry, Radoja Domanovica 12, 34000 Kragujevac, Serbia
| | - Jelena S. Katanic Stankovic
- University of Kragujevac, Institute for Information Technologies Kragujevac, Department of Science, Jovana Cvijica bb, 34000 Kragujevac, Serbia
| | - Dragica Selakovic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| | - Gvozden Rosic
- University of Kragujevac, Faculty of Medical Sciences, Department of Physiology, Svetozara Markovica 69, 34000 Kragujevac, Serbia
| |
Collapse
|
15
|
Alam W, Rocca C, Khan H, Hussain Y, Aschner M, De Bartolo A, Amodio N, Angelone T, Cheang WS. Current Status and Future Perspectives on Therapeutic Potential of Apigenin: Focus on Metabolic-Syndrome-Dependent Organ Dysfunction. Antioxidants (Basel) 2021; 10:antiox10101643. [PMID: 34679777 PMCID: PMC8533599 DOI: 10.3390/antiox10101643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome and its associated disorders such as obesity, insulin resistance, atherosclerosis and type 2 diabetes mellitus are globally prevalent. Different molecules showing therapeutic potential are currently available for the management of metabolic syndrome, although their efficacy has often been compromised by their poor bioavailability and side effects. Studies have been carried out on medicinal plant extracts for the treatment and prevention of metabolic syndrome. In this regard, isolated pure compounds have shown promising efficacy for the management of metabolic syndrome, both in preclinical and clinical settings. Apigenin, a natural bioactive flavonoid widely present in medicinal plants, functional foods, vegetables and fruits, exerts protective effects in models of neurological disorders and cardiovascular diseases and most of these effects are attributed to its antioxidant action. Various preclinical and clinical studies carried out so far show a protective effect of apigenin against metabolic syndrome. Herein, we provide a comprehensive review on both in vitro and in vivo evidence related to the promising antioxidant role of apigenin in cardioprotection, neuroprotection and renoprotection, and to its beneficial action in metabolic-syndrome-dependent organ dysfunction. We also provide evidence on the potential of apigenin in the prevention and/or treatment of metabolic syndrome, analysing the potential and limitation of its therapeutic use.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou 221400, China;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY 10461, USA;
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
| | - Nicola Amodio
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Physiology, Department of Biology, Ecology and Earth Sciences (Di.B.E.S.T.), University of Calabria, 87036 Rende, Italy; (C.R.); (A.D.B.)
- National Institute of Cardiovascular Research I.N.R.C., 40126 Bologna, Italy
- Correspondence: or (H.K.); (N.A.); (T.A.)
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao 999078, China;
| |
Collapse
|