1
|
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang YM, Li SJ. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:4459-4481. [PMID: 38206494 DOI: 10.1007/s12011-023-04041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Essential metals play critical roles in maintaining human health as they participate in various physiological activities. Nonetheless, both excessive accumulation and deficiency of these metals may result in neurotoxicity secondary to neuroinflammation and the activation of microglia and astrocytes. Activation of these cells can promote the release of pro-inflammatory cytokines. It is well known that neuroinflammation plays a critical role in metal-induced neurotoxicity as well as the development of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Initially seen as a defense mechanism, persistent inflammatory responses are now considered harmful. Astrocytes and microglia are key regulators of neuroinflammation in the central nervous system, and their excessive activation may induce sustained neuroinflammation. Therefore, in this review, we aim to emphasize the important role and molecular mechanisms underlying metal-induced neurotoxicity. Our objective is to raise the awareness on metal-induced neuroinflammation in neurological disorders. However, it is not only just neuroinflammation that different metals could induce; they can also cause harm to the nervous system through oxidative stress, apoptosis, and autophagy, to name a few. The primary pathophysiological mechanism by which these metals induce neurological disorders remains to be determined. In addition, given the various pathways through which individuals are exposed to metals, it is necessary to also consider the effects of co-exposure to multiple metals on neurological disorders.
Collapse
Affiliation(s)
- Ruokun Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Peiqi Wei
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Haiyan Yuan
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Xiang Yi
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China
| | - Michael Aschner
- The Department of Molecular Pharmacology at Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| | - Shao-Jun Li
- Toxicology Department, School of Public Health, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, China.
- Guangxi Key Laboratory of Environment and Health Research, Guangxi Medical University, 22 Shuang-yong Rd., Nanning, 530021, Guangxi, China.
| |
Collapse
|
2
|
Peng D, Wang L, Fang Y, Lu L, Li Z, Jiang S, Chen J, Aschner M, Li S, Jiang Y. Lead exposure induces neurodysfunction through caspase-1-mediated neuronal pyroptosis. ENVIRONMENTAL RESEARCH 2024; 255:119210. [PMID: 38795947 DOI: 10.1016/j.envres.2024.119210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Chronic lead (Pb) exposure causes neurodysfunction and contributes to the development of neurodegenerative disease. However, the mechanism of Pb-induced neurological dysfunction have yet to be fully elucidated. This study determined the role pyroptosis plays in Pb-induced neurodysfunction in neurons. We used both in vitro and in vivo approaches to explore whether Pb exposure induces caspase-1-mediated pyroptosis in neurons and its relationship to Pb-induced neurological disorders. Our findings showed that caspase-1-mediated pyroptosis in Pb-exposed neurons activated glycogen synthase kinase 3 protease activity by disrupting Ca2+/calmodulin-dependent protein kinase II/cAMP-response element binding protein pathway, leading to neurological disorders. Moreover, the caspase-1 inhibition VX-765 or the non-steroidal anti-inflammatory drug sodium para-aminosalicylic acid (PAS-Na) attenuated the Pb-induced neurological disorders by alleviating caspase-1 mediated neuronal pyroptosis. Our novel studies suggest that caspase-1-mediated pyroptosis in neurons represents a potential mechanism for Pb-induced neurodysfunction, identifying a putative target for attenuating the neurodegenerative effects induced by this metal.
Collapse
Affiliation(s)
- Dongjie Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Leilei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yuanyuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lili Lu
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Zhaocong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Siyang Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Shaojun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Yueming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
3
|
Xie YH, Song HX, Peng JC, Li SJ, Ou SY, Aschner M, Jiang YM. Treatment of manganese and lead poisoning with sodium para-aminosalicylic acid: A contemporary update. Toxicol Lett 2024; 398:69-81. [PMID: 38909920 DOI: 10.1016/j.toxlet.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
Sodium para-aminosalicylic acid (PAS-Na) treatment for manganese (Mn) intoxication has shown efficacy in experimental and clinical studies, giving rise to additional studies on its efficacy for lead (Pb) neurotoxicity and its associated mechanisms of neuroprotection. The difference between PAS-Na and other metal complexing agents, such as edetate calcium sodium (CaNa2-EDTA), is firstly that PAS-Na can readily pass through the blood-brain barrier (BBB), and complex and facilitate the excretion of manganese and lead. Secondly, PAS-Na has anti-inflammatory effects. Recent studies have broadened the understanding on the mechanisms associated with efficacy of PAS-Na. The latter has been shown to modulate multifarious manganese- and lead- induced neurotoxicity, via its anti-apoptotic and anti-inflammatory effects, as well as its ability to inhibit pyroptosis, and regulate abnormal autophagic processes. These observations provide novel scientific bases and new concepts for the treatment of lead, mercury, copper, thallium, as well as other toxic encephalopathies, and implicate PAS-Na as a compound with greater prospects for clinical medical application.
Collapse
Affiliation(s)
- Yu-Han Xie
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Han-Xiao Song
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Jian-Chao Peng
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shao-Jun Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning 530021, China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
4
|
Wang LL, Zhu XJ, Fang YY, Li Y, Zhao YS, Gan CL, Luo JJ, Ou SY, Aschner M, Jiang YM. Sodium Para-Aminosalicylic Acid Modulates Autophagy to Lessen Lead-Induced Neurodegeneration in Rat Cortex. Neurotox Res 2023; 41:1-15. [PMID: 36598679 DOI: 10.1007/s12640-022-00615-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023]
Abstract
Lead (Pb) is a common heavy metal contaminant in the environment, and it may perturb autophagy and cause neurodegeneration. Although sodium para-aminosalicylic (PAS-Na) has been shown to protect the brain from lead-induced toxicity, the mechanisms associated with its efficacy have yet to be fully understood. In this study, we evaluated the efficacy of PAS-Na in attenuating the neurotoxic effects of lead, as well as the specific mechanisms that mediate such protection. Lead exposure resulted in weight loss and injury to the liver and kidney, and PAS-Na had a protective effect against this damage. Both short-term and subchronic lead exposure impaired learning ability, and this effect was reversed by PAS-Na intervention. Lead exposure also perturbed autophagic processes through the modulation of autophagy-related factors. Short-term lead exposure downregulated LC3 and beclin1 and upregulated the expression of p62; subchronic lead exposure upregulated the expression of LC3, beclin1, and P62. It follows that PAS-Na had an antagonistic effect on the activation of the above autophagy-related factors. Overall, our novel findings suggest that PAS-Na can protect the rat cortex from lead-induced toxicity by regulating autophagic processes. (1) Short-term lead exposure inhibits autophagy, whereas subchronic lead exposure promotes autophagy. (2) PAS-NA ameliorated the abnormal process of lead-induced autophagy, which had a protective effect on the cerebral cortex.
Collapse
Affiliation(s)
- Lei-Lei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Xiao-Juan Zhu
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan-Yuan Fang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Yan Li
- Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease, Nanning, 530021, China
| | - Yue-Song Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Cui-Liu Gan
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing-Jing Luo
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Michael Aschner
- Guangxi Zhuang Autonomous Region Institute for the Prevention and Treatment of Occupational Disease, Nanning, 530021, China.,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, 22 Shuang-Yong Rd., Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
5
|
Zhao YS, Li JY, Li ZC, Wang LL, Gan CL, Chen J, Jiang SY, Aschner M, Ou SY, Jiang YM. Sodium Para-aminosalicylic Acid Inhibits Lead-Induced Neuroinflammation in Brain Cortex of Rats by Modulating SIRT1/HMGB1/NF-κB Pathway. Neurochem Res 2023; 48:238-249. [PMID: 36063295 PMCID: PMC9825627 DOI: 10.1007/s11064-022-03739-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Lead (Pb) is considered to be a major environmental pollutant and occupational health hazard worldwide which may lead to neuroinflammation. However, an effective treatment for Pb-induced neuroinflammation remains elusive. The aim of this study was to investigate the mechanisms of Pb-induced neuroinflammation, and the therapeutic effect of sodium para-aminosalicylic acid (PAS-Na, a non-steroidal anti-inflammatory drug) in rat cerebral cortex. The results indicated that Pb exposure induced pathological damage in cerebral cortex, accompanied by increased levels of inflammatory factors tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Moreover, Pb decreased the expression of silencing information regulator 2 related enzyme 1 (SIRT1) and brain-derived neurotrophic factor (BDNF), and increased the levels of high mobile group box 1 (HMGB1) expression and p65 nuclear factor-κB (NF-κB) phosphorylation. PAS-Na treatment ameliorated Pb-induced histopathological changes in rat cerebral cortex. Moreover, PAS-Na reduced the Pb-induced increase of TNF-α and IL-1β levels concomitant with a significant increase in SIRT1 and BDNF levels, and a decrease in HMGB1 and the phosphorylation of p65 NF-κB expression. Thus, PAS-Na may exert anti-inflammatory effects by mediating the SIRT1/HMGB1/NF-κB pathway and BDNF expression. In conclusion, in this novel study PAS-Na was shown to possess an anti-inflammatory effect on cortical neuroinflammation, establishing its efficacy as a potential treatment for Pb exposures.
Collapse
Affiliation(s)
- Yue-Song Zhao
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jun-Yan Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Hengyang Center for Disease Control and Prevention, Hengyang, China
| | - Zhao-Cong Li
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Lei-Lei Wang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Cui-Liu Gan
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Jing Chen
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Si-Yang Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Shi-Yan Ou
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| | - Yue-Ming Jiang
- Department of Toxicology, School of Public Health, Guangxi Medical University, No. 22, Shuang-yong Rd., Nanning, 530021, Guangxi, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China.
| |
Collapse
|
6
|
Methylcyclopentadienyl Manganese Tricarbonyl Alter Behavior and Cause Ultrastructural Changes in the Substantia Nigra of Rats: Comparison with Inorganic Manganese Chloride. Neurochem Res 2022; 47:2198-2210. [PMID: 35513760 DOI: 10.1007/s11064-022-03606-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
Abstract
The antiknock additive methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese(Mn) compound. Mn neurotoxicity caused by occupational Mn exposure (mostly inorganic MnCl2) is associated with motor and cognitive disturbances, referred to as Manganism. However, the impact of environmentally relevant Mn exposure on MMT-induced Manganism is poorly understood. In this investigation, we studied the effects of MMT on motor function and brain structure, and compared its effects with those of inorganic MnCl2. After adaptive feeding for 7 days, male and female Sprague-Dawley (SD) rats in the MMT-treated groups and positive control group were treated for 8 weeks with MMT (1, 2 and 4 mg/kg/i.g.) or MnCl2·4H2O (200 mg/kg/i.g.). Mn content in blood, liver, spleen and distinct brain regions was determined by inductively coupled plasma-mass spectrometer (ICP-MS). We found that MMT and MnCl2 exposure led to slower body-weight-gain in female rats, impaired motor and balance function and spatial learning and memory both in male and female rats. HE staining showed that MMT and MnCl2 led to altered structure of the substantia nigra pars compacta (SNpc), and Nissl staining corroborated MMT's propensity to damage the SNpc both in male and female rat. In addition, Immunostaining of the SNpc showed decreased TH-positive neurons in MMT- and MnCl2-treated rats, concomitant with Iba1 activation in microglia. Moreover, no statistically significant difference was noted between the rats in the H-MMT and MnCl2 groups. In summary, these findings suggest that MMT and MnCl2 exposure cause ultrastructural changes in the SNpc neurons culminating in altered motor behavior and cognition, suggesting that altered SNpc structure and function may underline the motor and cognitive deficits inherent to Manganism, and accounting for MMT and MnCl2's manifestations of atypical parkinsonism.
Collapse
|