1
|
Khaleil SR, Mira NM, Ghanem NF, M El-Mehasseb I, Helal IB, El-Shafai NM. Dual mechanism (sunlight/dark) of the self-assembly nitazoxanide drug on cellulose nanocrystal surface for destroying the Cryptosporidium parvum oocysts. Int J Biol Macromol 2023; 247:125823. [PMID: 37453638 DOI: 10.1016/j.ijbiomac.2023.125823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Destruction of the cryptosporidium parvum (C. parvum) Oocysts is the main target of the work via the improvement effect of the nitazoxanide (NTZ) drug by increasing the drug adsorption process without changing the cell viability. The synthesis of a self-assembly nanocomposite (NCP) of cellulose nanocrystals (CNC) and NTZ drug was performed successfully via the chemical precipitation methods without utilizing the temperature. Also, the characterization of the fabricated NCP was achieved by different techniques to confirm the natural formation of the NCP. The efficient loading of the NTZ drug on the CMC surface and the release process of NCP was calculated by a UV-Visible spectroscopy device, and the loading efficiency is 37 %. The release efficiency is displayed at 66.3 % after 6 h, and 97 % after 48 h at pH 7.4 with NTZ pure, while the release efficiency of CNC@NTZ at the same pH is 61 % after 6 h, and 86 % after 48 h at pH 7.4. The cytotoxicity of different concentrations of NCP was conducted on normal mouse liver cells (BNL) via the quick screening cytotoxicity method (SRB). The effect of NCP on C. parvum was detected with an in-vivo study in the dark and under sunlight conditions. Compared to the NTZ and CNC, the fabricated NCP was able to destroy 89.3 % of the oocyst wall after 96 h. Moreover, a sporulation inhibition percentage of 53.97 % ± 0.63 % was achieved by a maximum concentration of 7 mg/mL after 9.5 h. The results are very encouraging to use the modified NCP as an alternative NTZ drug, although further research is required in terms of clinical trials.
Collapse
Affiliation(s)
- Shrouk R Khaleil
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nabila M Mira
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Nora F Ghanem
- Zoology Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Ibrahim M El-Mehasseb
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt
| | - Ibrahim B Helal
- Zoology Department, Faculty of Science, Tanta University, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516, Egypt.
| |
Collapse
|
2
|
Lerchbammer-Kreith Y, Sommerfeld NS, Cseh K, Weng-Jiang X, Odunze U, Schätzlein AG, Uchegbu IF, Galanski MS, Jakupec MA, Keppler BK. Platinum(IV)-Loaded Degraded Glycol Chitosan as Efficient Platinum(IV) Drug Delivery Platform. Pharmaceutics 2023; 15:pharmaceutics15041050. [PMID: 37111536 PMCID: PMC10145531 DOI: 10.3390/pharmaceutics15041050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
A new class of anticancer prodrugs was designed by combining the cytotoxicity of platinum(IV) complexes and the drug carrier properties of glycol chitosan polymers: Unsymmetrically carboxylated platinum(IV) analogues of cisplatin, carboplatin and oxaliplatin, namely (OC-6-44)-acetatodiammine(3-carboxypropanoato)dichloridoplatinum(IV), (OC-6-44)-acetaodiammine(3-carboxypropanoato)(cyclobutane-1,1-dicarboxylato)platinum(IV) and (OC-6-44)-acetato(3-carboxypropanoato)(1R,2R-cyclohexane-1,2-diamine)oxalatoplatinum(IV) were synthesised and conjugated via amide bonding to degraded glycol chitosan (dGC) polymers with different chain lengths (5, 10, 18 kDa). The 15 conjugates were investigated with 1H and 195Pt NMR spectroscopy, and average amounts of platinum(IV) units per dGC polymer molecule with ICP-MS, revealing a range of 1.3-22.8 platinum(IV) units per dGC molecule. Cytotoxicity was tested with MTT assays in the cancer cell lines A549, CH1/PA-1, SW480 (human) and 4T1 (murine). IC50 values in the low micromolar to nanomolar range were obtained, and higher antiproliferative activity (up to 72 times) was detected with dGC-platinum(IV) conjugates in comparison to platinum(IV) counterparts. The highest cytotoxicity (IC50 of 0.036 ± 0.005 µM) was determined in CH1/PA-1 ovarian teratocarcinoma cells with a cisplatin(IV)-dGC conjugate, which is hence 33 times more potent than the corresponding platinum(IV) complex and twice more potent than cisplatin. Biodistribution studies of an oxaliplatin(IV)-dGC conjugate in non-tumour-bearing Balb/C mice showed an increased accumulation in the lung compared to the unloaded oxaliplatin(IV) analogue, arguing for further activity studies.
Collapse
Affiliation(s)
- Yvonne Lerchbammer-Kreith
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Nadine S Sommerfeld
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Klaudia Cseh
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Xian Weng-Jiang
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Uchechukwu Odunze
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Andreas G Schätzlein
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Ijeoma F Uchegbu
- School of Pharmacy, University College London, Brunswick Square 29-39, London WC1N 1AX, UK
| | - Mathea S Galanski
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
- Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Strasse 42, 1090 Vienna, Austria
| |
Collapse
|
3
|
Davoudi M, Jadidi Y, Moayedi K, Farrokhi V, Afrisham R. Ameliorative impacts of polymeric and metallic nanoparticles on cisplatin-induced nephrotoxicity: a 2011-2022 review. J Nanobiotechnology 2022; 20:504. [PMID: 36457031 PMCID: PMC9714065 DOI: 10.1186/s12951-022-01718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Cisplatin (CDDP) is a well-known platinum-based drug used in the treatment of various malignancies. However, the widespread side effects that this drug leaves on normal tissues make its use limited. Since cisplatin is mainly eliminated from the kidneys, CDDP-induced nephrotoxicity is the most significant dose-limiting complication attributed to cisplatin, which often leads to dose withdrawal. Considering the high efficiency of cisplatin in chemotherapy, finding renoprotective drug delivery systems for this drug is a necessity. In this regard, we can take advantages of different nanoparticle-based approaches to deliver cisplatin into tumors either using passive targeting or using specific receptors. In an effort to find more effective cisplatin-based nano-drugs with less nephrotoxic effect, the current 2011-2022 review study was conducted to investigate some of the nanotechnology-based methods that have successfully been able to mitigate CDDP-induced nephrotoxicity. Accordingly, although cisplatin can cause renal failures through inducing mitochondria dysfunction, oxidative stress, lipid peroxidation and endoplasmic reticulum stress, some CDDP-based nano-carriers have been able to reverse a wide range of these advert effects. Based on the obtained results, it was found that the use of different metallic and polymeric nanoparticles can help renal cells to strengthen their antioxidant systems and stay alive through reducing CDDP-induced ROS generation, inhibiting apoptosis-related pathways and maintaining the integrity of the mitochondrial membrane. For example, nanocurcumin could inhibit oxidative stress and acting as a ROS scavenger. CONPs could reduce lipid peroxidation and pro-inflammatory cytokines. CDDP-loaded silver nanoparticles (AgNPs) could inhibit mitochondria-mediated apoptosis. In addition, tea polyphenol-functionalized SeNPs (Se@TE) NPs could mitigate the increased level of dephosphorylated AKT, phosphorylated p38 MAPK and phosphorylated c-Jun N-terminal kinase (JNK) induced by cisplatin. Moreover, exosomes mitigated cisplatin-induced renal damage through inhibiting Bcl2 and increasing Bim, Bid, Bax, cleaved caspase-9, and cleaved caspase-3. Hence, nanoparticle-based techniques are promising drug delivery systems for cisplatin so that some of them, such as lipoplatins and nanocurcumins, have even reached phases 1-3 trials.
Collapse
Affiliation(s)
- Maryam Davoudi
- grid.411705.60000 0001 0166 0922Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- grid.411705.60000 0001 0166 0922Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- grid.411705.60000 0001 0166 0922Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- grid.411705.60000 0001 0166 0922Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Afrisham
- grid.411705.60000 0001 0166 0922Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|