1
|
Manimaran K, Yanto DHY, Sari IP, Karimah SN, Kamaraj C, Manoharadas S, Praburaman L, Suganthi S, Oh TH. Novel approaches of mycosynthesized zinc oxide nanoparticles (ZnONPs) using Pleurotus sajor-caju extract and their biological and environmental applications. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:423. [PMID: 39312006 DOI: 10.1007/s10653-024-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/19/2024] [Indexed: 09/29/2024]
Abstract
In this study, mycosynthesized zinc oxide nanoparticles (ZnONPs) are fabricated via Pleurotus sajor-caju mushroom extract, and their potential medical and environmental applications are demonstrated. The biosynthesized ZnONPs were assessed for their antibacterial, anticancer, and biodecolorization potential efficiency. They were also characterized and morphologically analyzed by UV-visible spectroscopy, XRD, FT-IR, FE-SEM, EDX, HR-TEM, Zeta potential, and GC-MS analysis. The UV visible spectrum analysis of synthesized ZnONPs analyzed outcome 354 nm was the SPR peak that the nanoparticles displayed. The characteristic Zn-O bond was indicated by a strong peak in the FT-IR study at 432.05 cm-1. Based on XRD analysis, P. sajor-caju mediated ZnONPs were crystalline nature, with an average nano particle size of 14.21 nm and a polydispersity directory of 0.29. The nanoparticles exhibit modest constancy, as shown by their zeta potential value of - 33.2 mV. The presence of oxygen and zinc was verified by EDX analysis. The ZnONPs were found to be spherical in shape and crystalline nature structure, with smooth surface morphology and a mean particle size of 10 nm using HR-TEM and SAED analysis. The significant antibacterial activity against S. aureus (6.2 ± 0.1), S. mutans (5.4 ± 0.4), and B. subtilis (5.2 ± 0.1 mm) was demonstrated by the synthesized ZnONPs made using mushroom extract. It was discovered that when the concentration of mushroom extract was increased together with synthesized ZnONPs, the bactericidal activity increased considerably. A higher concentration of ZnONPs demonstrated superior antibacterial activity across the ZnONPs ratio tests. The in vitro cytotoxicity assay showed that ZnONPs, even at low doses, had a substantial number of cytotoxic effects on liver cancer cells (LC50 values 47.42 µg/mL). The effectiveness test revealed that acid blue 129 was degraded. The best decolorization of acid blue 129 at 72.57% after 3 h of soaking serves as evidence for the theory that myco-synthesized ZnONPs by P. sajor-caju mushroom can function as catalysts in reducing the dye. The mycosynthesized ZnONPs from P. sajor-caju extract, and its potential for antibacterial, anticancer, and decolorization are in this investigation. The mycosynthesized ZnONPs suggest a novel use for nanoparticles in the creation of environmental and medicinal products.
Collapse
Affiliation(s)
- Kumar Manimaran
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Dede Heri Yuli Yanto
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia.
| | - Ira Puspita Sari
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Silviyani Nurul Karimah
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), JI. Raya Bogor Km. 46, Cibinong, 16911, Indonesia
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Salim Manoharadas
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. BOX 2454, Riyadh, Saudi Arabia
| | - Loganathan Praburaman
- Centre for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai, Tamil Nadu, India
| | - Sanjeevamuthu Suganthi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
2
|
Sanjai C, Hakkimane SS, Guru BR, Gaonkar SL. A comprehensive review on anticancer evaluation techniques. Bioorg Chem 2024; 142:106973. [PMID: 37984104 DOI: 10.1016/j.bioorg.2023.106973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The development of effective anticancer strategies and the improvement of our understanding of cancer need analytical tools. Utilizing a variety of analytical approaches while investigating anti-cancer medicines gives us a thorough understanding of the traits and mechanisms concerned to cancer cells, which enables us to develop potent treatments to combat them. The importance of anticancer research may be attributed to various analytical techniques that contributes to the identification of therapeutic targets and the assessment of medication efficacy, which are crucial things in expanding our understanding of cancer biology. The study looks at methods that are often used in cancer research, including cell viability assays, clonogenic assay, flow cytometry, 2D electrophoresis, microarray, immunofluorescence, western blot caspase activation assay, bioinformatics, etc. The fundamentals, applications, and how each technique analytical advances our understanding of cancer are briefly reviewed.
Collapse
Affiliation(s)
- Chetana Sanjai
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sushruta S Hakkimane
- Department of Biotechnology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Bharath Raja Guru
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Santosh L Gaonkar
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
3
|
Mikhailidi A, Ungureanu E, Belosinschi D, Tofanica BM, Volf I. Cellulose-Based Metallogels-Part 3: Multifunctional Materials. Gels 2023; 9:878. [PMID: 37998968 PMCID: PMC10671087 DOI: 10.3390/gels9110878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023] Open
Abstract
The incorporation of the metal phase into cellulose hydrogels, resulting in the formation of metallogels, greatly expands their application potential by introducing new functionalities and improving their performance in various fields. The unique antiviral, antibacterial, antifungal, and anticancer properties of metal and metal oxide nanoparticles (Ag, Au, Cu, CuxOy, ZnO, Al2O3, TiO2, etc.), coupled with the biocompatibility of cellulose, allow the development of composite hydrogels with multifunctional therapeutic potential. These materials can serve as efficient carriers for controlled drug delivery, targeting specific cells or pathogens, as well as for the design of artificial tissues or wound and burn dressings. Cellulose-based metallogels can be used in the food packaging industry to provide biodegradable and biocidal materials to extend the shelf life of the goods. Metal and bimetallic nanoparticles (Au, Cu, Ni, AuAg, and AuPt) can catalyze chemical reactions, enabling composite cellulose hydrogels to be used as efficient catalysts in organic synthesis. In addition, metal-loaded hydrogels (with ZnO, TiO2, Ag, and Fe3O4 nanoparticles) can exhibit enhanced adsorption capacities for pollutants, such as dyes, heavy metal ions, and pharmaceuticals, making them valuable materials for water purification and environmental remediation. Magnetic properties imparted to metallogels by iron oxides (Fe2O3 and Fe3O4) simplify the wastewater treatment process, making it more cost-effective and environmentally friendly. The conductivity of metallogels due to Ag, TiO2, ZnO, and Al2O3 is useful for the design of various sensors. The integration of metal nanoparticles also allows the development of responsive materials, where changes in metal properties can be exploited for stimuli-responsive applications, such as controlled release systems. Overall, the introduction of metal phases augments the functionality of cellulose hydrogels, expanding their versatility for diverse applications across a broad spectrum of industries not envisaged during the initial research stages.
Collapse
Affiliation(s)
- Aleksandra Mikhailidi
- Higher School of Printing and Media Technologies, St. Petersburg State University of Industrial Technologies and Design, 18 Bolshaya Morskaya Street, 191186 St. Petersburg, Russia;
| | - Elena Ungureanu
- “Ion Ionescu de la Brad” University of Life Sciences Iasi, 3 Mihail Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Belosinschi
- Innovations Institute in Ecomaterials, Ecoproducts, and Ecoenergies, University of Quebec at Trois-Rivières, 3351, Boul. des Forges, Trois-Rivières, QC G8Z 4M3, Canada;
- CellON AS, Lakkegata 75C, NO-0562 Oslo, Norway
| | - Bogdan-Marian Tofanica
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
- IF2000 Academic Foundation, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| | - Irina Volf
- “Gheorghe Asachi” Technical University of Iasi, 73 Prof. Dr. Docent D. Mangeron Boulevard, 700050 Iasi, Romania
| |
Collapse
|
4
|
Li J, Wu K, Zhang J, Gao H, Xu X. Progress in the treatment of drug-loaded nanomaterials in renal cell carcinoma. Biomed Pharmacother 2023; 167:115444. [PMID: 37716114 DOI: 10.1016/j.biopha.2023.115444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023] Open
Abstract
Renal cell carcinoma (RCC) is a common urinary tract tumor that arises from the highly heterogeneous epithelium of the renal tubules. The incidence of kidney cancer is second only to the incidence of bladder cancer, and has shown an upward trend over time. Although surgery is the preferred treatment for localized RCC, treatment decisions should be customized to individual patients considering their overall health status and the risk of developing or worsening chronic kidney disease postoperatively. Anticancer drugs are preferred to prevent perioperative and long-term postoperative complications; however, resistance to chemotherapy remains a considerable problem during the treatment process. To overcome this challenge, nanocarriers have emerged as a promising strategy for targeted drug delivery for cancer treatment. Nanocarriers can transport anticancer agents, achieving several-fold higher cytotoxic concentrations in tumors and minimizing toxicity to the remaining parts of the body. This article reviews the use of nanomaterials, such as liposomes, polymeric nanoparticles, nanocomposites, carbon nanomaterials, nanobubbles, nanomicelles, and mesoporous silica nanoparticles, for RCC treatment, and discusses their advantages and disadvantages.
Collapse
Affiliation(s)
- Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kunzhe Wu
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinmei Zhang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
6
|
Hamouda RA, Alharbi AA, Al-Tuwaijri MM, Makharita RR. The Antibacterial Activities and Characterizations of Biosynthesized Zinc Oxide Nanoparticles, and Their Coated with Alginate Derived from Fucus vesiculosus. Polymers (Basel) 2023; 15:polym15102335. [PMID: 37242910 DOI: 10.3390/polym15102335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/07/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Zinc oxide nanoparticles have many advantages for nano-biotechnologists due to their intense biomedical applications. ZnO-NPs are used as antibacterial agents, which influence bacterial cells through the rupture of the cell membrane and the generation of reactive free radicals. Alginate is a polysaccharide of natural origin due to its excellent properties that are used in various biomedical applications. Brown algae are good sources of alginate and are used as a reducing agent in the synthesis of nanoparticles. This study aims to synthesize ZnO-NPs by using brown alga Fucus vesiculosus (Fu/ZnO-NPs) and also to extract alginate from the same alga, which is used in coating the ZnO-NPs (Fu/ZnO-Alg-NCMs). The characterizations of Fu/ZnO-NPs and Fu/ZnO-Alg-NCMs were determined by FTIR, TEM, XRD, and zeta potential. The antibacterial activities were applied against multidrug resistance bacteria of both gram-positive and negative. The results obtained in FT-TR showed there are some shifts in the peak positions of Fu/ZnO-NPs and Fu/ZnO-Alg-NCMs. The peak at 1655 cm-1, which assigned amide I-III, is present in both Fu/ZnO-NPs and Fu-Alg-ZnO-NCMs; this band is responsible for bio-reductions and stabilization of both nanoparticles. The TEM images proved the Fu/ZnO-NPs have rod shapes with sizes ranging from 12.68 to 17.66 and are aggregated, but Fu/ZnO/Alg-NCMs are spherical in shape with sizes ranging from 12.13 to 19.77. XRD-cleared Fu/ZnO-NPs have nine sharp peaks that are considered good crystalline, but Fu/ZnO-Alg-NCMs have four broad and sharp peaks that are considered semi-crystalline. Both Fu/ZnO-NPs and Fu/ZnO-Alg-NCMs have negative charges (-1.74 and -3.56, respectively). Fu/ZnO-NPs have more antibacterial activities than Fu/ZnO/Alg-NCMs in all tested multidrug-resistant bacterial strains. Fu/ZnO/Alg-NCMs had no effect on Acinetobacter KY856930, Staphylococcus epidermidis, and Enterobacter aerogenes, whereas there was an apparent effect of ZnO-NPs against the same strains.
Collapse
Affiliation(s)
- Ragaa A Hamouda
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat City 32897, Egypt
| | - Asrar A Alharbi
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
| | - Majdah M Al-Tuwaijri
- Department of Biology, Faculty of Applied Science, Umm-Al-Qura University, Makkah Al-Mukarramah 21955, Saudi Arabia
| | - Rabab R Makharita
- Department of Biology, College of Science and Arts at Khulis, University of Jeddah, Jeddah 21959, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
7
|
Abou Zaid ES, Mansour SZ, El-Sonbaty SM, Moawed FSM, Kandil EI, Haroun RAH. Boswellic acid coated zinc nanoparticles attenuate NF-κB-mediated inflammation in DSS-induced ulcerative colitis in rats. Int J Immunopathol Pharmacol 2023; 37:3946320221150720. [PMID: 36600460 PMCID: PMC9830081 DOI: 10.1177/03946320221150720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease, and until now therapeutic agents for UC still cannot exert satisfied effects. Therefore, this study aimed to investigate the ameliorative effect of boswellic acid coated zinc nanoparticles (BAs-ZnNPs) on dextran sodium sulphate (DSS) induced-UC in rats. METHODS Rats were divided into five groups; control, BAs-ZnNPs, DSS, DSS+BAs, and DSS + BAs-ZnNPs. The activity of alkaline phosphatase (ALP) was determined colorimetrically, while the concentration of IgM, IgG, TNF-α, IL-1β, and IL-8 were measured by ELISA. Levels of gene expression of NF-κB and COX-2 genes were evaluated by RT-qPCR, while the expression of protein levels of PI3K and STAT-3 were done by western blotting. Finally, histopathological examination of colon tissues of different groups of rats was done. RESULTS The depicted ball-like structure of the BAs-ZnNPs in the TEM images ranging in size from 50 to 100 nm in diameter while their formation was confirmed by UV-visible spectroscopy with a sharp peak of maximum absorbance at 266 nm. Our results revealed that BAs-ZnNPs exerted an anti-inflammatory effect in the experimental model of colitis, demonstrated histologically and biochemically as shown by the improvement of ALP, IgM, IgG, and the gene expression levels of NF-κB and COX-2. Also, this beneficial effect was associated with the reduction in the expression of TNF-α, IL-1β, IL-8, PI3K, and STAT-3. Thus, this effect improves the altered immune response associated with the colonic inflammation. CONCLUSION BAs-ZnNPs can be proposed as a therapeutic candidate to attenuate UC. The potential underlying mechanism includes suppression of ALP, IgM, IgG, IL-1β, and IL-8 levels via regulation of NF-κB and COX-2 gene expression and STAT-3 and PI3K protein expression in a UC rat model.
Collapse
Affiliation(s)
- Eman S Abou Zaid
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt
| | - Somya Z Mansour
- Radiation Biology Department,
National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department,
National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Fatma SM Moawed
- Health Radiation Research
Department, National
Centre for Radiation Research and Technology, Atomic Energy
Authority, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt
| | - Riham Abdel-Hamid Haroun
- Biochemistry Department, Faculty of
Science, Ain Shams
University, Cairo, Egypt,Riham Abdel-Hamid Haroun, Faculty of
Science, Ain Shams University, El-Khalyfa El-Mamoun Street Abbasya, Cairo 11566,
Egypt.
| |
Collapse
|
8
|
Moawed FS, Haroun RAH, Abou Zaid ES, Mansour SZ, Badawi AFM, Kandil EI. In vitro and in vivo studies of a newly synthesized copper-cetyl tri-methyl ammonium bromide combined with gallium oxide nanoparticles complex as an antitumor agent against hepatocellular carcinoma. Int J Immunopathol Pharmacol 2023; 37:3946320231180708. [PMID: 37276131 DOI: 10.1177/03946320231180708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Objective: Hepatocellular carcinoma (HCC) is one of the most leading causes of death worldwide. Previous studies reported that gallium alone and cetyltrimethylammonium bromide (CTAB) have antineoplastic activities; therefore, this study aimed to evaluate the activity of copper-cetyl tri-methyl ammonium bromide with gallium oxide nanoparticles (Cu-CTAB+GaO-NPs) against HCC by using in vitro and in vivo studies. Methods: In vitro study was performed to evaluate the cytotoxic effects of Cu-CTAB+GaO-NPs and GaO-NPs on HepG-2 cell line using crystal violet dye assay. In vivo study was done on diethyl nitrosamine (DEN) induced HCC Wister rats. Rats were randomly divided into eight groups; control, Cu-CTAB, GaO-NPs, Cu-CTAB+GaONPs, DEN, DEN+Cu-CTAB, DEN+GaO-NPs and DEN+Cu-CTAB+GaO-NPs. Histopathological examination of liver and biochemical parameters such as liver function markers, oxidative stress-antioxidants markers, tumor makers, apoptosis makers were studied. Results: Results obtained from in vitro study revealed that Cu-CTAB+GaO-NPs and GaO-NPs affect the cell viability of HepG-2 cancer cell with IC50 0.2 μg/ml and 360 μg/ml, respectively. Cu-CTAB+GaO-NPs exerted an antiproliferative effect in experimental rat models of HCC, as demonstrated both histologically, since it facilitated the tissue recovery of the damaged liver, and biochemically as showed by the reduction of liver function markers (ALT & AST), oxidative stress markers (MDA) and tumor makers (AFP,TGF-β1,α-L-Fucosidase); while antioxidants markers (SOD), apoptosis markers (caspase-3 mRNA) and araginase activity were elevated in DEN+Cu-CTAB, DEN+GaO-NPs and DEN+Cu-CTAB+GaO-NPs groups when compared to DEN group. Conclusion: The present study demonstrated that both Cu-CTAB alone and/or combined with GaO-NPs exerted cytotoxic effects against DEN-induced HCC, which would in turn, speculate a possible therapeutic role of the novel Cu-CTAB+GaO-NPs compound.
Collapse
Affiliation(s)
- Fatma Sm Moawed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | - Eman S Abou Zaid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Somya Z Mansour
- Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | | | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
9
|
Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. SUSTAINABILITY 2022. [DOI: 10.3390/su14074328] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil is the main component in the agroecosystem besides water, microbial communities, and cultivated plants. Several problems face soil, including soil pollution, erosion, salinization, and degradation on a global level. Many approaches have been applied to overcome these issues, such as phyto-, bio-, and nanoremediation through different soil management tools. Mushrooms can play a vital role in the soil through bio-nanoremediation, especially under the biological synthesis of nanoparticles, which could be used in the bioremediation process. This review focuses on the green synthesis of nanoparticles using mushrooms and the potential of bio-nanoremediation for polluted soils. The distinguished roles of mushrooms of soil improvement are considered a crucial dimension for sustainable soil management, which may include controlling soil erosion, improving soil aggregates, increasing soil organic matter content, enhancing the bioavailability of soil nutrients, and resorting to damaged and/or polluted soils. The field of bio-nanoremediation using mushrooms still requires further investigation, particularly regarding the sustainable management of soils.
Collapse
|