1
|
Karnwal A, Dohroo A, Malik T. Unveiling the Potential of Bioinoculants and Nanoparticles in Sustainable Agriculture for Enhanced Plant Growth and Food Security. BIOMED RESEARCH INTERNATIONAL 2023; 2023:6911851. [PMID: 38075309 PMCID: PMC10699995 DOI: 10.1155/2023/6911851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
The increasing public concern over the negative impacts of chemical fertilizers and pesticides on food security and sustainability has led to exploring innovative methods that offer both environmental and agricultural benefits. One such innovative approach is using plant-growth-promoting bioinoculants that involve bacteria, fungi, and algae. These living microorganisms are applied to soil, seeds, or plant surfaces and can enhance plant development by increasing nutrient availability and defense against plant pathogens. However, the application of biofertilizers in the field faced many challenges and required conjunction with innovative delivering approaches. Nanotechnology has gained significant attention in recent years due to its numerous applications in various fields, such as medicine, drug development, catalysis, energy, and materials. Nanoparticles with small sizes and large surface areas (1-100 nm) have numerous potential functions. In sustainable agriculture, the development of nanochemicals has shown promise as agents for plant growth, fertilizers, and pesticides. The use of nanomaterials is being considered as a solution to control plant pests, including insects, fungi, and weeds. In the food industry, nanoparticles are used as antimicrobial agents in food packaging, with silver nanomaterials being particularly interesting. However, many nanoparticles (Ag, Fe, Cu, Si, Al, Zn, ZnO, TiO2, CeO2, Al2O3, and carbon nanotubes) have been reported to negatively affect plant growth. This review focuses on the effects of nanoparticles on beneficial plant bacteria and their ability to promote plant growth. Implementing novel sustainable strategies in agriculture, biofertilizers, and nanoparticles could be a promising solution to achieve sustainable food production while reducing the negative environmental impacts.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aradhana Dohroo
- Baddi University of Emerging Sciences and Technologies, Baddi, Himachal Pradesh 173405, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|
2
|
Qu J, Zuo X, Xu Q, Li M, Zou L, Tao R, Liu X, Wang X, Wang J, Wen L, Li R. Effect of Two Particle Sizes of Nano Zinc Oxide on Growth Performance, Immune Function, Digestive Tract Morphology, and Intestinal Microbiota Composition in Broilers. Animals (Basel) 2023; 13:ani13091454. [PMID: 37174491 PMCID: PMC10177391 DOI: 10.3390/ani13091454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
The effects of dietary supplementation with two particle sizes of nano zinc oxide (ZnO) on growth performance, immune function, intestinal morphology, and the gut microbiome were determined in a 42-day broiler chicken feeding experiment. A total of 75 one-day-old Arbor Acres broilers were randomized and divided into three groups with five replicates of five chicks each, including the conventional ZnO group (NC), the nano-ZnO group with an average particle size of 82 nm (ZNPL), and the nano-ZnO group with an average particle size of 21 nm (ZNPS). Each group was supplemented with 40 mg/kg of ZnO or nano-ZnO. Our results revealed that birds in the ZNPS group had a higher average daily gain and a lower feed-to-gain ratio than those in the NC group. ZNPS significantly increased the thymus index and spleen index, as well as the levels of serum metallothionein (MT), superoxide dismutase (SOD), and lysozyme (LZM). The ZNPS treatments reduced interleukin (IL)-1β and tumor necrosis factor-alpha (TNF-α) levels and increased IL-2 and interferon (IFN)-γ levels compared to that in the NC group. Additionally, compared with the birds in the NC group, those in the nano-ZnO group had a higher villus height to crypt depth ratio of the duodenum, jejunum, and ileum. Bacteroides increased in the ZNPS group at the genus level. Further, unidentified_Lachnospiraceae, Blautia, Lachnoclostridium, unidentified_Erysipelotrichaceae, and Intestinimonas were significantly increased in the ZNPL group. In conclusion, nano-ZnO improved the growth performance, promoted the development of immune organs, increased nonspecific immunity, improved the villus height to crypt depth ratio of the small intestine, and enriched the abundance of beneficial bacteria. Notably, the smaller particle size (21 nm) of nano-ZnO exhibited a more potent effect.
Collapse
Affiliation(s)
- Jianyu Qu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xixi Zuo
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Qiurong Xu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Mengyao Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Lirui Zou
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Ran Tao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xiangyan Liu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Xianglin Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Ji Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Changsha Lvye Biotechnology Co., Ltd., Changsha 410100, China
| | - Lixin Wen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Rongfang Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|