1
|
Semerci Sevimli T, Ghorbani A, Demir Cevizlidere B, Altuğ B, Sevimli M. Boric Acid Affects the Expression of DNA Double-Strand Break Repair Factors in A549 Cells and A549 Cancer Stem Cells: An In Vitro Study. Biol Trace Elem Res 2024; 202:5017-5024. [PMID: 38367174 PMCID: PMC11442501 DOI: 10.1007/s12011-024-04082-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
DNA double-strand break (DSB) repair genes interact with tumor stemness- and resistance-associated processes in cancer stem cells (CSCs). Therefore, targeting DNA DSB genes in cancer treatment is important for the CSC phenotype. Although the anti-cancer effect of boric acid (BA) has been studied, its effect on DNA DSB is unclear. Moreover, no studies investigate BA's effects on DNA DSB of lung cancer stem cells (LC-SCs). To fill the gap, we aimed to assess the effects of BA on A549 cancer stem cells. CSCs were isolated from human non-small cell lung cancer cells (A549) and characterized by flow cytometry. Different concentrations of BA (at doses ranging from 1 to 100 mM) were applied to cancer stem cells. Cytotoxic activities were determined using the cell viability assay (MTT assay) at 24 and 48 h. Expression levels of DNA DSB genes that BRCA1, BRCA2, RAD51, KU70/80, ATM, and XRCC4 were evaluated by RT-qPCR. Additionally, immunofluorescence staining analysis was exploited for caspase-3 and E-cadherin. ATM expression increased significantly (p < 0.001). No significant change was observed in the expression of other genes. Moreover, BA up-regulated caspase-3 and E-cadherin expression. Consequently, we can say that BA affects DNA DSB and the apoptotic abilities of LC-SCs.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, 26040, Turkey.
| | - Aynaz Ghorbani
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, 26040, Turkey
| | - Bahar Demir Cevizlidere
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, 26040, Turkey
| | - Burcugül Altuğ
- Cellular Therapy and Stem Cell Production, Application, and Research Center (ESTEM), Eskişehir Osmangazi University, Eskişehir, 26040, Turkey
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Eskisehir Osmangazi University, 26040, Eskişehir, Turkey
| |
Collapse
|
2
|
Farghadani R, Lim HY, Abdulla MA, Rajarajeswaran J. Novel indole Schiff base β-diiminato compound as an anti-cancer agent against triple-negative breast cancer: In vitro anticancer activity evaluation and in vivo acute toxicity study. Bioorg Chem 2024; 152:107730. [PMID: 39216194 DOI: 10.1016/j.bioorg.2024.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is the most prevalent cancer among women globally, with triple-negative breast cancer (TNBC) associated with poor prognosis and low five-year survival rates. Schiff base compounds, known for their extensive pharmacological activities, have garnered significant attention in cancer drug research. This study aimed to evaluate the anticancer potential of a novel β-diiminato compound and elucidate its mechanism of action. The compound's effect on cell viability was assessed using MTT assays in breast cancer cell lines including MCF-7 and MDA-MB-231. Cytotoxic effects were further analyzed using trypan blue exclusion and lactate dehydrogenase (LDH) release assays. In order to assess the mechanism of inhibitory activity and mode of cell death induced by this compound, flow cytometry of cell cycle distribution and apoptosis analysis were carried out. Apoptosis incidence was initially assessed through cell and nuclear morphological changes (Hoechst 33342/Propidium iodide (PI) staining) and further confirmed by Annexin V/PI staining and flow cytometry analysis. In addition, the effect of this compound on the disruption of mitochondrial membrane potential (MMP) and generation of the reactive oxygen species (ROS) was determined using the JC-1 indicator and DCFDA dye, respectively. The results demonstrated that the 24 h treatment with β-diiminato compound significantly suppressed the viability of MDA-MB-231 and MCF-7 cancer cells in a dose-dependent manner with the IC50 value of 2.41 ± 0.29 and 3.51 ± 0.14, respectively. The cytotoxic effect of the compound was further confirmed with a dose-dependent increase in the number of dead cells and enhanced LDH level in the culture medium. This compound exerted its anti-proliferative effect by G2/M phase cell growth arrest in MDA-MB-231 breast cancer cells and induced apoptosis-mediated cell death, which involved characteristic changes in cell and nuclear morphology, phosphatidylserine externalization, mitochondrial membrane depolarization, and increased ROS level. Neither hepatotoxicity nor nephrotoxicity was detected in the biochemical and histopathological analysis confirming the safety characterization of this compound usage. Therefore, the results significantly confirmed the potential anticancer activity of a novel β-diiminato compound, as evidenced by the induction of cell cycle arrest and apoptosis, which might be driven by the ROS‑mediated mitochondrial death pathway. This compound can be a promising candidate for future anticancer drug design and TNBC treatment, and further preclinical and clinical studies are warranted.
Collapse
Affiliation(s)
- Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia.
| | - Han Yin Lim
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Jayakumar Rajarajeswaran
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| |
Collapse
|
3
|
Al-Medhtiy MH, Mohammed MT, M Raouf MMH, Al-Qaaneh AM, Jabbar AAJ, Abdullah FO, Mothana RA, Alanzi AR, Hassan RR, Abdulla MA, Saleh MI, Hasson S. A triterpenoid (corosolic acid) ameliorated AOM-mediated aberrant crypt foci in rats: modulation of Bax/PCNA, antioxidant and inflammatory mechanisms. J Mol Histol 2024; 55:765-783. [PMID: 39122895 DOI: 10.1007/s10735-024-10229-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Corosolic acid (CA) is a well-known natural pentacyclic triterpene found in numerous therapeutic plants that can exhibit many bioactivities including anti-inflammatory and anti-tumor actions. The current investigation explores the chemoprotective roles of CA against azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) in rats. Thirty Sprague Dawley rats were grouped in 5 cages; Group A, normal control rats inoculated subcutaneously (sc) with two doses of normal saline and fed orally on 10% tween 20; Groups B-E received two doses (sc) of azoxymethane in two weeks and treated with either 10% tween 20 (group B) or two intraperitoneal injections of 35 mg/kg 5-fluorouracil each week for one month (group C), while group D and E treated with 30 and 60 mg/kg, respectively, for 2 months. The toxicity results showed lack of any behavioral abnormalities or mortality in rats ingested with up-to 500 mg/kg of CA. The present AOM induction caused a significant initiation of ACF characterized by an increased number, larger in size, and well-matured tissue clusters in cancer controls. AOM inoculation created a bizarrely elongated nucleus, and strained cells, and significantly lowered the submucosal glands in colon tissues of cancer controls compared to 5-FU or CA-treated rats. CA treatment led to significant suppression of ACF incidence, which could be mediated by its modulatory effects on the immunohistochemical proteins (pro-apoptotic (Bax) and reduced PCNA protein expressions in colon tissues). Moreover, CA-treated rats had improved oxidative stress-mediated cytotoxicity indicated by increased endogenous antioxidants (SOD and CAT) and reduced lipid peroxidation indicators (MDA). In addition, CA ingestion (30 and 60 mg/kg) suppressed the inflammatory cascades, indicated by decreased serum TNF-α and IL-6 cytokines and increased anti-inflammatory (IL-10) cytokines consequently preventing further tumor development. CA treatment maintained liver and kidney functions in rats exposed to AOM cytotoxicity. CA could be a viable alternative for the treatment of oxidative-related human disorders including ACF.
Collapse
Affiliation(s)
- Morteta H Al-Medhtiy
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, University of Kufa, Kufa, Najaf Region, 540011, Iraq
| | - Mohammed T Mohammed
- Department of Microbiology, Faculty of veterinary medicine, University of Kufa, Kufa, Iraq
| | - Mohammed M Hussein M Raouf
- Department of Biomedical Sciences, College of Applied Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
| | - Ayman M Al-Qaaneh
- Department of Allied Health Sciences, Al-Balqa Applied University (BAU), Al-Salt, 19117, Jordan
| | - Ahmed A J Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq.
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ramzi A Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdullah R Alanzi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mahmood Ameen Abdulla
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Musher Ismail Saleh
- Department of Chemistry, Faculty of Science and Health, Koya University, Koya KOY45, Kurdistan Region, Erbil, 44001, Iraq
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| |
Collapse
|
4
|
Zhang X, Wang G, Chen S. Boric Acid Alleviates Lipopolysaccharide-Induced Acute Lung Injury in Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04240-2. [PMID: 38789899 DOI: 10.1007/s12011-024-04240-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Acute lung injury (ALI) poses a significant medical challenge due to its widespread occurrence and high mortality rates. Despite extensive efforts, current clinical interventions for ALI have shown limited success. Inflammation plays a central role within ALI progress, and boric acid (BA) has demonstrated anti-inflammatory properties both in vitro and in vivo. However, its potential to mitigate lipopolysaccharide (LPS)-induced ALI remains an area awaiting exploration in research. To bridge this research gap, we created a mouse model of ALI induced by intraperitoneal LPS injection. We employed a comprehensive set of evaluation criteria, including H&E staining, wet/dry ratio measurement, malondialdehyde (MDA)/superoxide dismutase (SOD) the oxidative stress-related biomarkers, assessment of alveolar edema, hemorrhage, inflammatory cell infiltration, and examination of thickened alveolar septum to quantify lung injury. Additionally, we measured inflammatory cytokine levels using ELISA and assessed Nrf2 and HO-1 expressions through western blotting and quantitative real-time PCR (RT-PCR). ER stress-related markers (GRP78, CHOP) were analyzed through western blot analysis. Our findings revealed that prophylactic treatment with BA effectively attenuated LPS-induced ALI, as supported by improved pathological alterations, decreased total protein concentration in bronchoalveolar lavage fluid (BALF), and reduced pulmonary edema. Furthermore, BA exhibited anti-inflammatory properties by suppressing inflammatory cytokines within the lung tissue. BA ingestion caused upregulation in SOD and a decrease in MDA contents in lung tissue homogenates. BA downregulated the levels of GRP78 and CHOP compared to the LPS group. Remarkably, BA also upregulated transcription and protein expression of Nrf2 and HO-1 compared to the LPS group. In conclusion, our study highlights BA's potential as a novel promising prophylactic agent for LPS-induced ALI, offering avenue for improving clinical management of this condition.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guangyan Wang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shuangdong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
5
|
Yıldırım O, Seçme M, Dodurga Y, Mete GA, Fenkci SM. In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04188-3. [PMID: 38689139 DOI: 10.1007/s12011-024-04188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Medullary thyroid cancer (MTC) is a highly aggressive and chemotherapy-resistant cancer originating from the thyroid's parafollicular C cells. Due to its resistance to conventional treatments, alternative therapies such as boric acid have been explored. Boric acid, a boron-based compound, has shown anticarcinogenic effects, positioning it as a potential treatment option for MTC. TT medullary thyroid carcinoma cell line (TT cells) and human thyroid fibroblast (HThF cells) were utilized for the cell culture experiments. Cell viability was assessed using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. Total RNA was extracted using Trizol reagent for gene expression and microRNA (miRNA) analysis via reverse transcription-polymerase chain reaction (RT-PCR). The extent of apoptosis induced by boric acid was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Colony formation assays were conducted to evaluate the impact of boric acid on the colony-forming ability of MTC cells. At 48 h, 50% inhibitory concentration (IC50) of boric acid was found to be 35 μM. Treatment with boric acid resulted in significant modulation of apoptosis-related genes and miRNAs, including increased expression of phorbol-12-myristate-13-acetate-induced protein 1(NOXA), apoptotic protease activating factor 1 (APAF-1), Bcl-2-associated X protein (Bax), caspase-3, and caspase-9. In contrast, the expression of B cell lymphoma 2 (Bcl2), B cell lymphoma- extra-large (Bcl-xl), and microRNA-21 (miR-21), which are linked to the aggressiveness of MTC, was significantly reduced. The TUNEL assay indicated a 14% apoptosis rate, and there was a 67.9% reduction in colony formation, as shown by the colony formation assay. Our study suggests that boric acid may have anticancer activity in MTC by modulating apoptotic pathways. These findings suggest that boric acid could be a potential therapeutic agent for MTC and possibly for other malignancies with similar pathogenic mechanisms.
Collapse
Affiliation(s)
- Onurcan Yıldırım
- Department of Internal Medicine, Ege University School of Medicine, Izmir, 35100, Turkey.
| | - Mücahit Seçme
- Department of Medical Biology, Ordu University School of Medicine, Ordu, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Gülçin Abban Mete
- Department of Histology and Embriology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Semin Melahat Fenkci
- Department of Endocrinology and Metabolism, Pamukkale University School of Medicine, Denizli, Turkey
| |
Collapse
|
6
|
Ali Abed Wahab B, Ain Salehen N, Abdulla MA, A.j. Jabbar A, Abdel Aziz Ibrahim I, Almaimani G, AbdulMonam Zainel M, Bamagous GA, Almaimani RA, Almasmoum HA, Ghaith MM, Farrash WF, Almutawif YA. Pinostrobin attenuates azoxymethane-induced colorectal cytotoxicity in rats through augmentation of apoptotic Bax/Bcl-2 proteins and antioxidants. SAGE Open Med 2023; 11:20503121231216585. [PMID: 38078205 PMCID: PMC10710114 DOI: 10.1177/20503121231216585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/05/2023] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVES Pinostrobin (5-hydroxy-7-methoxyflavanone; PN) is a natural active ingredient with numerous biological activities extensively utilized in tumour chemotherapy. The present study investigates the chemo-preventive potentials of PN on azoxymethane-mediated colonic aberrant crypt foci in rats. METHODS Sprague Dawley rats clustered into five groups, normal control (A) and cancer controls were subcutaneously injected with normal saline and 15 mg/kg azoxymethane, respectively, and nourished on 10% tween 20 and fed on 10% tween 20; reference control (C), injected with 15 mg/kg azoxymethane and injected (intraperitoneal) with 35 mg/kg 5-fluorouracil (5-FU); D and E rat groups received a subcutaneous injection of 15 mg/kg azoxymethane and nourished on 30 and 60 mg/kg of PN, respectively. RESULTS The acute toxicity trial showed a lack of any abnormal signs or mortality in rats ingested with 250 and 500 mg/kg of PN. The gross morphology of colon tissues revealed significantly lower total colonic aberrant crypt foci incidence in PN-treated rats than that of cancer controls. Histological examination of colon tissues showed increased aberrant crypt foci availability with bizarrely elongated nuclei, stratified cells and higher depletion of the submucosal glands in cancer controls. PN treatment caused positive modulation of apoptotic (Bax and Bcl-2) proteins and inflammatory cytokines (TNF-α, IL-6 and IL-10). Moreover, rats fed on PN had significantly higher antioxidants (superoxide dismutase) and lower malondialdehyde concentrations in their colon tissue homogenates. CONCLUSION The chemoprotective efficiency of PN against azoxymethane-induced aberrant crypt foci is shown by lower aberrant crypt foci values and higher aberrant crypt foci inhibition percentage, possibly through augmentation of genes responsible for apoptotic cascade and inflammations originating from azoxymethane oxidative stress insults.
Collapse
Affiliation(s)
- Bassam Ali Abed Wahab
- Faculty of Vet Medicine, Department of Physiology, Biochemistry and Pharmacology, University of Kufa, Kufa, Iraq
| | - Nur Ain Salehen
- Faculty of Medicine, Department of Biomedical Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Ahmed A.j. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil 44001, Iraq
| | - Ibrahim Abdel Aziz Ibrahim
- Faculty of Medicine, Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghassan Almaimani
- Faculty of Medicine, Department of Surgery, Umm Al-Qura University, Al Abdeyah, Makkah, Saudi Arabia
| | | | - Ghazi A Bamagous
- Faculty of Medicine, Department of Pharmacology and Toxicology, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Faculty of Medicine, Department of Biochemistry, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hussain A Almasmoum
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mazen M Ghaith
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Wesam F Farrash
- Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yahya A Almutawif
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|