1
|
Liang M, Gao Y, Shen Y, Zhang X, Gu J, Ji G. Serum metabolism distribution in individuals exposed to dioxins: A case study of residents near the municipal solid waste incinerators in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174431. [PMID: 38960151 DOI: 10.1016/j.scitotenv.2024.174431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/27/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) have attracted considerable attention owing to their environmental persistence, bioaccumulation, and high toxicity. This study aimed to investigate changes in serum metabolites following exposure to PCDD/Fs and to reveal a novel pathogenesis of PCDD/Fs. Serum samples were collected from 75 residents living near a municipal solid waste incinerator in China to analyse the relationship between PCDD/Fs and serum metabolic components. The serum level in the low-exposure group [19.07 (13.44-23.89) pg-TEQ/L] was significantly lower than that in the high-exposure group [115.60 (52.28-592.65) pg-TEQ/L]. Non-targeted metabolomic studies based on liquid chromatography-high resolution mass spectrometry have been applied to the metabolomic analysis of serum. Thirty-seven metabolites with significant differences among the different groups were identified as biomarkers. Pathway analysis revealed that high dioxin exposure perturbed various biological processes, including glycerol phospholipid metabolism and the interconversion of pentose and glucuronate. The results of a population health survey showed that the serum dioxin concentration in patients with diabetes was significantly higher than that in the control population. These findings suggest that dioxin exposure is associated with several potential adverse health risks, including inflammation, diabetes, and cardiovascular disease, through metabolic changes.
Collapse
Affiliation(s)
- Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuanyun Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuehong Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xinyu Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
2
|
Liang Y, Tang Z, Jiang Y, Ai C, Peng J, Liu Y, Chen J, Xin X, Lei B, Zhang J, Cai Z. Lipid metabolism disorders associated with dioxin exposure in a cohort of Chinese male workers revealed by a comprehensive lipidomics study. ENVIRONMENT INTERNATIONAL 2021; 155:106665. [PMID: 34098336 DOI: 10.1016/j.envint.2021.106665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Dioxins, environmentally stable and ubiquitous, have been found to induce metabolic changes especially in lipids and be related to multiple diseases. However, limited study is available on lipid alternations related to human exposure to dioxins. This study aims to explore the serum lipidomic characterization and to understand the underlying mechanisms of adverse health risks associated with dioxin exposure. A lipidomic study integrating nontargeted lipidomics, and targeted free fatty acid (FFA) and acyl-coenzyme A (acyl-CoA) analyses were conducted to investigate the 94 serum samples from two groups of male workers with remarkably different dioxin concentrations. The obtained results exhibited distinct lipidomic signatures between the high and low exposed groups. A total of 37 lipids were identified with the significant changes. The results revealed that dioxin exposure caused accumulations of triglyceride (TG), ceramide (Cer) and sphingoid (So), remodeling of glycerophospholipid (GP), imbalanced FFA metabolism, as well as upregulation of platelet-activating factor (PAF). These findings implied the associations between dioxin exposure and potential adverse health risks including inflammation, apoptosis, cardiovascular diseases (CVDs), and liver diseases. This study is the first to explain the associations between dioxin exposure and health effects at the level of lipid metabolism.
Collapse
Affiliation(s)
- Yanshan Liang
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Zhi Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China; Department of Environmental and Occupational Health, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yousheng Jiang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Chunyan Ai
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinling Peng
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yuan Liu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jinru Chen
- Songgang Preventive Health Center of Baoan District, Shenzhen, 518105, China
| | - Xiong Xin
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Bo Lei
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Zongwei Cai
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, China; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Lu J, Liu M, Fan Y, Zheng H, Guan S. TCDD induced lipid accumulation by impairment of autophagic flux in THP-1 macrophages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:36053-36059. [PMID: 33682057 DOI: 10.1007/s11356-021-13258-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental and food contaminant generated as a byproduct of various industrial activities. It is found in a lot of foods, especially in dairy products, eggs, fish, and meat. Autophagy is a highly conserved cellular degradation and cycling process, which plays an important role in lipid metabolism. This study aimed to explore the effects of TCDD on autophagic flux and lipid metabolism in THP-1 macrophages. The data showed that TCDD promoted the accumulation of autophagosomes in THP-1 macrophages, and subsequent findings revealed that this autophagosome accumulation was caused by the inhibition of autophagic flux by testing the expression of LC3II, p62 levels, and mRFP-GFP-LC3. Further, we found that TCDD treatment significantly increased the amount of triglyceride (TG) and total cholesterol (TC) in THP-1 macrophages. Meanwhile, pretreatment with autophagy activator (rapamycin, Rapa) efficiently relieved TCDD-induced lipid accumulation. On the contrary, pretreatment with autophagy inhibitor (Chloroquine, CQ) promoted TCDD-induced lipid accumulation. In the experiment of co-localization of LC3 and lipid droplets, the co-localization of LC3 and lipid droplets increased after TCDD induction. These results indicated that TCDD promoted lipid accumulation in THP-1 macrophages by inhibiting autophagic flux. Our findings revealed new insights into the toxicity mechanisms of TCDD.
Collapse
Affiliation(s)
- Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Meitong Liu
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Yong Fan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Haochen Zheng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China
| | - Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, People's Republic of China.
| |
Collapse
|
4
|
Nijoukubo D, Adachi H, Kitazawa T, Teraoka H. Blood vessels are primary targets for 2,3,7,8-tetrachlorodibenzo-p-dioxin in pre-cardiac edema formation in larval zebrafish. CHEMOSPHERE 2020; 254:126808. [PMID: 32339801 DOI: 10.1016/j.chemosphere.2020.126808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 05/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has adverse effects on the development and function of the heart in zebrafish eleutheroembryos (embryos and larvae). We previously reported that TCDD reduced blood flow in the mesencephalic vein of zebrafish eleutheroembryos long before inducing pericardial edema. In the present study, we compared early edema (pre-cardiac edema), reduction of deduced cardiac output and reduction of blood flow in the dorsal aorta and cardinal vein caused by TCDD. In the same group of eleutheroembryos, TCDD (1.0 ppb) caused pre-cardiac edema and circulation failure at the cardinal vein in the central trunk region with the similar time courses from 42 to 54 h post fertilization (hpf), while the same concentration of TCDD did not significantly affect aortic circulation in the central trunk region or cardiac output. The dependence of pre-cardiac edema on TCDD concentration (0-2.0 ppb) at 55 hpf correlated well with the dependence of blood flow through the cardinal vein on TCDD concentration. Several treatments that markedly inhibited TCDD-induced pre-cardiac edema such as knockdown of aryl hydrocarbon receptor nuclear translocator-1 (ARNT1) and treatment with ascorbic acid, an antioxidant, did not significantly prevent the reduction of cardiac output at 55 hpf caused by 2.0 ppb TCDD. TCDD caused hemorrhage and extravasation of Evans blue that was intravascularly injected with bovine serum albumin, suggesting an increase in endothelium permeability to serum protein induced by TCDD. The results suggest that the blood vessels are primary targets of TCDD in edema formation in larval zebrafish.
Collapse
Affiliation(s)
- Daisuke Nijoukubo
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hikaru Adachi
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Takio Kitazawa
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| | - Hiroki Teraoka
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| |
Collapse
|
5
|
Wang ML, Kang YM, Li XG, Su Q, Li HB, Liu KL, Fu LY, Saahene RO, Li Y, Tan H, Yu XJ. Central blockade of NLRP3 reduces blood pressure via regulating inflammation microenvironment and neurohormonal excitation in salt-induced prehypertensive rats. J Neuroinflammation 2018; 15:95. [PMID: 29573749 PMCID: PMC5866519 DOI: 10.1186/s12974-018-1131-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/15/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Inflammation has been implicated in the development of cardiovascular disease. We determined whether nod-like receptor with pyrin domain containing 3 (NLRP3) involved in the process of prehypertension, central blockade of NLRP3 decreased inflammation reaction, regulated neurohormonal excitation, and delayed the progression of prehypertension. METHODS Prehypertensive rats were induced by 8% salt diet. The rats on high-salt diet for 1 month were administered a specific NLRP3 blocker in the hypothalamic paraventricular nucleus (PVN) for 4 weeks. ELISA, western blotting, immunohistochemistry, and flow cytometry were used to measure NLRP3 cascade proteins, pro-inflammation cytokines (PICs), chemokine ligand 2 (CCL2), C-X-C chemokine receptor type 3 (CXCR3), vascular cell adhesion molecule 1 (VCAM-1), neurotransmitters, and leukocytes count detection, respectively. RESULTS NLRP3 expression in PVN was increased significantly in prehypertensive rats, accompanied by increased number of microglia, CD4+, CD8+ T cell, and CD8+ microglia. Expressions of PICs, CCL2, CXCR3, and VCAM-1 significantly increased. The balance between 67-kDa isoform of glutamate decarboxylase (GAD67) and tyrosine hydroxylase (TH) was damaged. Plasma norepinephrine (NE) in prehypertensive rats was increased and gamma-aminobutyric acid (GABA) was reduced. NLRP3 blockade significantly decreased blood pressure, reduced PICs, CCL2, VCAM-1 expression in PVN, and restored neurotransmitters. Blood pressure and inflammatory markers were upregulated after termination of central blockage NLRP3. CONCLUSIONS Salt-induced prehypertension is partly due to the role of NLRP3 in PVN. Blockade of brain NLRP3 attenuates prehypertensive response, possibly via downregulating the cascade reaction triggered by inflammation and restoring the balance of neurotransmitters.
Collapse
Affiliation(s)
- Mo-Lin Wang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China.,Department of Immunology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, 154007, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Xiao-Guang Li
- Department of Rehabilitation Medicine, People's Hospital of Baoan District, Shenzhen, 518100, China
| | - Qing Su
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Hong-Bao Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Kai-Li Liu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Li-Yan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Roland Osei Saahene
- Department of Immunology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, 154007, China
| | - Ying Li
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China
| | - Hong Tan
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China.,Department of Pathology, Xi'an Jiaotong University School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, 710061, China.
| |
Collapse
|
6
|
Lei X, Muscat JE, Zhang B, Sha X, Xiu G. Differentially DNA methylation changes induced in vitro by traffic-derived nanoparticulate matter. Toxicology 2018; 395:54-62. [DOI: 10.1016/j.tox.2017.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/12/2022]
|
7
|
Yu Y, Liu Q, Guo S, Zhang Q, Tang J, Liu G, Kong D, Li J, Yan S, Wang R, Wang P, Su X, Yu Y. 2, 3, 7, 8-Tetrachlorodibenzo-p-dioxin promotes endothelial cell apoptosis through activation of EP3/p38MAPK/Bcl-2 pathway. J Cell Mol Med 2017; 21:3540-3551. [PMID: 28699682 PMCID: PMC5706494 DOI: 10.1111/jcmm.13265] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 05/02/2017] [Indexed: 12/18/2022] Open
Abstract
Endothelial injury or dysfunction is an early event in the pathogenesis of atherosclerosis. Epidemiological and animal studies have shown that 2, 3, 7, 8‐tetrachlorodibenzo‐p‐dioxin (TCDD) exposure increases morbidity and mortality from chronic cardiovascular diseases, including atherosclerosis. However, whether or how TCDD exposure causes endothelial injury or dysfunction remains largely unknown. Cultured human umbilical vein endothelial cells (HUVECs) were exposed to different doses of TCDD, and cell apoptosis was examined. We found that TCDD treatment increased caspase 3 activity and apoptosis in HUVECs in a dose‐dependent manner,at doses from 10 to 40 nM. TCDD increased cyclooxygenase enzymes (COX)‐2 expression and its downstream prostaglandin (PG) production (mainly PGE2 and 6‐keto‐PGF1α) in HUVECs. Interestingly, inhibition of COX‐2, but not COX‐1, markedly attenuated TCDD‐triggered apoptosis in HUVECs. Pharmacological inhibition or gene silencing of the PGE2 receptor subtype 3 (EP3) suppressed the augmented apoptosis in TCDD‐treated HUVECs. Activation of the EP3 receptor enhanced p38 MAPK phosphorylation and decreased Bcl‐2 expression following TCDD treatment. Both p38 MAPK suppression and Bcl‐2 overexpression attenuated the apoptosis in TCDD‐treated HUVECs. TCDD increased EP3‐dependent Rho activity and subsequently promoted p38MAPK/Bcl‐2 pathway‐mediated apoptosis in HUVECs. In addition, TCDD promoted apoptosis in vascular endothelium and delayed re‐endothelialization after femoral artery injury in wild‐type (WT) mice, but not in EP3−/− mice. In summary, TCDD promotes endothelial apoptosis through the COX‐2/PGE2/EP3/p38MAPK/Bcl‐2 pathway. Given the cardiovascular hazard of a COX‐2 inhibitor, our findings indicate that the EP3 receptor and its downstream pathways may be potential targets for prevention of TCDD‐associated cardiovascular diseases.
Collapse
Affiliation(s)
- Yu Yu
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Department of Pediatric Cardiology, Xinhua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shumin Guo
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qianqian Zhang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juan Tang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guizhu Liu
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Deping Kong
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Juanjuan Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Yan
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ruiguo Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Peilong Wang
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoou Su
- Institute of Quality Standards and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Yu
- Department of Pharmacology, Tianjin Medical University, Tianjin, China.,Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
Aryl hydrocarbon receptor upregulates IL-1β expression in hCMEC/D3 human cerebral microvascular endothelial cells after TCDD exposure. Toxicol In Vitro 2017; 41:200-204. [DOI: 10.1016/j.tiv.2017.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/02/2022]
|
9
|
Qi J, Zhao XF, Yu XJ, Yi QY, Shi XL, Tan H, Fan XY, Gao HL, Yue LY, Feng ZP, Kang YM. Targeting Interleukin-1 beta to Suppress Sympathoexcitation in Hypothalamic Paraventricular Nucleus in Dahl Salt-Sensitive Hypertensive Rats. Cardiovasc Toxicol 2017; 16:298-306. [PMID: 26304161 DOI: 10.1007/s12012-015-9338-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Findings from our laboratory indicate that expressions of some proinflammatory cytokines such as tumor necrosis factor, interleukin-6 and oxidative stress responses are increased in the hypothalamic paraventricular nucleus (PVN) and contribute to the progression of salt-sensitive hypertension. In this study, we determined whether interleukin-1 beta (IL-1β) activation within the PVN contributes to sympathoexcitation during development of salt-dependent hypertension. Eight-week-old male Dahl salt-sensitive (S) rats received a high-salt diet (HS, 8 % NaCl) or a normal-salt diet (NS, 0.3 % NaCl) for 6 weeks, and all rats were treated with bilateral PVN injection of gevokizumab (IL-1β inhibitor, 1 μL of 10 μg) or vehicle once a week. The mean arterial pressure (MAP), heart rate (HR) and plasma norepinephrine (NE) were significantly increased in high-salt-fed rats. In addition, rats with high-salt diet had higher levels of NOX-2, NOX-4 [subunits of NAD (P) H oxidase], IL-1β, NLRP3 (NOD-like receptor family pyrin domain containing 3), Fra-LI (an indicator of chronic neuronal activation) and lower levels of IL-10 in the PVN than normal-diet rats. Bilateral PVN injection of gevokizumab decreased MAP, HR and NE, attenuated the levels of oxidative stress and restored the balance of cytokines. These findings suggest that IL-1β activation in the PVN plays a role in salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jie Qi
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xiu-Fang Zhao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Qiu-Yue Yi
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Xiao-Lian Shi
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Hong Tan
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
- Department of Pathology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Yan Fan
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Hong-Li Gao
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Li-Ying Yue
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Zhi-Peng Feng
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an Jiaotong University Cardiovascular Research Center, Xi'an, 710061, China.
| |
Collapse
|
10
|
Xie R, Li L, Chen L, Li W, Chen B, Jiang J, Huang H, Li Y, He Y, Lv J, He W. Identification of potential drug targets based on a computational biology algorithm for venous thromboembolism. Int J Mol Med 2016; 39:463-471. [DOI: 10.3892/ijmm.2016.2829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 12/09/2016] [Indexed: 11/05/2022] Open
|