1
|
Zhu Z, Deng X, Xie W, Li H, Li Y, Deng Z. Pharmacological effects of bioactive agents in earthworm extract: A comprehensive review. Animal Model Exp Med 2024; 7:653-672. [PMID: 38957072 PMCID: PMC11528390 DOI: 10.1002/ame2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
This review compiles information from the literature on the chemical composition, pharmacological effects, and molecular mechanisms of earthworm extract (EE) and suggests possibilities for clinical translation of EE. We also consider future trends and concerns in this domain. We summarize the bioactive components of EE, including G-90, lysenin, lumbrokinase, antimicrobial peptides, earthworm serine protease (ESP), and polyphenols, and detail the antitumor, antithrombotic, antiviral, antibacterial, anti-inflammatory, analgesic, antioxidant, wound-healing, antifibrotic, and hypoglycemic activities and mechanisms of action of EE based on existing in vitro and in vivo studies. We further propose the potential of EE for clinical translation in anticancer and lipid-modifying therapies, and its promise as source of a novel agent for wound healing and resistance to antibiotic tolerance. The earthworm enzyme lumbrokinase embodies highly effective anticoagulant and thrombolytic properties and has the advantage of not causing bleeding phenomena due to hyperfibrinolysis. Its antifibrotic properties can reduce the excessive accumulation of extracellular matrix. The glycolipoprotein extract G-90 can effectively scavenge reactive oxygen groups and protect cellular tissues from oxidative damage. Earthworms have evolved a well-developed defense mechanism to fight against microbial infections, and the bioactive agents in EE have shown good antibacterial, fungal, and viral properties in in vitro and in vivo experiments and can alleviate inflammatory responses caused by infections, effectively reducing pain. Recent studies have also highlighted the role of EE in lowering blood glucose. EE shows high medicinal value and is expected to be a source of many bioactive compounds.
Collapse
Affiliation(s)
- Zihan Zhu
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Xinyi Deng
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- Xiangya School of MedicineCentral South UniversityChangshaHunanChina
| | - Wenqing Xie
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Hengzhen Li
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yusheng Li
- Department of OrthopedicsXiangya Hospital, Central South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Zhenhan Deng
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
2
|
Wang D, Ruan Z, Wang R, Ma L, Tang S, Wang X, Ma A. Decoding the mechanism of earthworm extract against wounds: an integrated metabolomics and network pharmacology study. Mol Divers 2024; 28:631-647. [PMID: 36705857 DOI: 10.1007/s11030-023-10609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/19/2023] [Indexed: 01/28/2023]
Abstract
Earthworms are used to cure wounds in Chinese villages for thousands of years. Recently, scientists realized their extracts could promote wound healing and they have anti-inflammatory, antioxidant, anti-apoptosis, and anti-microbial properties, but its mechanism of promoting wound healing remains unclear. In the presented study, electronic literature databases and LC-MS/MS were used to determine earthworms' ingredients and differential metabolites. Swiss Target Prediction database was used for ingredients' target prediction and wound disease-relevant genes were found from GeneCards, OMIM, and DrugBank databases. Network pharmacology was conducted to demonstrate filtering hub targets, biological functions, and the signaling pathways of earthworms extract against wounds. Molecular docking and metabolism analysis were used to look for core target genes and key bioactive molecules from earthworms. Finally, the investigation shows 5 most important signal pathways, 5 core genes, and 6 bioactive ingredients-related cell-cell adhesion, cell proliferation, and cell migration processes could be affected by earthworms' extract. On 3rd day, the extract could regulate HIF1A and EGFR targets to make the differences of quantities of 4-pyridoxate, tetradecanoic acid, and L-kynurenine. While on 7th day, the regulation refers 6 earthworms' bioactive ingredients, 4 core genes (CTNNB1, EGFR, SRC, and CASP3), and 4 differential metabolites (4-hydoxy-2-quinolinecarboxylic acid, urocanate, deoxyinosine, creatine, and sn-glycerol-3-phosphocholine). on 14th day, 2 core genes (EGFR, SRC) are influenced in the biological processes. Briefly, we found that 6 ingredients from earthworms have most bioactive and 5 core genes play an important role in promoting wound-healing processes. These discovers indicates earthworms could against wound via AGE-RAGE, PI3K-Akt, HIF1A, MAPK, and Axon guidance pathways.
Collapse
Affiliation(s)
- Dong Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China.
- Shaanxi Key Laboratory of Research on TCM Physical Constitution and Disease Prevention and Treatment, Xianyang, China.
| | - Zhen Ruan
- Xianyang Central Hospital, Xianyang, China
| | - Ruihui Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Li Ma
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Saiqing Tang
- Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xuejing Wang
- Medical Research and Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Axue Ma
- Second Clinical Medical School, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Deng Z, Gao S, Xiao X, Yin N, Ma S, Li W, Li Y. The effect of earthworm extract on mice S180 tumor growth and apoptosis. Biomed Pharmacother 2019; 115:108979. [PMID: 31100538 DOI: 10.1016/j.biopha.2019.108979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/20/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Great efforts have been made to explore the potential treatment for cancers, and the most common therapies include surgery, chemotherapy and radiotherapy. As an alternative medication, earthworms have drawn increased attention considering its abundance in resource, easy access and minor side effects compared to traditional therapies. However, few studies had focused on the antitumor effect of earthworm-derived components. The purpose of this study is to investigate whether earthworm extract has an effect on tumor cell apoptosis and growth. Earthworm extract (EE) was purified through multiple steps of centrifugation and chromatography. Mice were inoculated with ascitic fluid derived from mice inoculated with S180 sarcoma tumor cells and fed orally with different amounts of EE for 25 days. Tumor samples were analyzed for size and cell apoptosis. And we found that the weight and sizes of tumor decreased gradually as the amount of EE administered increased. More apoptotic cells and lowered level of lactate dehydrogenase (LDH), a biomarker of tumor invasiveness, was detected in EE-treated group than the untreated group. Our results suggested that EE could dramatically promote tumor apoptosis and reduce tumor size in vivo, suggesting a novel alternative therapy for cancer patients.
Collapse
Affiliation(s)
- Zhenhan Deng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Shanshan Gao
- Department of Cardiology, University of Colorado Anschutz Medical Campus, Aurora 800045, CO, USA
| | - Xiang Xiao
- The Animal Health Inspection Institute of Yuelu District, Changsha 410000, Hunan, China
| | - Ni Yin
- Department of Clinical Medicine (8-Year Program), Xiangya Medicine School, Central South University, Changsha 410013, Hunan, China
| | - Shiyang Ma
- Department of Clinical Medicine (8-Year Program), Xiangya Medicine School, Central South University, Changsha 410013, Hunan, China
| | - Wenping Li
- Department of Animal Science, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, Hunan, China
| | - Yusheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
4
|
Chen LC, Shibu MA, Liu CJ, Han CK, Ju DT, Chen PY, Viswanadha VP, Lai CH, Kuo WW, Huang CY. ERK1/2 mediates the lipopolysaccharide-induced upregulation of FGF-2, uPA, MMP-2, MMP-9 and cellular migration in cardiac fibroblasts. Chem Biol Interact 2019; 306:62-69. [PMID: 30980805 DOI: 10.1016/j.cbi.2019.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 03/08/2019] [Accepted: 04/08/2019] [Indexed: 12/31/2022]
Abstract
Myocardial fibrosis is a critical event during septic shock. Upregulation in the fibrosis signaling cascade proteins such as fibroblast growth factor (FGF), urokinase plasminogen activator (uPA), tissue plasminogen activator (tPA) and activation of matrix metalloproteinases (MMPs) are widely associated with the development of myocardial infarction, dilated cardiomyopathy, cardiac fibrosis and heart failure. However, evidences suggest that the common upstream mediators of fibrosis cascade play little role in cardiac fibrosis induced by LPS; further, it is unknown if LPS directly triggers the expressions and/or activity of FGF-2, uPA, tPA, MMP-2 and MMP-9 in cardiac fibroblasts. In the present study, we treated primary cultures of cardiac fibroblasts with LPS to explore whether LPS upregulates FGF-2, uPA, tPA, MMP-2, MMP-9 and enhance cellular migration. Further the precise molecular and cellular mechanisms behind these LPS induced responses were identified. Inhibition assays on MAPKs using U0126 (ERK1/2 inhibitor), SB203580 (p38 MAPK inhibitor), SP600125 (JNK1/2 inhibitor), CsA (calcineurin inhibitor) and QNZ (NFκB inhibitor) show that LPS-induced upregulation of FGF-2, uPA, MMP-2 and MMP-9 in cardiac fibroblasts was mediated through ERK1/2 signaling. Collectively, our results provide a link between LPS-induced cardiac dysfunction and ERK1/2 signaling pathway and thereby implies ERK1/2 as a possible target to regulate LPS induced upregulation of FGF-2, uPA, MMP-2, MMP-9 and cellular migration in cardiac fibroblasts.
Collapse
Affiliation(s)
- Liang-Chi Chen
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- Medical Research Center for Exosome and Mitochondria Related Diseases, China Medical University and Hospital, Taichung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chien-Kuo Han
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery,Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Yu Chen
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | | | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan; College of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
5
|
Huang C, Li W, Zhang Q, Chen L, Chen W, Zhang H, Ni Y. Anti-inflammatory activities of Guang-Pheretima extract in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:46. [PMID: 29391009 PMCID: PMC5795835 DOI: 10.1186/s12906-018-2086-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/14/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Guang-Pheretima, which is originated from Pheretima aspergillum, has been documented in academic Chinese herbal studies for nearly 2000 years for its prominent treating effects of various inflammatory diseases such as asthma, cough and fever. However, the anti-inflammatory activity and mechanism of Guang-Pheretima has been rarely reported. Hence, we investigated the inhibitory effect and the underlying mechanism of Guang-Pheretima aqueous extracts on inflammatory response in RAW 264.7 cells. METHOD RAW 264.7 macrophages were pretreated with various concentrations of Guang-Pheretima decoction (GPD) or protein-free Guang-Pheretima decoction (PF-GPD) and subsequently stimulated with lipopolysaccharide (LPS) to trigger the inflammatory response. Productions of nitric oxide (NO) were determined by Griess reaction, and prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 were measured by enzyme-linked immunosorbent assays (ELISA). The protein expressions and messenger ribonucleic acid (mRNA) amounts of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2 were analyzed by Western Blot and Real-Time polymerase chain reaction (PCR), respectively. Finally, the translocation of nuclear factor (NF)-κB was observed by Western Blot. RESULTS GPD of the experimental concentrations showed no anti-inflammatory activity. In contrast, PF-GPD at concentrations of 40-320 μg/mL significantly inhibited NF-κB activation and reduced the production of inflammatory mediators, such as NO, PGE2, TNF-α, as well as the related key synthases including iNOS and COX-2. Moreover, PF-GPD markedly suppressed the release of inflammatory cytokines, such as IL-1β and IL-6. CONCLUSION These results demonstrate the excellent anti-inflammatory properties of PF-GPD, and suggest that Guang-Pheretima may be used to treat and prevent certain inflammatory diseases.
Collapse
Affiliation(s)
- Chuanqi Huang
- Department of Pharmacy, Wuhan No.1 Hospital (Wuhan Integrated TCM & Western Medicine Hospital), 215 Zhongshan Avenue, Wuhan, 430022, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Wei Li
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China.
| | - Qiufeng Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Lihong Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Weiming Chen
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Hongchao Zhang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| | - Yuxin Ni
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou Higher Education Mega Center, 232 Wai Huan Road East, Guangzhou, 510006, China
| |
Collapse
|
6
|
Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS One 2017. [PMID: 28125623 DOI: 10.1371/journal.pone.0170092.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2-4×104 cells/well (1-2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.
Collapse
|
7
|
Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS One 2017; 12:e0170092. [PMID: 28125623 PMCID: PMC5268766 DOI: 10.1371/journal.pone.0170092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/28/2016] [Indexed: 11/24/2022] Open
Abstract
As a standard testing organism in soil ecosystems, the earthworm Eisenia fetida has been used widely in toxicity studies. However, tests at the individual level are time- and animal-consuming, with limited sensitivity. Earthworm coelomocytes are important for the assimilation and elimination of exogenous compounds and play a key role in the processes of phagocytosis and inflammation. In this study, we explored an optimal condition to culture coelomocytes of E. fetida in vitro and investigated the cytotoxicity of multiwalled carbon nanotubes (MWCNTs) and sodium pentachlorophenol (PCP-Na) using coelomocytes via evaluating lethal toxicity, oxidative stress, membrane damage, and DNA damage. The results showed that coelomocytes can be successfully cultured in vitro in primary under the RPMI-1640 medium with 2–4×104 cells/well (1–2×105 cells/mL) in 96-well plates at 25°C without CO2. Both MWCNTs and PCP-Na could cause oxidative damage and produce ROS, an evidence for lipid peroxidation with MDA generation and SOD and CAT activity inhibition at high stress. The two chemicals could separately damage the cell membrane structure, increasing permeability and inhibiting mitochondrial membrane potential (MMP). In addition, our results indicate that PCP-Na may be adsorbed onto MWCNTs and its toxicity on earthworm was accordingly alleviated, while a synergetic effect was revealed when PCP-Na and MWCNTs were added separately. In summary, coelomocyte toxicity in in vitro analysis is a sensitive method for detecting the adverse effects of carbon nanotubes combined with various pollutants.
Collapse
|
8
|
Xu L, Lin D, Cao B, Ping D. Effects of Traditional Chinese Medicine, Dilong Injection, on Random Skin Flap Survival in Rats. J INVEST SURG 2017; 31:38-43. [PMID: 28107102 DOI: 10.1080/08941939.2016.1273981] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lina Xu
- Department of Hand Surgeries, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dingsheng Lin
- Department of Hand Surgeries, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bin Cao
- Department of Hand Surgeries, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dongnan Ping
- Department of Hand Surgeries, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Kell DB, Pretorius E. On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integr Biol (Camb) 2016; 7:1339-77. [PMID: 26345428 DOI: 10.1039/c5ib00158g] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently highlighted (and added to) the considerable evidence that blood can contain dormant bacteria. By definition, such bacteria may be resuscitated (and thus proliferate). This may occur under conditions that lead to or exacerbate chronic, inflammatory diseases that are normally considered to lack a microbial component. Bacterial cell wall components, such as the endotoxin lipopolysaccharide (LPS) of Gram-negative strains, are well known as potent inflammatory agents, but should normally be cleared. Thus, their continuing production and replenishment from dormant bacterial reservoirs provides an easy explanation for the continuing, low-grade inflammation (and inflammatory cytokine production) that is characteristic of many such diseases. Although experimental conditions and determinants have varied considerably between investigators, we summarise the evidence that in a great many circumstances LPS can play a central role in all of these processes, including in particular cell death processes that permit translocation between the gut, blood and other tissues. Such localised cell death processes might also contribute strongly to the specific diseases of interest. The bacterial requirement for free iron explains the strong co-existence in these diseases of iron dysregulation, LPS production, and inflammation. Overall this analysis provides an integrative picture, with significant predictive power, that is able to link these processes via the centrality of a dormant blood microbiome that can resuscitate and shed cell wall components.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK.
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa.
| |
Collapse
|