1
|
Balakina AA, Amozova VI, Sen' VD. Influence of Redox-Active Chitosan-Polyaminoxyl Micelles Loaded with Daunorubicin on Activity of Nrf2 Transcription Factor. Bull Exp Biol Med 2024; 177:569-577. [PMID: 39287725 DOI: 10.1007/s10517-024-06224-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Indexed: 09/19/2024]
Abstract
A new system for delivery of anthracycline antibiotics based on chitosan-polyaminoxyls (CPA) was studied in a model of non-tumor (human embryonic mesenchymal stem cells) and tumor cells (human hepatocellular carcinoma) in vitro. The presence of CPA micelles considerably suppresses daunorubicin-induced ROS generation in normal cells without affecting this process in tumor cells. CPA micelles do not reduce the cytotoxic effect of daunorubicin and do not prevent its accumulation in cells. The use of CPA significantly increases accumulation of Nrf2 transcription factor in the nuclei of both normal and tumor cells in comparison with free daunorubicin. Increased nuclear translocation of Nrf2 leads to a significant increase in the expression of its target gene TXN1, but not the NQO1, GPX1, and HMOX1 genes, the increased expression of which can lead to the development of resistance to anthracycline antibiotics. Redox-active CPA micelles have great potential for the development of nanoparticles for the transport of anthracycline antibiotics in experimental tumor chemotherapy, and also as promising activators of Nrf2 transcription factor.
Collapse
Affiliation(s)
- A A Balakina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science, Chernogolovka, Moscow Region, Russia.
- P. G. Demidov Yaroslavl State University, Yaroslavl, Russia.
| | - V I Amozova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science, Chernogolovka, Moscow Region, Russia
| | - V D Sen'
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Science, Chernogolovka, Moscow Region, Russia
- P. G. Demidov Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
2
|
Patwardhan RS, Rai A, Sharma D, Sandur SK, Patwardhan S. Txnrd1 as a prognosticator for recurrence, metastasis and response to neoadjuvant chemotherapy and radiotherapy in breast cancer patients. Heliyon 2024; 10:e27011. [PMID: 38524569 PMCID: PMC10958228 DOI: 10.1016/j.heliyon.2024.e27011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
Thioredoxin reductase 1 (Txnrd1) is known to have prognostic significance in a subset of breast cancer patients. Despite the pivotal role of Txnrd1 in regulating several cellular and physiological processes in cancer progression and metastasis, its clinical significance is largely unrecognized. Here, we undertook a retrospective comprehensive meta-analysis of 13,322 breast cancer patients from 43 independent cohorts to assess prognostic and predictive roles of Txnrd1. We observed that Txnrd1 has a positive correlation with tumor grade and size and it is over-expressed in higher-grade and larger tumors. Further, hormone receptor-negative and HER2-positive tumors exhibit elevated Txnrd1 gene expression. Patients with elevated Txnrd1 expression exhibit significant hazards for shorter disease-specific and overall survival. While Txnrd1 has a positive correlation with tumor recurrence and metastasis, it has a negative correlation with time to recurrence and metastasis. Txnrd1High patients exhibit 2.5 years early recurrence and 1.3 years early metastasis as compared to Txnrd1Low cohort. Interestingly, patients with high Txnrd1 gene expression exhibit a pathologic complete response (pCR) to neoadjuvant chemotherapy, but they experience early recurrence after radiotherapy. Txnrd1High MDA-MB-231 cells exhibit significant ROS generation and reduced viability after doxorubicin treatment compared to Txnrd1Low MCF7 cells. Corroborating with findings from meta-analysis, Txnrd1 depletion leads to decreased survival, enhanced sensitivity to radiation induced killing, poor scratch-wound healing, and reduced invasion potential in MDA-MB-231 cells. Thus, Txnrd1 appears to be a potential predictor of recurrence, metastasis and therapy response in breast cancer patients.
Collapse
Affiliation(s)
- Raghavendra S. Patwardhan
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Archita Rai
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Deepak Sharma
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Santosh K. Sandur
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sejal Patwardhan
- Homi Bhabha National Institute, Mumbai, 400094, India
- Patwardhan Lab, Advanced Centre for Treatment Research & Education in Cancer, (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, 410210, India
| |
Collapse
|
3
|
Kingston E, Tingle M, Bellissima BL, Helsby N, Burns K. CYP-catalysed cycling of clozapine and clozapine- N-oxide promotes the generation of reactive oxygen species in vitro. Xenobiotica 2024; 54:26-37. [PMID: 38108307 DOI: 10.1080/00498254.2023.2294473] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Clozapine is an effective atypical antipsychotic indicated for treatment-resistant schizophrenia, but is under-prescribed due to the risk of severe adverse drug reactions such as myocarditis.A mechanistic understanding of clozapine cardiotoxicity remains elusive.This study aimed to investigate the contribution of selected CYP isoforms to cycling between clozapine and its major circulating metabolites, N-desmethylclozapine and clozapine-N-oxide, with the potential for reactive species production.CYP supersome™-based in vitro techniques were utilised to quantify specific enzyme activity associated with clozapine, clozapine-N-oxide and N-desmethylclozapine metabolism.The formation of reactive species within each incubation were quantified, and known intermediates detected.CYP3A4 predominately catalysed clozapine-N-oxide formation from clozapine and was associated with concentration-dependent reactive species production, whereas isoforms favouring the N-desmethylclozapine pathway (CYP2C19 and CYP1A2) did not produce reactive species.Extrahepatic isoforms CYP2J2 and CYP1B1 were also associated with the formation of clozapine-N-oxide and N-desmethylclozapine but did not favour one metabolic pathway over another.Unique to this investigation is that various CYP isoforms catalyse clozapine-N-oxide reduction to clozapine.This process was associated with the concentration-dependent formation of reactive species with CYP3A4, CYP1B1 and CYP1A1 that did not correlate with known reactive intermediates, implicating metabolite cycling and reactive oxygen species in the mechanism of clozapine-induced toxicity.
Collapse
Affiliation(s)
- Ellen Kingston
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Malcolm Tingle
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Brandi L Bellissima
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Nuala Helsby
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland, New Zealand
| | - Kathryn Burns
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Co-Targeting of BTK and TrxR as a Therapeutic Approach to the Treatment of Lymphoma. Antioxidants (Basel) 2023; 12:antiox12020529. [PMID: 36830087 PMCID: PMC9952695 DOI: 10.3390/antiox12020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a haematological malignancy representing the most diagnosed non-Hodgkin's lymphoma (NHL) subtype. Despite the approved chemotherapies available in clinics, some patients still suffer from side effects and relapsed disease. Recently, studies have reported the role of the Trx system and the BCR signalling pathway in cancer development and drug resistance. In this regard, we assessed a potential link between the two systems and evaluated the effects of [Au(d2pype)2]Cl (TrxR inhibitor) and ibrutinib (BTK inhibitor) alone and in combination on the cell growth of two DLBCL lymphoma cell lines, SUDHL2 and SUDHL4. In this study, we show higher expression levels of the Trx system and BCR signalling pathway in the DLBCL patient samples compared to the healthy samples. The knockdown of TrxR using siRNA reduced BTK mRNA and protein expression. A combination treatment with [Au(d2pype)2]Cl and ibrutinib had a synergistic effect on the inhibition of lymphoma cell proliferation, the activation of apoptosis, and, depending on lymphoma cell subtype, ferroptosis. Decreased BTK expression and the cytoplasmic accumulation of p65 were observed after the combination treatment in the DLBCL cells, indicating the inhibition of the NF-κB pathway. Thus, the co-targeting of BTK and TrxR may be an effective therapeutic strategy to consider for DLBCL treatment.
Collapse
|
5
|
Mechanism of the inhibitory effect of acupotomy on chondrocyte apoptosis in KOA rabbits explored via proteomics 运用蛋白质组学技术探讨针刀抗KOA兔软骨细胞凋亡的作用机制. WORLD JOURNAL OF ACUPUNCTURE-MOXIBUSTION 2023. [DOI: 10.1016/j.wjam.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
7
|
Kundumani-Sridharan V, Subramani J, Owens C, Das KC. Nrg1β Released in Remote Ischemic Preconditioning Improves Myocardial Perfusion and Decreases Ischemia/Reperfusion Injury via ErbB2-Mediated Rescue of Endothelial Nitric Oxide Synthase and Abrogation of Trx2 Autophagy. Arterioscler Thromb Vasc Biol 2021; 41:2293-2314. [PMID: 34039018 PMCID: PMC8288485 DOI: 10.1161/atvbaha.121.315957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/04/2021] [Indexed: 12/02/2022]
Abstract
OBJECTIVE: Remote ischemic preconditioning (RIPC) is an intervention process where the application of multiple cycles of short ischemia/reperfusion (I/R) in a remote vascular bed provides protection against I/R injury. However, the identity of the specific RIPC factor and the mechanism by which RIPC alleviates I/R injury remains unclear. Here, we have investigated the identity and the mechanism by which the RIPC factor provides protection. APPROACH AND RESULTS: Using fluorescent in situ hybridization and immunofluorescence, we found that RIPC induces Nrg1β expression in the endothelial cells, which is secreted into the serum. Whereas, RIPC protected against myocardial apoptosis and infarction, treatment with neutralizing-Nrg1 antibodies abolished the protective effect of RIPC. Further, increased superoxide anion generated in RIPC is required for Nrg1 expression. Improved myocardial perfusion and nitric oxide production were achieved by RIPC as determined by contrast echocardiography and electron spin resonance. However, treatment with neutralizing-Nrg1β antibody abrogated these effects, suggesting Nrg1β is a RIPC factor. ErbB2 (Erb-B2 receptor tyrosine kinase 2) is not expressed in the adult murine cardiomyocytes, but expressed in the endothelial cells of heart which is degraded in I/R. RIPC-induced Nrg1β interacts with endothelial ErbB2 and thereby prevents its degradation. Mitochondrial Trx2 (thioredoxin) is degraded in I/R, but rescue of ErbB2 by Nrg1β prevents Trx-2 degradation that decreased myocardial apoptosis in I/R. CONCLUSIONS: Nrg1β is a RIPC factor that interacts with endothelial ErbB2 and prevents its degradation, which in turn prevents Trx2 degradation due to phosphorylation and inactivation of ATG5 (autophagy-related 5) by ErbB2. Nrg1β also restored loss of eNOS (endothelial nitric oxide synthase) function in I/R via its interaction with Src.
Collapse
Affiliation(s)
| | - Jaganathan Subramani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Cade Owens
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| | - Kumuda C. Das
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock
| |
Collapse
|
8
|
Qin Y, Guo T, Wang Z, Zhao Y. The role of iron in doxorubicin-induced cardiotoxicity: recent advances and implication for drug delivery. J Mater Chem B 2021; 9:4793-4803. [PMID: 34059858 DOI: 10.1039/d1tb00551k] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As an anthracycline antibiotic, doxorubicin (DOX) is one of the most potent and widely used chemotherapeutic agents for treating various types of tumors. Unfortunately, the clinical application of this drug results in severe side effects, particularly dose-dependent cardiotoxicity. There are multiple mechanisms involved with the cardiotoxicity caused by DOX, among which intracellular iron homeostasis plays an essential role based on a recent discovery. In this mini-review, we summarize the clinical features and symptoms of DOX-dependent cardiotoxicity, discuss the correlation between iron and cardiotoxicity, and highlight the involvement of iron-dependent ferroptotic cell death therein. Recent advances in this topic will aid the development of novel DOX delivery systems with reduced adverse effects, and expand the clinical application of anthracycline.
Collapse
Affiliation(s)
- Yan Qin
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, China.
| | | | | | | |
Collapse
|
9
|
Ramani S, Park S. HSP27 role in cardioprotection by modulating chemotherapeutic doxorubicin-induced cell death. J Mol Med (Berl) 2021; 99:771-784. [PMID: 33728476 DOI: 10.1007/s00109-021-02048-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
The common phenomenon expected from any anti-cancer drug in use is to kill the cancer cells without any side effects to non-malignant cells. Doxorubicin is an anthracycline derivative anti-cancer drug active over different types of cancers with anti-cancer activity but attributed to unintended cytotoxicity and genotoxicity triggering mitogenic signals inducing apoptosis. Administration of doxorubicin tends to both acute and chronic toxicity resulting in cardiomyopathy (left ventricular dysfunction) and congestive heart failure (CHF). Cardiotoxicity is prevented through administration of different cardioprotectants along with the drug. This review elaborates on mechanism of drug-mediated cardiotoxicity and attenuation principle by different cardioprotectants, with a focus on Hsp27 as cardioprotectant by prevention of drug-induced oxidative stress, cell survival pathways with suppression of intrinsic cell death. In conclusion, Hsp27 may offer an exciting/alternating cardioprotectant, with a wider study being need of the hour, specifically on primary cell line and animal models in conforming its cardioprotectant behaviour.
Collapse
Affiliation(s)
- Sivasubramanian Ramani
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea.
| |
Collapse
|
10
|
Luo YS, Chen Z, Blanchette AD, Zhou YH, Wright FA, Baker ES, Chiu WA, Rusyn I. Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes. Food Chem Toxicol 2021; 149:111979. [PMID: 33450301 DOI: 10.1016/j.fct.2021.111979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/24/2022]
Abstract
Consumption of energy drinks has been associated with adverse cardiovascular effects; however, little is known about the ingredients that may contribute to these effects. We therefore characterized the chemical profiles and in vitro effects of energy drinks and their ingredients on human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, and identified the putative active ingredients using a multivariate prediction model. Energy drinks from 17 widely-available over-the-counter brands were evaluated in this study. The concentrations of six common ingredients (caffeine, taurine, riboflavin, pantothenic acid, adenine, and L-methionine) were quantified by coupling liquid chromatography with a triple quadrupole mass spectrometer for the acquisition of LC-MS/MS spectra. In addition, untargeted analyses for each beverage were performed with a platform combining LC, ion mobility spectrometry and mass spectrometry (LC-IMS-MS) measurements. Approximately 300 features were observed across samples in the untargeted studies, and of these ~100 were identified. In vitro effects of energy drinks and some of their ingredients were then tested in iPSC-derived cardiomyocytes. Data on the beat rate (positive and negative chronotropy), ion channel function (QT prolongation), and cytotoxicity were collected in a dilution series. We found that some of the energy drinks elicited adverse effects on the cardiomyocytes with the most common being an increase in the beat rate, while QT prolongation was also observed at the lowest concentrations. Finally, concentration addition modeling using quantitative data from the 6 common ingredients and multivariate prediction modeling was used to determine potential ingredients responsible for the adverse effects on the cardiomyocytes. These analyses suggested theophylline, adenine, and azelate as possibly contributing to the in vitro effects of energy drinks on QT prolongation in cardiomyocytes.
Collapse
Affiliation(s)
- Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Zunwei Chen
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Alexander D Blanchette
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Yi-Hui Zhou
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Fred A Wright
- Departments of Statistics and Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Erin S Baker
- Department of Chemistry, North Carolina State University, Raleigh, NC, USA
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|