1
|
Cuello F, Knaust AE, Saleem U, Loos M, Raabe J, Mosqueira D, Laufer S, Schweizer M, van der Kraak P, Flenner F, Ulmer BM, Braren I, Yin X, Theofilatos K, Ruiz‐Orera J, Patone G, Klampe B, Schulze T, Piasecki A, Pinto Y, Vink A, Hübner N, Harding S, Mayr M, Denning C, Eschenhagen T, Hansen A. Impairment of the ER/mitochondria compartment in human cardiomyocytes with PLN p.Arg14del mutation. EMBO Mol Med 2021; 13:e13074. [PMID: 33998164 PMCID: PMC8185541 DOI: 10.15252/emmm.202013074] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/28/2022] Open
Abstract
The phospholamban (PLN) p.Arg14del mutation causes dilated cardiomyopathy, with the molecular disease mechanisms incompletely understood. Patient dermal fibroblasts were reprogrammed to hiPSC, isogenic controls were established by CRISPR/Cas9, and cardiomyocytes were differentiated. Mutant cardiomyocytes revealed significantly prolonged Ca2+ transient decay time, Ca2+ -load dependent irregular beating pattern, and lower force. Proteomic analysis revealed less endoplasmic reticulum (ER) and ribosomal and mitochondrial proteins. Electron microscopy showed dilation of the ER and large lipid droplets in close association with mitochondria. Follow-up experiments confirmed impairment of the ER/mitochondria compartment. PLN p.Arg14del end-stage heart failure samples revealed perinuclear aggregates positive for ER marker proteins and oxidative stress in comparison with ischemic heart failure and non-failing donor heart samples. Transduction of PLN p.Arg14del EHTs with the Ca2+ -binding proteins GCaMP6f or parvalbumin improved the disease phenotype. This study identified impairment of the ER/mitochondria compartment without SR dysfunction as a novel disease mechanism underlying PLN p.Arg14del cardiomyopathy. The pathology was improved by Ca2+ -scavenging, suggesting impaired local Ca2+ cycling as an important disease culprit.
Collapse
|
2
|
Zolfaghari Emameh R, Masoori L, Taheri RA, Falak R. Identification and characterization of parvalbumin-like protein in Trichophyton violaceum. Fungal Biol 2020; 124:592-600. [PMID: 32448450 DOI: 10.1016/j.funbio.2020.02.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 01/15/2020] [Accepted: 02/23/2020] [Indexed: 01/08/2023]
Abstract
Parvalbumins play crucial physiological roles in neuromuscular systems of vertebrates, such as cell-cycle, development of neurons, contraction of muscles, and regulation of intracellular calcium. To perform these neuromuscular functions, parvalbumin may be in associated with other proteins including calbindin, carbonic anhydrase, and cytochrome oxidase. Humans may show an IgE-specific hypersensitivity to parvalbumins after consumption of some distinct fish species. While this protein is abundant in fish muscles, literature review of publications related to fish parvalbumins, do not point to the presence of parvalbumins in eukaryotic microbes. In this study, we propose that distantly related parvalbumins may be found in some non-fish species. Bioinformatics studies such as multiple sequence alignment (MSA), phylogenetic analysis as well as molecular-based experiments indicate that, at least two parvalbumins sequences (UniProt IDs: A0A178F775 and A0A178F7E4) with EF-hand domains and Ca2+-binding sites could be identified in Trichophyton violaceum, a pathogenic fungal species. It was determined that both genes consisted of a single exon and encoded for parvalbumin proteins possessing conserved amino acid motifs. Antigenicity prediction revealed antigenic sites located in both sides of the Ca2+-binding site of the first EF-hand domain. Our phylogenetic analysis revealed that one of parvalbumins (UniProt ID: 0A178F775) can be evolved to other parvalbumins in T. violaceum (UniProt ID: A0A178F7E4) and fish species through evolutionary phenomenon. To confirm our in-silico findings, we designed three primer pairs to detect one of the T. violaceum parvalbumins (UniProt ID: A0A178F7E4) by polymerase chain reaction (PCR); one primer pair showed a strong and specific band in agarose gel electrophoresis. To evaluate the specificity of the method, the primers were tested on extracted DNA from Trichophyton rubrum and T. mentagrophytes. The results demonstrated that the evaluated parvalbumin gene (UniProt ID: A0A178F7E4) was T. violaceum-specific and this pathogenic fungus can be differentiated from T. rubrum and T. mentagrophytes through identification of parvalbumin genes. Further studies are necessary to unravel the biochemical and physiological functions of parvalbumins in T. violaceum.
Collapse
Affiliation(s)
- Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran.
| | - Leila Masoori
- Department of Laboratory Sciences, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Schwaller B. Cytosolic Ca 2+ Buffers Are Inherently Ca 2+ Signal Modulators. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035543. [PMID: 31308146 DOI: 10.1101/cshperspect.a035543] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For precisely regulating intracellular Ca2+ signals in a time- and space-dependent manner, cells make use of various components of the "Ca2+ signaling toolkit," including Ca2+ entry and Ca2+ extrusion systems. A class of cytosolic Ca2+-binding proteins termed Ca2+ buffers serves as modulators of such, mostly short-lived Ca2+ signals. Prototypical Ca2+ buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Although initially considered to function as pure Ca2+ buffers, that is, as intracellular Ca2+ signal modulators controlling the shape (amplitude, decay, spread) of Ca2+ signals, evidence has accumulated that calbindin-D28k and calretinin have additional Ca2+ sensor functions. These other functions are brought about by direct interactions with target proteins, thereby modulating their targets' function/activity. Dysregulation of Ca2+ buffer expression is associated with several neurologic/neurodevelopmental disorders including autism spectrum disorder (ASD) and schizophrenia. In some cases, the presence of these proteins is presumed to confer a neuroprotective effect, as evidenced in animal models of Parkinson's or Alzheimer's disease.
Collapse
Affiliation(s)
- Beat Schwaller
- Department of Anatomy, Section of Medicine, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
4
|
Thompson BR, Cohen H, Angulski ABB, Metzger JM. Gene Transfer of Calcium-Binding Proteins into Adult Cardiac Myocytes. Methods Mol Biol 2019; 1929:187-205. [PMID: 30710274 PMCID: PMC6507422 DOI: 10.1007/978-1-4939-9030-6_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Heart failure is the leading cause of combined morbidity and mortality in the USA with 50% of cases being diastolic heart failure. Diastolic heart failure results from poor myocardial relaxation and inadequate filling of the left ventricular chamber caused in part by calcium-handling dysregulation. In this chapter we describe methods to investigate new approaches of novel human Ca2+ binding protein motifs to restore normal Ca2+ handling function to diseased myocardium. Gene transfer of parvalbumin into adult cardiac myocytes has been studied as a potential therapeutic, specifically as a strategic Ca2+ buffer to correct cardiac mechanical dysfunction in disease. This chapter provides protocols for studying wild-type parvalbumin isoforms and parvalbumins with strategically designed EF-hand motifs in adult cardiac myocytes via acute adenoviral gene transfer. These protocols have been used extensively to optimize parvalbumin function as a potential therapeutic for failing heart muscle.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Houda Cohen
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Addeli Bez Batti Angulski
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Joseph M Metzger
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN, USA.
| |
Collapse
|
5
|
Garland MA, Stillman JH, Tomanek L. The proteomic response of cheliped myofibril tissue in the eurythermal porcelain crab Petrolisthes cinctipes to heat shock following acclimation to daily temperature fluctuations. J Exp Biol 2015; 218:388-403. [DOI: 10.1242/jeb.112250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The porcelain crab Petrolisthes cinctipes lives under rocks and in mussel beds in the mid-intertidal zone where it experiences immersion during high tide and saturating humid conditions in air during low tide, which can increase habitat temperature by up to 20°C. To identify the biochemical changes affected by increasing temperature fluctuations and subsequent heat shock, we acclimated P. cinctipes for 30 days to one of three temperature regimes: (1) constant 10°C, (2) daily temperature fluctuations between 10 and 20°C (5 h up-ramp to 20°C, 1 h down-ramp to 10°C) and (3) 10–30°C (up-ramp to 30°C). After acclimation, animals were exposed to either 10°C or a 30°C heat shock to analyze the proteomic changes in claw muscle tissue. Following acclimation to 10–30°C (measured at 10°C), enolase and ATP synthase increased in abundance. Following heat shock, isoforms of arginine kinase and glycolytic enzymes such as aldolase, triose phosphate isomerase and glyceraldehyde 3-phosphate dehydrogenase increased across all acclimation regimes. Full-length isoforms of hemocyanin increased abundance following acclimation to 10–30°C, but hemocyanin fragments increased after heat shock following constant 10°C and fluctuating 10–20°C, possibly playing a role as antimicrobial peptides. Following constant 10°C and fluctuating 10–20°C, paramyosin and myosin heavy chain type-B increased in abundance, respectively, whereas myosin light and heavy chain decreased with heat shock. Actin-binding proteins, which stabilize actin filaments (filamin and tropomyosin), increased during heat shock following 10–30°C; however, actin severing and depolymerization proteins (gelsolin and cofilin) increased during heat shock following 10–20°C, possibly promoting muscle fiber restructuring. RAF kinase inhibitor protein and prostaglandin reductase increased during heat shock following constant 10°C and fluctuating 10–20°C, possibly inhibiting an immune response during heat shock. The results suggest that ATP supply, muscle fiber restructuring and immune responses are all affected by temperature fluctuations and subsequent acute heat shock in muscle tissue. Furthermore, although heat shock after acclimation to constant 10°C and fluctuating 10–30°C showed the greatest effects on the proteome, moderately fluctuating temperatures (10–20°C) broadened the temperature range over which claw muscle was able to respond to an acute heat shock with limited changes in the muscle proteome.
Collapse
Affiliation(s)
- Michael A. Garland
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Studies, Environmental Proteomics Laboratory, 1 Grand Avenue, San Luis Obispo, CA 93407-0401, USA
| | - Jonathon H. Stillman
- Romberg Tiburon Center for Environmental Studies, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920-1205, USA
| | - Lars Tomanek
- California Polytechnic State University, Department of Biological Sciences, Center for Coastal Marine Studies, Environmental Proteomics Laboratory, 1 Grand Avenue, San Luis Obispo, CA 93407-0401, USA
| |
Collapse
|
6
|
Dietrich MA, Westfalewicz B, Jurecka P, Irnazarow I, Ciereszko A. Isolation, characterisation and cDNA sequencing of a new form of parvalbumin from carp semen. Reprod Fertil Dev 2014; 26:1117-28. [DOI: 10.1071/rd13181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/09/2013] [Indexed: 12/28/2022] Open
Abstract
Parvalbumins (Pv) are calcium-binding proteins present mainly in the muscle and nervous system where they act as a Ca2+ buffer. Our previous work demonstrated the presence of Pv-I in carp semen and indicated the presence of a second Pv (Pv-II). The purpose of the present work was to identify, purify and determine the full-length cDNA sequence of Pv-II from carp testis. Pv-II from seminal plasma was purified by ion-exchange chromatography (IEC) and preparative electrophoresis, while the Pv-II from spermatozoa was purified by IEC, gel filtration and preparative electrophoresis. The purified Pv-II was submitted to an analysis of molecular mass, isoelectric point (pI), amino-acid sequence and oligomerisation ability. The amino-acid sequence was used to construct primers and obtain the full-length cDNA sequence of seminal-specific Pv-II from carp testis. Analysis of the cDNA sequence indicated that carp-testis Pv-II was distinct from carp-muscle parvalbumins. Pv-II was distinct from Pv-I regarding sequence, molecular mass and pI. Both parvalbumins had the ability to form oligomers or to bind to other proteins. Carp seminal plasma had a protective effect against parvalbumin oligomerisation. Pv-II underwent post-translational modification such as n-acetylation and cysteinylation. The present study is the first to report the full-length cDNA sequence of parvalbumin from carp testis.
Collapse
|
7
|
Wang W, Barnabei MS, Asp ML, Heinis FI, Arden E, Davis J, Braunlin E, Li Q, Davis JP, Potter JD, Metzger JM. Noncanonical EF-hand motif strategically delays Ca2+ buffering to enhance cardiac performance. Nat Med 2013; 19:305-12. [PMID: 23396207 DOI: 10.1038/nm.3079] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/21/2012] [Indexed: 12/26/2022]
Abstract
EF-hand proteins are ubiquitous in cell signaling. Parvalbumin (Parv), the archetypal EF-hand protein, is a high-affinity Ca(2+) buffer in many biological systems. Given the centrality of Ca(2+) signaling in health and disease, EF-hand motifs designed to have new biological activities may have widespread utility. Here, an EF-hand motif substitution that had been presumed to destroy EF-hand function, that of glutamine for glutamate at position 12 of the second cation binding loop domain of Parv (ParvE101Q), markedly inverted relative cation affinities: Mg(2+) affinity increased, whereas Ca(2+) affinity decreased, forming a new ultra-delayed Ca(2+) buffer with favorable properties for promoting cardiac relaxation. In therapeutic testing, expression of ParvE101Q fully reversed the severe myocyte intrinsic contractile defect inherent to expression of native Parv and corrected abnormal myocardial relaxation in diastolic dysfunction disease models in vitro and in vivo. Strategic design of new EF-hand motif domains to modulate intracellular Ca(2+) signaling could benefit many biological systems with abnormal Ca(2+) handling, including the diseased heart.
Collapse
Affiliation(s)
- Wang Wang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Characterization of sarcoplasmic calcium binding protein (SCP) variants from freshwater crayfish Procambarus clarkii. Comp Biochem Physiol B Biochem Mol Biol 2011; 160:8-14. [PMID: 21530674 DOI: 10.1016/j.cbpb.2011.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/11/2011] [Accepted: 04/12/2011] [Indexed: 10/18/2022]
Abstract
Sarcoplasmic calcium binding protein (SCP) is an invertebrate EF-hand calcium buffering protein that has been proposed to fulfill a similar function in muscle relaxation as vertebrate parvalbumin. We have identified three SCP variants in the freshwater crayfish Procambarus clarkii. The variants (pcSCP1a, pcSCP1b, and pcSCP1c) differ across a 37 amino acid region that lies mainly between the second and third EF-hand calcium binding domains. We evaluated tissue distribution and response of the variants to cold exposure, a stress known to affect expression of parvalbumin. Expression patterns of the variants were not different and therefore do not provide a functional rationale for the polymorphism of pcSCP1. Compared to hepatopancreas, expression of pcSCP1 variants was 100,000-fold greater in axial abdominal muscle and 10-fold greater in cardiac muscle. Expression was 10-100 greater in fast-twitch deep flexor and extensor muscles compared to slow-twitch superficial flexor and extensors. In axial muscle, no significant changes of pcSCP1, calmodulin (CaM), or sarcoplasmic/endoplasmic reticulum Ca-ATPase (SERCA) expression were measured after one week of 4°C exposure. In contrast, large decreases of pcSCP1 were measured in cardiac muscle, with no changes in CaM or SERCA. Knockdown of pcSCP1 by dsRNA led to reduced muscle activity and decreased expression of SERCA. In summary, the pattern of pcSCP1 tissue expression is similar to parvalbumin, supporting a role in muscle contraction. However, the response of pcSCP1 to cold exposure differs from parvalbumin, suggesting possible functional divergence between the two proteins.
Collapse
|
9
|
Abstract
"Ca(2+) buffers," a class of cytosolic Ca(2+)-binding proteins, act as modulators of short-lived intracellular Ca(2+) signals; they affect both the temporal and spatial aspects of these transient increases in [Ca(2+)](i). Examples of Ca(2+) buffers include parvalbumins (α and β isoforms), calbindin-D9k, calbindin-D28k, and calretinin. Besides their proven Ca(2+) buffer function, some might additionally have Ca(2+) sensor functions. Ca(2+) buffers have to be viewed as one of the components implicated in the precise regulation of Ca(2+) signaling and Ca(2+) homeostasis. Each cell is equipped with proteins, including Ca(2+) channels, transporters, and pumps that, together with the Ca(2+) buffers, shape the intracellular Ca(2+) signals. All of these molecules are not only functionally coupled, but their expression is likely to be regulated in a Ca(2+)-dependent manner to maintain normal Ca(2+) signaling, even in the absence or malfunctioning of one of the components.
Collapse
|