1
|
Hu X, Zhang J, Ma H, Lian W, Song W, Du C, Chen S, Wang D, Wei J, Lu Q. The broad-spectrum deubiquitinating enzyme inhibitor PR-619 protects retinal ganglion cell and augments parkin-mediated mitophagy in experimental glaucoma. Sci Rep 2024; 14:24654. [PMID: 39428410 PMCID: PMC11491476 DOI: 10.1038/s41598-024-75562-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
Glaucoma is a leading cause of irreversible visual impairment worldwide, characterized by the progressive death of retinal ganglion cells (RGCs). Deubiquitinating enzyme (DUB) inhibitors have shown promise as pharmacological interventions for neurodegenerative disorders. Our study focuses on the pan-DUB inhibitor PR-619 and its potential neuroprotective effects on RGCs through modulation of parkin-mediated mitophagy in experimental glaucoma models. The results show that impaired mitophagy exists in RGCs of our experimental glaucomatous model. In vivo, PR-619 increased RGCs survival in glaucomatous rats. In vitro, it protected RGCs against excitotoxicity and reduced ubiquitin-specific protease (USP) 15 expression. Additionally, PR-619 upregulated parkin expression, increased LC3-II/LC3-I ratios, and elevated LAMP1 levels, indicating enhanced mitophagy in vivo and in vitro. Moreover, numbers of mitophagosomes were increased in optic nerves of PR-619-treated ocular hypertensive rats in vivo. Furthermore, parkin knockdown negated the salutary effects of PR-619 and attenuated expression of parkin-dependent mitophagy effectors in RGCs subjected to glutamate excitotoxicity in vitro. Collectively, these findings implicate augmented parkin-mediated mitophagy as the mechanistic substrate underscoring the neuroprotective capacity of PR-619 in experimental glaucoma. These revelations engender the prospect that pharmacological agents or biotherapeutics augmenting parkin-mediated mitophagy may proffer viable therapeutic modalities for glaucomatous neurodegeneration characterized by impaired mitophagy.
Collapse
Affiliation(s)
- Xinxin Hu
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Juntao Zhang
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Haixia Ma
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Wei Lian
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Wenqiu Song
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Chao Du
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Shengcan Chen
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Dandan Wang
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Jiaqi Wei
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China
| | - Qinkang Lu
- Department of Ophthalmology, The Affiliated People's Hospital of Ningbo University, Ningbo University, 315000, Ningbo, China.
- Ningbo Clinical Research Center for Ophthalmology, Ningbo, 315000, China.
- Ningbo Key Laboratory for Neuroretinopathy Medical Research, Ningbo, 315000, China.
- Eye Hospital of Wenzhou Medical University (Ningbo Branch), Ningbo, 315000, China.
| |
Collapse
|
2
|
James VK, Godula RN, Perez JM, Beckham JT, Butalewicz JP, Sipe SN, Huibregtse JM, Brodbelt JS. Native Mass Spectrometry Reveals Binding Interactions of SARS-CoV-2 PLpro with Inhibitors and Cellular Targets. ACS Infect Dis 2024; 10:3597-3606. [PMID: 39303064 PMCID: PMC11533220 DOI: 10.1021/acsinfecdis.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Here we used native mass spectrometry (native MS) to probe a SARS-CoV protease, PLpro, which plays critical roles in coronavirus disease by affecting viral protein production and antagonizing host antiviral responses. Ultraviolet photodissociation (UVPD) and variable temperature electrospray ionization (vT ESI) were used to localize binding sites of PLpro inhibitors and revealed the stabilizing effects of inhibitors on protein tertiary structure. We compared PLpro from SARS-CoV-1 and SARS-CoV-2 in terms of inhibitor and ISG15 interactions to discern possible differences in protease function. A PLpro mutant lacking a single cysteine was used to localize inhibitor binding, and thermodynamic measurements revealed that inhibitor PR-619 stabilized the folded PLpro structure. These results will inform further development of PLpro as a therapeutic target against SARS-CoV-2 and other emerging coronaviruses.
Collapse
Affiliation(s)
- Virginia K. James
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rianna N. Godula
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jessica M. Perez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Josh T. Beckham
- Freshman Research Initiative, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jamie P. Butalewicz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Sarah N. Sipe
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jon M. Huibregtse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
3
|
Colaco JC, Suresh B, Kaushal K, Singh V, Ramakrishna S. The Role of Deubiquitinating Enzymes in Primary Bone Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01254-y. [PMID: 39177860 DOI: 10.1007/s12033-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/β-catenin, TRAF6, TGFβ, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.
Collapse
Affiliation(s)
- Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382715, India.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
4
|
Talreja J, Bauerfeld C, Wang X, Hafner M, Liu Y, Samavati L. MKP-1 modulates ubiquitination/phosphorylation of TLR signaling. Life Sci Alliance 2021; 4:e202101137. [PMID: 34580177 PMCID: PMC8500224 DOI: 10.26508/lsa.202101137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 11/24/2022] Open
Abstract
Ubiquitination and phosphorylation are reversible posttranslational protein modifications regulating physiological and pathological processes. MAPK phosphatase (MKP)-1 regulates innate and adaptive immunity. The multifaceted roles of MKP-1 were attributed to dephosphorylation of p38 and JNK MAPKs. We show that the lack of MKP-1 modulates the landscape of ubiquitin ligases and deubiquitinase enzymes (DUBs). MKP-1-/- showed an aberrant regulation of several DUBs and increased expression of proteins and genes involved in IL-1/TLR signaling upstream of MAPK, including IL-1R1, IRAK1, TRAF6, phosphorylated TAK1, and an increased K63 polyubiquitination on TRAF6. Increased K63 polyubiquitination on TRAF6 was associated with an enhanced phosphorylated form of A20. Among abundant DUBs, ubiquitin-specific protease-13 (USP13), which cleaves polyubiquitin-chains on client proteins, was substantially enhanced in murine MKP-1-deficient BMDMs. An inhibitor of USP13 decreased the K63 polyubiquitination on TRAF6, TAK1 phosphorylation, IL-1β, and TNF-α induction in response to LPS in BMDMs. Our data show for the first time that MKP-1 modulates the ligase activity of TRAF6 through modulation of specific DUBs.
Collapse
Affiliation(s)
- Jaya Talreja
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI, USA
| | - Christian Bauerfeld
- Department of Pediatrics, Division of Critical Care, Central Michigan University, Mount Pleasant, MI, USA
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Yusen Liu
- Center for Perinatal Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lobelia Samavati
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine and Detroit Medical Center, Detroit, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
5
|
Deubiquitinating enzymes as possible drug targets for schistosomiasis. Acta Trop 2021; 217:105856. [PMID: 33577811 DOI: 10.1016/j.actatropica.2021.105856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Deubiquitinating enzymes (DUBs) are conserved in Schistosoma mansoni and may be linked to the 26S proteasome. Previous results from our group showed that b-AP15, an inhibitor of the 26S proteasome DUBs UCHL5 and USP14 induced structural and gene expression changes in mature S. mansoni pairs. This work suggests the use of the nonselective DUB inhibitor PR-619 to verify whether these enzymes are potential target proteins for new drug development. Our approach is based on previous studies with DUB inhibitors in mammalian cells that have shown that these enzymes are associated with apoptosis, autophagy and the transforming growth factor beta (TGF-β) signaling pathway. PR-619 inhibited oviposition in parasite pairs in vitro, leading to mitochondrial changes, autophagic body formation, and changes in expression of SmSmad2 and SmUSP9x, which are genes linked to the TGF-β pathway that are responsible for parasite oviposition and SmUCHL5 and SmRpn11 DUB maintenance. Taken together, these results indicate that DUBs may be used as targets for the development of new drugs against schistosomiasis.
Collapse
|
6
|
Ilie OD, Ciobica A, Riga S, Dhunna N, McKenna J, Mavroudis I, Doroftei B, Ciobanu AM, Riga D. Mini-Review on Lipofuscin and Aging: Focusing on The Molecular Interface, The Biological Recycling Mechanism, Oxidative Stress, and The Gut-Brain Axis Functionality. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E626. [PMID: 33228124 PMCID: PMC7699382 DOI: 10.3390/medicina56110626] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Intra-lysosomal accumulation of the autofluorescent "residue" known as lipofuscin, which is found within postmitotic cells, remains controversial. Although it was considered a harmless hallmark of aging, its presence is detrimental as it continually accumulates. The latest evidence highlighted that lipofuscin strongly correlates with the excessive production of reactive oxygen species; however, despite this, lipofuscin cannot be removed by the biological recycling mechanisms. The antagonistic effects exerted at the DNA level culminate in a dysregulation of the cell cycle, by inducing a loss of the entire internal environment and abnormal gene(s) expression. Additionally, it appears that a crucial role in the production of reactive oxygen species can be attributed to gut microbiota, due to their ability to shape our behavior and neurodevelopment through their maintenance of the central nervous system.
Collapse
Affiliation(s)
- Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, no 20A, 700505 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Sorin Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| | - Nitasha Dhunna
- Mid Yorkshire Hospitals NHS Trust, Pinderfields Hospital, Wakefield WF1 4DG, UK;
| | - Jack McKenna
- York Hospital, Wigginton road Clifton, York YO31 8HE, UK;
| | - Ioannis Mavroudis
- Leeds Teaching Hospitals NHS Trust, Great George St, Leeds LS1 3EX, UK;
- Laboratory of Neuropathology and Electron Microscopy, School of Medicine, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Bogdan Doroftei
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, University Street, no 16, 700115 Iasi, Romania;
| | - Adela-Magdalena Ciobanu
- Discipline of Psychiatry, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, no 37, 020021 Bucharest, Romania;
| | - Dan Riga
- Academy of Romanian Scientists, Splaiul Independentei, no. 54, sector 5, 050094 Bucharest, Romania; (S.R.); (D.R.)
| |
Collapse
|
7
|
The small molecule inhibitor PR-619 protects retinal ganglion cells against glutamate excitotoxicity. Neuroreport 2020; 31:1134-1141. [PMID: 32991521 DOI: 10.1097/wnr.0000000000001522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glutamate excitotoxicity may contribute to the death of retinal ganglion cell (RGC) in glaucoma and other retinal diseases such as ischemia. Deubiquitinating enzyme (DUB) inhibitors are emerging as attractive targets for pharmacological intervention in neurodegenerative diseases. However, the role of PR-619, the broad spectrum DUB inhibitor, on RGCs under different stressful environment remains largely unknown. This study was designed to investigate the role of PR-619 in regulating mitophagy of RGCs under glutamate excitotoxicity. Primary cultured RGCs were incubated with PR-619 or vehicle control in the excitotoxicity model of 100 µM glutamate treatment. Mitochondrial membrane potential was assessed by JC-1 assay. Cytotoxicity of RGCs was measured by LDH activity. Proteins levels of parkin, optineurin, LAMP1, Bax, Bcl-2 and the LC3-II/I ratio were analyzed by western blot. The distribution and morphology of mitochondria in RGCs was stained by MitoTracker and antibody against mitochondria membrane protein, and examined by confocal microscopy. We show here that in the presence of glutamate-induced excitotoxicity, PR-619 stabilized the mitochondrial membrane potential of RGCs, decreased cytotoxicity and apoptosis, attenuated the expression of Bax. Meanwhile, PR-619 promoted the protein levels of Bcl-2, parkin, optineurin, LAMP1 and the LC3-II/I ratio. While knockdown of parkin by siRNA diminished the neuroprotective effect of PR-619 on RGCs. These findings demonstrate that PR-619 exerted a neuroprotective effect and promoted parkin-mediated mitophagy on cultured RGCs against glutamate excitotoxicity. DUB inhibitors may be useful in protecting RGCs through modulating the parkin-mediated mitophagy pathway against excitotoxicity.
Collapse
|
8
|
Wang L, Li M, Sha B, Hu X, Sun Y, Zhu M, Xu Y, Li P, Wang Y, Guo Y, Li J, Shi J, Li P, Hu T, Chen P. Inhibition of deubiquitination by PR-619 induces apoptosis and autophagy via ubi-protein aggregation-activated ER stress in oesophageal squamous cell carcinoma. Cell Prolif 2020; 54:e12919. [PMID: 33129231 PMCID: PMC7791184 DOI: 10.1111/cpr.12919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Targeting the deubiquitinases (DUBs) has become a promising avenue for anti-cancer drug development. However, the effect and mechanism of pan-DUB inhibitor, PR-619, on oesophageal squamous cell carcinoma (ESCC) cells remain to be investigated. MATERIALS AND METHODS The effect of PR-619 on ESCC cell growth and cell cycle was evaluated by CCK-8 and PI staining. Annexin V-FITC/PI double staining was performed to detect apoptosis. LC3 immunofluorescence and acridine orange staining were applied to examine autophagy. Intercellular Ca2+ concentration was monitored by Fluo-3AM fluorescence. The accumulation of ubi-proteins and the expression of the endoplasmic reticulum (ER) stress-related protein and CaMKKβ-AMPK signalling were determined by immunoblotting. RESULTS PR-619 could inhibit ESCC cell growth and induce G2/M cell cycle arrest by downregulating cyclin B1 and upregulating p21. Meanwhile, PR-619 led to the accumulation of ubiquitylated proteins, induced ER stress and triggered apoptosis by the ATF4-Noxa axis. Moreover, the ER stress increased cytoplasmic Ca2+ and then stimulated autophagy through Ca2+ -CaMKKβ-AMPK signalling pathway. Ubiquitin E1 inhibitor, PYR-41, could reduce the accumulation of ubi-proteins and alleviate ER stress, G2/M cell cycle arrest, apoptosis and autophagy in PR-619-treated ESCC cells. Furthermore, blocking autophagy by chloroquine or bafilomycin A1 enhanced the cell growth inhibition effect and apoptosis induced by PR-619. CONCLUSIONS Our findings reveal an unrecognized mechanism for the cytotoxic effects of general DUBs inhibitor (PR-619) and imply that targeting DUBs may be a potential anti-ESCC strategy.
Collapse
Affiliation(s)
- Longhao Wang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Beibei Sha
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xuanyu Hu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Sun
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingda Zhu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yan Xu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Pingping Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yating Wang
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Guo
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jiangfeng Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jianxiang Shi
- Precision Medicine Center, Henan Institute of Medical and Pharmaceutical Sciences & BGI College, Zhengzhou University, Zhengzhou, China
| | - Pei Li
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tao Hu
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ping Chen
- Academy of Medical Sciences, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Kim DH, Choi YR, Shim J, Choi YS, Kim YT, Kim MK, Kim MJ. Suppressive Effect of Arctium Lappa L. Leaves on Retinal Damage Against A2E-Induced ARPE-19 Cells and Mice. Molecules 2020; 25:molecules25071737. [PMID: 32283798 PMCID: PMC7180975 DOI: 10.3390/molecules25071737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/04/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of irreversible loss of vision with 80–90% of patients demonstrating dry type AMD. Dry AMD could possibly be prevented by polyphenol-rich medicinal foods by the inhibition of N-retinylidene-N-retinylethanolamine (A2E)-induced oxidative stress and cell damage. Arctium lappa L. (AL) leaves are medicinal and have antioxidant activity. The purpose of this study was to elucidate the protective effects of the extract of AL leaves (ALE) on dry AMD models, including in vitro A2E-induced damage in ARPE-19 cells, a human retinal pigment epithelial cell line, and in vivo light-induced retinal damage in BALB/c mice. According to the total phenolic contents (TPCs), total flavonoid contents (TFCs) and antioxidant activities, ALE was rich in polyphenols and had antioxidant efficacies on 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2′,7′-dichlorofluorescin diacetate (DCFDA) assays. The effects of ALE on A2E accumulation and A2E-induced cell death were also monitored. Despite continued exposure to A2E (10 μM), ALE attenuated A2E accumulation in APRE-19 cells with levels similar to lutein. A2E-induced cell death at high concentration (25 μM) was also suppressed by ALE by inhibiting the apoptotic signaling pathway. Furthermore, ALE could protect the outer nuclear layer (ONL) in the retina from light-induced AMD in BALB/c mice. In conclusion, ALE could be considered a potentially valuable medicinal food for dry AMD.
Collapse
Affiliation(s)
- Dong Hee Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju-si 54896, Korea;
| | - Yae Rim Choi
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Jaewon Shim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
| | - Yun-Sang Choi
- Research Division of Strategic Food Technology, Korea Food Research Institute, Wanju 55365, Korea;
| | - Yun Tai Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Department of Food Biotechnology, Korea University of Science & Technology, Daejeon 34113, Korea
| | - Mina Kyungmin Kim
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju-si 54896, Korea;
| | - Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju 55365, Korea; (D.H.K.); (Y.R.C.); (J.S.); (Y.T.K.)
- Correspondence: ; Tel.: +82-63-219-9380
| |
Collapse
|
10
|
Kovaleva TF, Maksimova NS, Pchelin PV, Pershin VI, Tkachenko NM, Gainullin MR, Mukhina IV. A New Cofilin-Dependent Mechanism for the Regulation of Brain Mitochondria Biogenesis and Degradation. Sovrem Tekhnologii Med 2020; 12:6-13. [PMID: 34513032 PMCID: PMC8353704 DOI: 10.17691/stm2020.12.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Indexed: 11/14/2022] Open
Abstract
The aim Was to study the role of post-translational modifications of cofilin in the regulation of respiration and autophagy in murine brain mitochondria.
Collapse
Affiliation(s)
- T F Kovaleva
- Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N S Maksimova
- PhD Student, Junior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - P V Pchelin
- Laboratory Assistant, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - V I Pershin
- Laboratory Assistant, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - N M Tkachenko
- Junior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - M R Gainullin
- Senior Researcher, Molecular and Cellular Technologies Department, Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Researcher, Norwegian PSC Research Center, Department of Transplantation Medicine, Division of Surgery, Inflammatory Diseases and Transplantation, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, Oslo, 0424, Norway, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, P.O. Box 1171, Blindern, Oslo, 0318, Norway
| | - I V Mukhina
- Professor, Director of the Institute of Fundamental Medicine, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Head of the Department of Normal Physiology named after N.Y. Belenkov, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia, Professor, Department of Neurotechnologies, Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhni Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
11
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
12
|
Kumari N, Jaynes PW, Saei A, Iyengar PV, Richard JLC, Eichhorn PJA. The roles of ubiquitin modifying enzymes in neoplastic disease. Biochim Biophys Acta Rev Cancer 2017; 1868:456-483. [PMID: 28923280 DOI: 10.1016/j.bbcan.2017.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
The initial experiments performed by Rose, Hershko, and Ciechanover describing the identification of a specific degradation signal in short-lived proteins paved the way to the discovery of the ubiquitin mediated regulation of numerous physiological functions required for cellular homeostasis. Since their discovery of ubiquitin and ubiquitin function over 30years ago it has become wholly apparent that ubiquitin and their respective ubiquitin modifying enzymes are key players in tumorigenesis. The human genome encodes approximately 600 putative E3 ligases and 80 deubiquitinating enzymes and in the majority of cases these enzymes exhibit specificity in sustaining either pro-tumorigenic or tumour repressive responses. In this review, we highlight the known oncogenic and tumour suppressive effects of ubiquitin modifying enzymes in cancer relevant pathways with specific focus on PI3K, MAPK, TGFβ, WNT, and YAP pathways. Moreover, we discuss the capacity of targeting DUBs as a novel anticancer therapeutic strategy.
Collapse
Affiliation(s)
- Nishi Kumari
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Patrick William Jaynes
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore
| | - Azad Saei
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Genome Institute of Singapore, A*STAR, Singapore
| | | | | | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore.
| |
Collapse
|
13
|
Jin WL, Mao XY, Qiu GZ. Targeting Deubiquitinating Enzymes in Glioblastoma Multiforme: Expectations and Challenges. Med Res Rev 2016; 37:627-661. [PMID: 27775833 DOI: 10.1002/med.21421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 09/06/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
Abstract
Glioblastoma (GBM) is regarded as the most common primary intracranial neoplasm. Despite standard treatment with tumor resection and radiochemotherapy, the outcome remains gloomy. It is evident that a combination of oncogenic gain of function and tumor-suppressive loss of function has been attributed to glioma initiation and progression. The ubiquitin-proteasome system is a well-orchestrated system that controls the fate of most proteins by striking a dynamic balance between ubiquitination and deubiquitination of substrates, having a profound influence on the modulation of oncoproteins, tumor suppressors, and cellular signaling pathways. In recent years, deubiquitinating enzymes (DUBs) have emerged as potential anti-cancer targets due to their targeting several key proteins involved in the regulation of tumorigenesis, apoptosis, senescence, and autophagy. This review attempts to summarize recent studies of GBM-associated DUBs, their roles in various cellular processes, and discuss the relation between DUBs deregulation and gliomagenesis, especially how DUBs regulate glioma stem cells pluripotency, microenvironment, and resistance of radiation and chemotherapy through core stem-cell transcriptional factors. We also review recent achievements and progress in the development of potent and selective reversible inhibitors of DUBs, and attempted to find a potential GBM treatment by DUBs intervention.
Collapse
Affiliation(s)
- Wei-Lin Jin
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, P. R. China
| | - Guan-Zhong Qiu
- Department of Neurosurgery, General Hospital of Jinan Military Command, Jinan, 250031, P. R. China
| |
Collapse
|
14
|
Wang DW, Peng ZJ, Ren GF, Wang GX. The different roles of selective autophagic protein degradation in mammalian cells. Oncotarget 2016; 6:37098-116. [PMID: 26415220 PMCID: PMC4741918 DOI: 10.18632/oncotarget.5776] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023] Open
Abstract
Autophagy is an intracellular pathway for bulk protein degradation and the removal of damaged organelles by lysosomes. Autophagy was previously thought to be unselective; however, studies have increasingly confirmed that autophagy-mediated protein degradation is highly regulated. Abnormal autophagic protein degradation has been associated with multiple human diseases such as cancer, neurological disability and cardiovascular disease; therefore, further elucidation of protein degradation by autophagy may be beneficial for protein-based clinical therapies. Macroautophagy and chaperone-mediated autophagy (CMA) can both participate in selective protein degradation in mammalian cells, but the process is quite different in each case. Here, we summarize the various types of macroautophagy and CMA involved in determining protein degradation. For this summary, we divide the autophagic protein degradation pathways into four categories: the post-translational modification dependent and independent CMA pathways and the ubiquitin dependent and independent macroautophagy pathways, and describe how some non-canonical pathways and modifications such as phosphorylation, acetylation and arginylation can influence protein degradation by the autophagy lysosome system (ALS). Finally, we comment on why autophagy can serve as either diagnostics or therapeutic targets in different human diseases.
Collapse
Affiliation(s)
- Da-wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhen-ju Peng
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-fang Ren
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| | - Guang-xin Wang
- Medical Institute of Paediatrics, Qilu Children's Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Liu Y, Du M, Li X, Chen L, Shen Q, Tian J, Zhang D. Role of the ubiquitin-proteasome pathway on proteolytic activity in postmortem proteolysis and tenderisation of sheep skeletal muscle. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yue Liu
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Processing; Ministry of Agriculture; Beijing 100193 China
- School of Agriculture; Ningxia University; Yinchuan Ningxia 750021 China
| | - Manting Du
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Processing; Ministry of Agriculture; Beijing 100193 China
| | - Xin Li
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Processing; Ministry of Agriculture; Beijing 100193 China
| | - Li Chen
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Processing; Ministry of Agriculture; Beijing 100193 China
| | - Qingwu Shen
- College of Food Science and Technology; Hunan Agricultural University; Changsha Hunan 410128 China
| | - Jianwen Tian
- School of Agriculture; Ningxia University; Yinchuan Ningxia 750021 China
| | - Dequan Zhang
- Institute of Food Science and Technology; Chinese Academy of Agricultural Sciences; Key Laboratory of Agro-Product Processing; Ministry of Agriculture; Beijing 100193 China
| |
Collapse
|
16
|
Abstract
Ubiquitination, the structured degradation and turnover of cellular proteins, is regulated by the ubiquitin-proteasome system (UPS). Most proteins that are critical for cellular regulations and functions are targets of the process. Ubiquitination is comprised of a sequence of three enzymatic steps, and aberrations in the pathway can lead to tumor development and progression as observed in many cancer types. Recent evidence indicates that targeting the UPS is effective for certain cancer treatment, but many more potential targets might have been previously overlooked. In this review, we will discuss the current state of small molecules that target various elements of ubiquitination. Special attention will be given to novel inhibitors of E3 ubiquitin ligases, especially those in the SCF family.
Collapse
Affiliation(s)
- John Kenneth Morrow
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Hui-Kuan Lin
- Department of Molecular & Cellular Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Cong Sun
- Department of Immunology, MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shuxing Zhang
- Integrated Molecular Discovery Laboratory, Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
17
|
Gupta N, Li W, McIntyre TM. Deubiquitinases Modulate Platelet Proteome Ubiquitination, Aggregation, and Thrombosis. Arterioscler Thromb Vasc Biol 2015; 35:2657-66. [PMID: 26471267 DOI: 10.1161/atvbaha.115.306054] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/24/2015] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Platelets express a functional ubiquitin-proteasome system. Mass spectrometry shows that platelets contain several deubiquitinases, but whether these are functional, modulate the proteome, or affect platelet reactivity are unknown. APPROACH AND RESULTS Platelet lysates contained ubiquitin-protein deubiquitinase activity hydrolyzing both Lys48 and Lys63 polyubiquitin conjugates that was suppressed by the chemically unrelated deubiquitinase inhibitors PYR41 and PR619. These inhibitors acutely and markedly increased monoubiquitination and polyubiquitination of the proteome of resting platelets. PYR41 (intravenous, 15 minutes) significantly impaired occlusive thrombosis in FeCl3-damaged carotid arteries, and deubiquitinase inhibition reduced platelet adhesion and retention during high shear flow of whole blood through microfluidic chambers coated with collagen. Total internal reflection microscopy showed that adhesion and spreading in the absence of flow were strongly curtailed by these inhibitors with failure of stable process extension and reduced the retraction of formed clots. Deubiquitinase inhibition also sharply reduced homotypic platelet aggregation in response to not only the incomplete agonists ADP and collagen acting through glycoprotein VI but also to the complete agonist thrombin. Suppressed aggregation was accompanied by curtailed procaspase activating compound-1 binding to activated IIb/IIIa and inhibition of P-selectin translocation to the platelet surface. Deubiquitinase inhibition abolished the agonist-induced spike in intracellular calcium, suppressed Akt phosphorylation, and reduced agonist-stimulated phosphatase and tensin homolog phosphatase phosphorylation. Platelets express the proteasome-associated deubiquitinases USP14 and UCHL5, and selective inhibition of these enzymes by b-AP15 reproduced the inhibitory effect of the general deubiquitinase inhibitors on ex vivo platelet function. CONCLUSIONS Remodeling of the ubiquitinated platelet proteome by deubiquitinases promotes agonist-stimulated intracellular signal transduction and platelet responsiveness.
Collapse
Affiliation(s)
- Nilaksh Gupta
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH; and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Wei Li
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH; and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH
| | - Thomas M McIntyre
- From the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, OH; and Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
18
|
Magraoui FE, Reidick C, Meyer HE, Platta HW. Autophagy-Related Deubiquitinating Enzymes Involved in Health and Disease. Cells 2015; 4:596-621. [PMID: 26445063 PMCID: PMC4695848 DOI: 10.3390/cells4040596] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is an evolutionarily-conserved process that delivers diverse cytoplasmic components to the lysosomal compartment for either recycling or degradation. This involves the removal of protein aggregates, the turnover of organelles, as well as the elimination of intracellular pathogens. In this situation, when only specific cargoes should be targeted to the lysosome, the potential targets can be selectively marked by the attachment of ubiquitin in order to be recognized by autophagy-receptors. Ubiquitination plays a central role in this process, because it regulates early signaling events during the induction of autophagy and is also used as a degradation-tag on the potential autophagic cargo protein. Here, we review how the ubiquitin-dependent steps of autophagy are balanced or counteracted by deubiquitination events. Moreover, we highlight the functional role of the corresponding deubiquitinating enzymes and discuss how they might be involved in the occurrence of cancer, neurodegenerative diseases or infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Fouzi El Magraoui
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Christina Reidick
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| | - Hemut E Meyer
- Biomedizinische Forschung, Human Brain Proteomics II, Leibniz-Institut für Analytische Wissenschaften - ISAS -e.V. 44139 Dortmund, Germany.
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44801 Bochum, Germany.
| |
Collapse
|
19
|
Pukaß K, Goldbaum O, Richter-Landsberg C. Mitochondrial impairment and oxidative stress compromise autophagosomal degradation of α-synuclein in oligodendroglial cells. J Neurochem 2015. [PMID: 26212128 DOI: 10.1111/jnc.13256] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
α-Synuclein (α-syn)-containing glial cytoplasmic inclusions originating in oligodendrocytes are characteristically observed in multiple system atrophy. The mechanisms of glial cytoplasmic inclusion formation remain rather elusive. α-Syn over-expression, uptake from the environment, oxidative stress or impairment of the proteolytic degradation systems have been discussed. Here, we investigated whether in oligodendrocytes autophagy plays a major role in the degradation and aggregation of endogenously expressed α-syn and of α-syn taken up from the extracellular environment. Furthermore, we studied whether in cells with impaired mitochondria the accumulation and aggregation of exogenously added α-syn is promoted. Using primary cultures of rat brain oligodendrocytes and an oligodendroglial cell line, genetically engineered to express green fluorescent protein-microtubule-associated light chain 3 with or without α-syn to monitor the autophagic flux, we demonstrate that both exogenously applied α-syn and α-syn stably expressed endogenously are effectively degraded by autophagy and do not affect the autophagic flux per se. Mitochondrial impairment with the protonophore carbonyl cyanide 3-chlorophenylhydrazone or 3-nitropropionic acid disturbs the autophagic pathway and leads to the accumulation of exogenously applied α-syn and enhances its propensity to form aggregates intracellularly. Thus, mitochondrial dysfunction and oxidative stress, which occur over time and are significant pathological features in synucleinopathies, have an impact on the autophagic pathway and participate in pathogenesis. Glial cytoplasmic inclusions are characteristically observed in multiple system atrophy, their occurrence might be related to failure in protein degradation systems. Here, we show that in oligodendrocytes autophagy is the major route of α-synuclein degradation which is either endogenously expressed or added exogenously (1, 2). Mitochondrial impairment (3) disturbs the autophagic flux and leads to the accumulation of exogenously applied α-synuclein, and enhances its propensity to form aggregates intracellulary (4).
Collapse
Affiliation(s)
- Katharina Pukaß
- Department of Neuroscience, Molecular Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Olaf Goldbaum
- Department of Neuroscience, Molecular Neurobiology, University of Oldenburg, Oldenburg, Germany
| | | |
Collapse
|
20
|
Pukaß K, Richter-Landsberg C. Inhibition of UCH-L1 in oligodendroglial cells results in microtubule stabilization and prevents α-synuclein aggregate formation by activating the autophagic pathway: implications for multiple system atrophy. Front Cell Neurosci 2015; 9:163. [PMID: 25999815 PMCID: PMC4419839 DOI: 10.3389/fncel.2015.00163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023] Open
Abstract
α-Synuclein (α-syn) positive glial cytoplasmic inclusions (GCI) originating in oligodendrocytes (ODC) are a characteristic hallmark in multiple system atrophy (MSA). Their occurrence may be linked to a failure of the ubiquitin proteasome system (UPS) or the autophagic pathway. For proteasomal degradation, proteins need to be covalently modified by ubiquitin, and deubiquitinated by deubiquitinating enzymes (DUBs) before proteolytic degradation is performed. The DUB ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a component of the UPS, it is abundantly expressed in neuronal brain cells and has been connected to Parkinson’s disease (PD). It interacts with α-syn and tubulin. The present study was undertaken to investigate whether UCH-L1 is a constituent of ODC, the myelin forming cells of the CNS, and is associated with GCIs in MSA. Furthermore, LDN-57444 (LDN), a specific UCH-L1 inhibitor, was used to analyze its effects on cell morphology, microtubule (MT) organization and the proteolytic degradation system. Towards this an oligodendroglial cell line (OLN cells), stably transfected with α-syn or with α-syn and GFP-LC3, to monitor the autophagic flux, was used. The data show that UCH-L1 is expressed in ODC derived from the brains of newborn rats and colocalizes with α-syn in GCIs of MSA brain sections. LDN treatment had a direct impact on the MT network by affecting tubulin posttranslational modifications, i.e., acetylation and tyrosination. An increase in α-tubulin detyrosination was observed and detyrosinated MT were abundantly recruited to the cellular extensions. Furthermore, small α-syn aggregates, which are constitutively expressed in OLN cells overexpressing α-syn, were abolished, and LDN caused the upregulation of the autophagic pathway. Our data add to the knowledge that the UPS and the autophagy-lysosomal pathway are tightly balanced, and that UCH-L1 and its regulation may play a role in neurodegenerative diseases with oligodendroglia pathology.
Collapse
Affiliation(s)
- Katharina Pukaß
- Department of Neuroscience, Molecular Neurobiology, University of Oldenburg Oldenburg, Germany
| | | |
Collapse
|
21
|
Leyk J, Goldbaum O, Noack M, Richter-Landsberg C. Inhibition of HDAC6 modifies tau inclusion body formation and impairs autophagic clearance. J Mol Neurosci 2014; 55:1031-46. [PMID: 25434725 DOI: 10.1007/s12031-014-0460-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Proteinaceous inclusions in nerve cells and glia are a defining neuropathological hallmark in a variety of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Their occurrence may be related to malfunctions of the proteolytic degradation systems. In cultured oligodendrocytes, proteasomal inhibition leads to protein aggregate formation resembling coiled bodies, which are characteristic for PSP and CBD. Large protein aggregates are excluded from the proteasome and can only be degraded by autophagy, a lysosomal pathway. Autophagy is a highly selective process, which requires a variety of receptor proteins for ubiquitinated proteins, such as p62 and histone deacetylase 6 (HDAC6). HDAC6 is mainly localized in the cytoplasm, and alpha-tubulin is its major substrate. HDAC6 is considered as a sensor of proteasomal stress; it is involved in the autophagosomal pathway and can mediate the retrograde transport of ubiquitinated proteins along the microtubules. As we have shown recently, HDAC6 is present in oligodendrocytes and its inhibition leads to morphological alterations, microtubule bundling, modulation of acetylation, and phosphorylation of the microtubule-associated protein tau. The present study was undertaken to investigate whether HDAC6 is involved in protein aggregate formation in oligodendrocytes and whether its inhibition modifies the consequences of MG-132-induced inhibition of the ubiquitin proteasome system (UPS). The data show that HDAC6 and acetylated tau are recruited to protein aggregates after proteasomal inhibition. Pharmacological inhibition of HDAC6 by the selective inhibitor tubastatin A (TST) and its small hairpin RNA (shRNA)-mediated downregulation alters the assembly of MG-132-induced compact protein aggregates. After TST treatment, they appear more diffusely dispersed throughout the cytoplasm. This is not a protective means but promotes the onset of apoptotic cell death. Furthermore, the heat shock response is altered, and TST suppresses the MG-132-stimulated induction of HSP70. To test whether the alteration of protein aggregate formation is related to the influence of HDAC6 on the autophagic degradation system, an oligodendroglial cell line, i.e., OLN-93 cells stably expressing green fluorescent protein (GFP)-microtubule associated protein light chain 3 (LC3) and tau, was used. During autophagosome formation, endogenous LC3 is processed to LC3-I, which is then converted to LC3-II. An increase of LC3-II is used as a reliable marker for autophagosome formation and abundance. It is demonstrated that inhibition of HDAC6 leads to the accumulation of LC3-positive autophagosomal vacuoles and an increase in LC3-II immunoreactivity, but the autophagic flux is rather impaired. Hence, the inhibition or dysregulation of HDAC6 contributes to stress responses and pathological processes in oligodendrocytes.
Collapse
Affiliation(s)
- Janina Leyk
- Department of Neurosciences, Molecular Neurobiology, University of Oldenburg, POB 2503, 26111, Oldenburg, Germany
| | | | | | | |
Collapse
|
22
|
Fisher E, Lake E, McLeod RS. Apolipoprotein B100 quality control and the regulation of hepatic very low density lipoprotein secretion. J Biomed Res 2014; 28:178-93. [PMID: 25013401 PMCID: PMC4085555 DOI: 10.7555/jbr.28.20140019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/15/2014] [Indexed: 12/19/2022] Open
Abstract
Apolipoprotein B (apoB) is the main protein component of very low density lipoprotein (VLDL) and is necessary for the assembly and secretion of these triglyceride (TG)-rich particles. Following release from the liver, VLDL is converted to low density lipoprotein (LDL) in the plasma and increased production of VLDL can therefore play a detrimental role in cardiovascular disease. Increasing evidence has helped to establish VLDL assembly as a target for the treatment of dyslipidemias. Multiple factors are involved in the folding of the apoB protein and the formation of a secretion-competent VLDL particle. Failed VLDL assembly can initiate quality control mechanisms in the hepatocyte that target apoB for degradation. ApoB is a substrate for endoplasmic reticulum associated degradation (ERAD) by the ubiquitin proteasome system and for autophagy. Efficient targeting and disposal of apoB is a regulated process that modulates VLDL secretion and partitioning of TG. Emerging evidence suggests that significant overlap exists between these degradative pathways. For example, the insulin-mediated targeting of apoB to autophagy and postprandial activation of the unfolded protein response (UPR) may employ the same cellular machinery and regulatory cues. Changes in the quality control mechanisms for apoB impact hepatic physiology and pathology states, including insulin resistance and fatty liver. Insulin signaling, lipid metabolism and the hepatic UPR may impact VLDL production, particularly during the postprandial state. In this review we summarize our current understanding of VLDL assembly, apoB degradation, quality control mechanisms and the role of these processes in liver physiology and in pathologic states.
Collapse
Affiliation(s)
- Eric Fisher
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Elizabeth Lake
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Roger S McLeod
- Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|