1
|
Alcolea-Rodriguez V, Dumit V, Ledwith R, Portela R, Bañares MA, Haase A. Differentially Induced Autophagy by Engineered Nanomaterial Treatment Has an Impact on Cellular Homeostasis and Cytotoxicity. NANO LETTERS 2024; 24:11793-11799. [PMID: 39271139 PMCID: PMC11440646 DOI: 10.1021/acs.nanolett.4c01573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/15/2024]
Abstract
Considering the increasing production of engineered nanomaterials (ENMs), new approach methodologies (NAMs) are essential for safe-by-design approaches and risk assessment. Our aim was to enhance screening strategies with a focus on reactivity-triggered toxicities. We applied in vitro tests to 10 selected benchmark ENMs in two cell models, lung epithelial A549 and differentiated THP-1 macrophage-like cells. Previously, we categorized ENMs based on surface reactivity. Here we elucidated their reactivity-triggered cytotoxicity and mode of action using the WST-1 assay (metabolic activity), LDH assay (cell membrane integrity), autophagosome detection, and proteomics. Nonreactive SiO2 NM-200 showed no significant impact on cell viability. Conversely, highly reactive CuO and ZnO (NM-110 and NM-111) disrupted cell homeostasis. Interestingly, moderately reactive TiO2 (NM-101 and NM-105) and CeO2 (NM-211 and NM-212), apparently without an adverse effect, induced autophagosome formation, evidencing autophagy as a defensive mechanism. Our improved in vitro testing strategy, combined with state-of-the-art reactivity information, screens ENMs for potential reactivity-triggered toxicity.
Collapse
Affiliation(s)
- Victor Alcolea-Rodriguez
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Berlin 10589, Germany
- Instituto
de Catálisis y Petroleoquímica, ICP-CSIC, C/Marie Curie 2, Campus
Cantoblanco, 28049 Madrid, Spain
| | - Verónica
I. Dumit
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Berlin 10589, Germany
| | - Rico Ledwith
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Berlin 10589, Germany
- Freie
Universität Berlin, Institute of Pharmacy, Berlin 14195, German
| | - Raquel Portela
- Instituto
de Catálisis y Petroleoquímica, ICP-CSIC, C/Marie Curie 2, Campus
Cantoblanco, 28049 Madrid, Spain
| | - Miguel A. Bañares
- Instituto
de Catálisis y Petroleoquímica, ICP-CSIC, C/Marie Curie 2, Campus
Cantoblanco, 28049 Madrid, Spain
| | - Andrea Haase
- Department
of Chemical and Product Safety, German Federal
Institute for Risk Assessment (BfR), Berlin 10589, Germany
- Freie
Universität Berlin, Institute of Pharmacy, Berlin 14195, German
| |
Collapse
|
2
|
Rozpędek-Kamińska W, Galita G, Siwecka N, Granek Z, Barczuk J, Saramowicz K, Majsterek I. NCI 159456 PERK Inhibitor as a Targeted Therapy for Lung Cancer: An In Vitro Study. Biomedicines 2024; 12:889. [PMID: 38672243 PMCID: PMC11048160 DOI: 10.3390/biomedicines12040889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the most common histological type of lung cancer, characterized by a five-year survival rate of 15% and poor prognosis. Accumulating evidence indicates a prominent role of endoplasmic reticulum (ER) stress and the protein kinase RNA-like ER kinase (PERK)-dependent pathway of the unfolded protein response (UPR) in the pathogenesis of NSCLC. Increased expression of downstream targets of PERK was observed in various subtypes of NSCLC, and it was associated with a more aggressive phenotype, high risk of recurrence, and poor prognosis. Therefore, the present study aimed to investigate the biological effect of the selective PERK inhibitor NCI 159456 on A549 NSCLC cells and Human Pulmonary Fibroblasts (HPF) in vitro. Treatment of both normal and ER-stressed A549 cells with NCI 159456 resulted in a significant increase in the mRNA expression level of pro-apoptotic genes like activating transcription factor 4 (ATF4), DNA damage inducible transcript 3 (DDIT3), and BCL2 Associated X, Apoptosis Regulator (BAX) as well as a decreased level of the anti-apoptotic gene B-cell lymphoma 2 (Bcl-2). Cytotoxicity and genotoxicity analyses revealed that NCI 159456 significantly decreased viability and increased DNA damage in A549 cells under normal and ER stress conditions. Caspase-3 and reactive oxygen species (ROS) detection assays demonstrated that NCI 159456 significantly induced apoptosis and increased the ROS level in normal and ER-stressed A549 cells. Importantly, treatment with the inhibitor did not affect substantially normal HPF cells at any used concentration. The results indicate that PERK inhibitors could potentially be applied as a targeted therapy for NSCLC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 90-419 Lodz, Poland; (W.R.-K.); (G.G.); (N.S.); (Z.G.); (J.B.); (K.S.)
| |
Collapse
|
3
|
Tian Y, Sun H, Bao Y, Feng H, Pang J, En R, Jiang H, Wang T. ERp44 Regulates the Proliferation, Migration, Invasion, and Apoptosis of Gastric Cancer Cells Via Activation of ER Stress. Biochem Genet 2022; 61:809-822. [PMID: 36178559 DOI: 10.1007/s10528-022-10281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 09/01/2022] [Indexed: 11/24/2022]
Abstract
Gastric cancer (GC) is one of the most prevalent malignancies worldwide. Endoplasmic reticulum (ER) stress plays a key role in the progression of GC. Rapid proliferation of tumor cells interferes with ER homeostasis, leading to ER stress and triggering unfolded protein response. Therefore, it is very necessary to investigate abnormally expressed ER resident proteins (ERp) in cancer cells. This study aimed to investigate the possible roles of ERp44. The mRNA and protein expression of genes were detected using qRT-PCR and western blot. Cell apoptosis was calculated using flow cytometry. Cell proliferation was determined using CCK-8 and colony formation assay. Cell migration was detected by wound healing, and cell invasion was measured by transwell assay. We found that ERp44 was obviously decreased in GC tissues. Furthermore, ERp44 overexpression distinctly suppressed the proliferation, migration, and invasion of MGC-803 and KATO III cells. In contrast, apoptosis was promoted by ERp44 overexpression. Furthermore, mechanistic studies revealed that overexpression of ERp44 inhibited malignant biological processes by regulating the eIF-2α/CHOP signaling pathway. Taken together, our data demonstrated that ERp44 regulated the proliferation, migration, invasion, and apoptosis via ERp44/eIF-2α/CHOP axis in GC. Targeting the ERp44and ER stress may be a promising strategy for GC.
Collapse
Affiliation(s)
- Yongjing Tian
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Haibin Sun
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Yinshengboer Bao
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Haiping Feng
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Jian Pang
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Riletu En
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Hongliang Jiang
- Department of Gastrointestinal Surgery, Inner Mongolia Bayannur Hospital, Inner Mongolia, 015000, China
| | - Tengqi Wang
- Department of Cancer Center, Inner Mongolia Bayannur Hospital, No. 98, Ulan Buhe Road, Bayan Nur, Inner Mongolia, 015000, China.
| |
Collapse
|
4
|
Mudaliar P, Nalawade A, Devarajan S, Aich J. Therapeutic potential of autophagy activators and inhibitors in lung and breast cancer- a review. Mol Biol Rep 2022; 49:10783-10795. [PMID: 35829809 DOI: 10.1007/s11033-022-07711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/26/2022]
Abstract
Autophagy is a cellular process that eliminates damaged components of cytoplasm via the lysosome. Autophagy supports cells and tissues to remain healthy by recycling old or damaged cellular organelles and proteins with new ones. The breakdown products that follow are directed into cellular metabolism, where they are utilized to produce energy as well as for maintaining homeostasis and stability of the genome. In many cancers, autophagy modulation carries out a dual role in cancer development and suppression. Autophagy suppresses the proliferation of cancer cells by bringing about cell death and limiting cancer cell development, although it also promotes tumorigenesis by encouraging cancer cell growth and formation. Nevertheless, autophagy's implication in cancer remains a paradox. While several autophagy activators, and inhibitors, such as SAH-EJ2, Gefitinib, Ampelopsin hydroxychloroquine and chloroquine, are utilized to regulate autophagy in chemoprevention, the exact intrinsic system of autophagy in cancer deserves further investigation. Despite improved treatment regimens, the incidence rate of both breast and lung cancer has grown, as has the number of recurrence cases. Hence, this review offers a wide overview of autophagy's underlying role in lung and breast cancer, particularly focusing on the various autophagy activators and inhibitors in both cancers, as well as the use of various organic compounds, regular drugs, and natural products in cancer prevention and treatment.
Collapse
Affiliation(s)
- Priyanka Mudaliar
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, 400614, Navi Mumbai, Maharashtra, India
| | - Apoorva Nalawade
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, 400614, Navi Mumbai, Maharashtra, India
| | - Shine Devarajan
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, 400614, Navi Mumbai, Maharashtra, India
| | - Jyotirmoi Aich
- School of Biotechnology and Bioinformatics, DY Patil Deemed to Be University, CBD Belapur, 400614, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
5
|
Anacardic Acids from Amphipterygium adstringens Confer Cytoprotection against 5-Fluorouracil and Carboplatin Induced Blood Cell Toxicity While Increasing Antitumoral Activity and Survival in an Animal Model of Breast Cancer. Molecules 2021; 26:molecules26113241. [PMID: 34071241 PMCID: PMC8198955 DOI: 10.3390/molecules26113241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/17/2022] Open
Abstract
Amphipterygium adstringens (cuachalalate) contains anacardic acids (AAs) such as 6-pentadecyl salicylic acid (6SA) that show immunomodulatory and antitumor activity with minimal or no secondary adverse effects. By contrast, most chemotherapeutic agents, such as 5-fluorouracil (5-FU) and carboplatin (CbPt), induce myelosuppression and leukopenia. Here, we investigated the myeloprotective and antineoplastic potential of an AA extract or the 6SA as monotherapy or in combination with commonly used chemotherapeutic agents (5-FU and CbPt) to determine the cytoprotective action of 6SA on immune cells. Treatment of Balb/c breast tumor-bearing female mice with an AA mixture or 6SA did not induce the myelosuppression or leukopenia observed with 5-FU and CbPt. The co-administration of AA mixture or isolated 6SA with 5-FU or CbPt reduced the apoptosis of circulating blood cells and bone marrow cells. Treatment of 4T1 breast tumor-bearing mice with the AA mixture or 6SA reduced tumor growth and lung metastasis and increased the survival rate compared with monotherapies. An increased effect was observed in tumor reduction with the combination of 6SA and CbPt. In conclusion, AAs have important myeloprotective and antineoplastic effects, and they can improve the efficiency of chemotherapeutics, thereby protecting the organism against the toxic effects of drugs such as 5-FU and CbPt.
Collapse
|
6
|
Chopra B, Dhingra AK. Natural products: A lead for drug discovery and development. Phytother Res 2021; 35:4660-4702. [PMID: 33847440 DOI: 10.1002/ptr.7099] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 12/29/2022]
Abstract
Natural products are used since ancient times in folklore for the treatment of various ailments. Plant-derived products have been recognized for many years as a source of therapeutic agents and structural diversity. A literature survey has been carried out to determine the utility of natural molecules and their modified analogs or derivatives as pharmacological active entities. This review presents a study on the importance of natural products in terms of drug discovery and development. It describes how the natural components can be utilized after small modifications in new perspectives. Various new modifications in structure offer a unique opportunity to establish a new molecular entity with better pharmacological potential. It was concluded that in this current era, new attempts are taken to utilize the compounds derived from natural sources as novel drug candidates, with a focus to find and discover new effective molecules that were referred to as "new entities of natural product drug discovery."
Collapse
Affiliation(s)
- Bhawna Chopra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| | - Ashwani Kumar Dhingra
- Department of Pharmaceutical Chemistry, Guru Gobind Singh College of Pharmacy, Yamuna Nagar, India
| |
Collapse
|
7
|
Anacardic 6-pentadecyl salicylic acid induces apoptosis in breast cancer tumor cells, immunostimulation in the host and decreases blood toxic effects of taxol in an animal model. Toxicol Appl Pharmacol 2020; 410:115359. [PMID: 33290779 DOI: 10.1016/j.taap.2020.115359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/12/2023]
Abstract
Many antineoplastic agents induce myelosuppression and leukopenia as secondary effects in patients. The development of anticancer agents that simultaneously provoke antitumor immune response represents an important therapeutic advance. The administration of 6-pentadecyl salicylic acid (6SA) contributes to the antitumor immunity using 4T1 breast cancer cells in Balb/c female mice, with Taxol as a positive control and in cotreatment with 6SA (6SA + Taxol; CoT). Our results show that 6SA reduces tumor volume and size by inducing caspase-8-mediated apoptosis without reducing tumor infiltrated lymphocytes. Also, 6SA reduced lung metastasis and increased the proportion of immune cells in blood, lymph nodes and bone marrow; more evidently, in the proportion of tumor-infiltrated natural killer (NK) cells and cytotoxic T lymphocytes. Taxol reduces helper and cytotoxic lymphocytes causing systemic immunosuppression and myelosuppression in bone marrow, whereas 6SA does not decrease any immune cell subpopulations in circulating blood and lymph nodes. More importantly, the CoT decreased the Taxol-induced cytotoxicity in circulating T cells and bone marrow. Treatment with 6SA increases the secretion of IL-2, IL-12, GM-CSF, TNF-α and IFN-γ and significantly reduces IL-10 and IL-17 secretion, suggesting that the reduction of regulatory T cells and tumor-associated macrophages contribute to the host control of tumor development. Finally, 6SA has an effective antineoplastic activity against breast cancer cells in an immunocompetent animal, reduces the myelosuppression and leukopenia that Taxol produces, improves the antitumoral immunological microenvironment and increases the overall survival of the animals improving the quality of life of patients with cancer.
Collapse
|
8
|
Jung HJ, Song KS, Son YK, Seong JK, Kim SY, Oh SH. 1,7-Bis(4-hydroxyphenyl)-4-hepten-3-one from Betula platyphylla induces apoptosis by suppressing autophagy flux and activating the p38 pathway in lung cancer cells. Phytother Res 2019; 34:126-138. [PMID: 31512302 DOI: 10.1002/ptr.6506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/09/2019] [Accepted: 08/20/2019] [Indexed: 12/22/2022]
Abstract
Betula platyphylla (BP) is frequently administered in the treatment of various human diseases, including cancers. This study was undertaken to investigate the pharmacological function of the active components in BP and the underlying mechanism of its chemotherapeutic effects in human lung cancer cells. We observed that BP extracts and 1,7-bis(4-hydroxyphenyl)-4-hepten-3-one (BE1), one of the components of BP, effectively decreased the cell viability of several lung cancer cell lines. BE1-treated cells exhibited apoptosis induction and cell cycle arrest at the G2/M phase. Further examination demonstrated that BE1 treatment resulted in suppression of autophagy, as evidenced by increased protein expression levels of both LC3 II and p62/SQSTM1. Interestingly, the pharmacological induction of autophagy with rapamycin remarkably reduced the BE1-induced apoptosis, indicating that apoptosis induced by BE1 was associated with autophagy inhibition. Our data also demonstrated that BE1 exposure activated the p38 pathway resulting in regulation of the pro-apoptotic activity. Taken together, we believe that BE1 is a potential anticancer agent for human lung cancer, which exerts its effect by enhancing apoptosis via regulating autophagy and the p38 pathway.
Collapse
Affiliation(s)
- Hyun Jin Jung
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu, Republic of Korea
| | - Youn Kyoung Son
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, Incheon, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung Hyun Oh
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
9
|
Effect of Anacardic Acid against Thiram Induced Tibial Dyschondroplasia in Chickens via Regulation of Wnt4 Expression. Animals (Basel) 2019; 9:ani9030082. [PMID: 30845678 PMCID: PMC6466137 DOI: 10.3390/ani9030082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 11/20/2022] Open
Abstract
Simple Summary This study evaluated the ameliorating effect of anacardic acid (AA) in tibial dyschondroplasia (TD) chickens. Our results showed that AA can increase the feed conversion ratio, improve the weight, length and width of the tibia. AA administration restored the antioxidant parameters significantly (p < 0.05). The gene expression analysis revealed a decrease in wingless-type member 4 (Wnt4) expressions in TD chickens as compared to the control group, while AA treatment up-regulated the Wnt4 expression. The present study demonstrates that the AA plays an important role to prevent the lameness and restore the size of the tibial growth plate of chickens by regulating the expression of Wnt4. Abstract Tibial dyschondroplasia (TD) is a tibia bone problem in broilers. Anacardic acid (AA) is a traditional Chinese medicine, which is commonly used to treat arthritis in human. The purpose of the present study is to investigate the effect of AA against TD. A total of 300 day-old poultry birds were equally divided and distributed into three different groups: Control, TD and AA groups. The results showed that the feed conversion ratio was significantly lower in the TD group than control chickens. The tibia bone parameters including weight, length and width were of low quality in TD chickens, while the width of the tibial growth plate was enlarged remarkably. Whereas, in the AA treatment group, the tibia bone parameters showed improvement and tend to return to normal. The antioxidant parameters level of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total and antioxidant capacity (T-AOC) was significantly decreased, while malondialdehyde (MDA) level was increased significantly in TD affected chickens. AA administration restored the antioxidant parameters significantly. The gene expression revealed a decrease in Wnt4 expression in TD chickens as compared to control chickens, while AA treatment up-regulated the Wnt4 expression. The present study demonstrates that the AA plays an important role to prevent the lameness and restore the size of tibial growth plate of chickens by regulating the expression of Wnt4.
Collapse
|
10
|
Kim C, Kim B. Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review. Nutrients 2018; 10:nu10081021. [PMID: 30081573 PMCID: PMC6115829 DOI: 10.3390/nu10081021] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/23/2018] [Accepted: 08/01/2018] [Indexed: 12/14/2022] Open
Abstract
Cancer is the second biggest cause of death worldwide. Despite a number of studies being conducted, the effective mechanism for treating cancer has not yet been fully understood. The tumor-microenvironment such as hypoxia, low nutrients could disturb function of endoplasmic reticulum (ER) to maintain cellular homeostasis, ultimately leading to the accumulation of unfolded proteins in ER, so-called ER stress. The ER stress has a close relation with cancer. ER stress initiates unfolded protein response (UPR) to re-establish ER homeostasis as an adaptive pathway in cancer. However, persistent ER stress triggers the apoptotic pathway. Therefore, blocking the adaptive pathway of ER stress or facilitating the apoptotic pathway could be an anti-cancer strategy. Recently, natural products and their derivatives have been reported to have anti-cancer effects via ER stress. Here, we address mechanisms of ER stress-mediated apoptosis and highlight strategies for cancer therapy by utilizing ER stress. Furthermore, we summarize anti-cancer activity of the natural products via ER stress in six major types of cancers globally (lung, breast, colorectal, gastric, prostate and liver cancer). This review deepens the understanding of ER stress mechanisms in major cancers as well as the suppressive impact of natural products against cancers via ER stress.
Collapse
Affiliation(s)
- Changmin Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Graduate School, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Korea.
| |
Collapse
|
11
|
Targeting Protein Quality Control Mechanisms by Natural Products to Promote Healthy Ageing. Molecules 2018; 23:molecules23051219. [PMID: 29783751 PMCID: PMC6100286 DOI: 10.3390/molecules23051219] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/09/2018] [Accepted: 05/13/2018] [Indexed: 12/20/2022] Open
Abstract
Organismal ageing is associated with increased chance of morbidity or mortality and it is driven by diverse molecular pathways that are affected by both environmental and genetic factors. The progression of ageing correlates with the gradual accumulation of stressors and damaged biomolecules due to the time-dependent decline of stress resistance and functional capacity, which eventually compromise cellular homeodynamics. As protein machines carry out the majority of cellular functions, proteome quality control is critical for cellular functionality and is carried out through the curating activity of the proteostasis network (PN). Key components of the PN are the two main degradation machineries, namely the ubiquitin-proteasome and autophagy-lysosome pathways along with several stress-responsive pathways, such as that of nuclear factor erythroid 2-related factor 2 (Nrf2), which mobilises cytoprotective genomic responses against oxidative and/or xenobiotic damage. Reportedly, genetic or dietary interventions that activate components of the PN delay ageing in evolutionarily diverse organisms. Natural products (extracts or pure compounds) represent an extraordinary inventory of highly diverse structural scaffolds that offer promising activities towards meeting the challenge of increasing healthspan and/or delaying ageing (e.g., spermidine, quercetin or sulforaphane). Herein, we review those natural compounds that have been found to activate proteostatic and/or anti-stress cellular responses and hence have the potential to delay cellular senescence and/or in vivo ageing.
Collapse
|
12
|
Lei Y, Wang S, Ren B, Wang J, Chen J, Lu J, Zhan S, Fu Y, Huang L, Tan J. CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy. PLoS One 2017; 12:e0183680. [PMID: 28841673 PMCID: PMC5571976 DOI: 10.1371/journal.pone.0183680] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 08/09/2017] [Indexed: 12/19/2022] Open
Abstract
C/EBP-homologous protein (CHOP) is an important component of the endoplasmic reticulum (ER) stress response. We demonstrated the induction of ER stress in response to tunicamycin stimulation, as evidenced by increased expression of chaperone proteins Grp78, Grp94, and enhanced eukaryotic initiation factor 2 subunit 1 (eIF2α) phosphorylation in hepatocellular carcinoma cells. Tunicamycin-induced ER stress resulted in apoptosis and autophagy simultaneously. While inhibition of autophagy mediated by 3-methyladenine pretreatment or direct knockdown of LC3B promoted cell apoptosis, activation of autophagy with rapamycin decreased tunicamycin- induced apoptosis in HCC cells. Furthermore, CHOP was shown to be significantly upregulated upon treatment with tunicamycin in HCC cells. Specific knockdown of CHOP not only enhanced tunicamycin-induced autophagy, but also significantly attenuated ER stress-induced apoptosis in HCC cells. Accordingly, simultaneous inhibition of autophagy in HCC cells with CHOP-knockdown could partially resensitize ER stress-induced apoptosis. Taken together, our data indicate that CHOP may favor ER stress-induced apoptosis in HCC cells via inhibition of autophagy in vitro.
Collapse
Affiliation(s)
- Yan Lei
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shuiliang Wang
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Bingshuang Ren
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jin Wang
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jin Chen
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Jun Lu
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Shihuai Zhan
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Yunfeng Fu
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
| | - Lianghu Huang
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
- * E-mail: (LH); (JT)
| | - Jianming Tan
- Department of Fujian Provincial Key Laboratory of Transplant Biology, Fuzhou General Hospital, Xiamen University, Fuzhou, Fujian, China
- * E-mail: (LH); (JT)
| |
Collapse
|
13
|
Tan J, Jiang X, Yin G, He L, Liu J, Long Z, Jiang Z, Yao K. Anacardic acid induces cell apoptosis of prostatic cancer through autophagy by ER stress/DAPK3/Akt signaling pathway. Oncol Rep 2017; 38:1373-1382. [PMID: 28731173 PMCID: PMC5549027 DOI: 10.3892/or.2017.5841] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/03/2017] [Indexed: 12/18/2022] Open
Abstract
Anacardic acid, which is commonly seen in plants of Anacardiaceae, is an important composition of cashew, ginkgo leaf and fruit, and it has been suggested in previous research to show antitumor activity. The main aim of the present study was to evaluate the anticancer effects of anacardic acid on cell apoptosis of prostatic cancer and molecular mechanisms of this phenomenon. In this study we found that anacardic acid inhibited cell proliferation, induced apoptosis and caspase-3/9 activities and Bax protein expression of prostatic cancer. Anacardic acid induced the ER stress inducing factors (BiP, CHOP, p-eIF2α), autophagy, LC3, Beclin-1, Atg 7 and DAPK3 protein expression, and suppressed p-Akt and p-mTOR protein expression of prostatic cancer. Si-CHOP was used to inhibit ER stress in prostatic cancer by anacardic acid, which showed that the cell proliferation was increased, apoptosis, and caspase-3/9 activities and Bax protein expression was suppressed, autophagy, LC3, Beclin-1, Atg 7 and DAPK3 protein expression was reduced, and p-Akt and p-mTOR protein expression was promoted. DAPK3 inhibited p-Akt and p-mTOR protein expression, enhanced the anticancer effects of anacardic acid on prostatic cancer through autophagy. For the first time, the present study showed that anacardic acid induces cell apoptosis of prostatic cancer through autophagy by ER stress/DAPK3/Akt signaling pathway.
Collapse
Affiliation(s)
- Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xianzhen Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Guangming Yin
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhiqiang Jiang
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| | - Kun Yao
- Department of Urology, The Third Xiangya Hospital of Central South University; Institute of Prostate Disease, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
14
|
Zhang S, Liang M, Naqvi NI, Lin C, Qian W, Zhang LH, Deng YZ. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae. Autophagy 2017; 13:1318-1330. [PMID: 28594263 PMCID: PMC5584857 DOI: 10.1080/15548627.2017.1327103] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Magnaporthe oryzae, the ascomycete fungus that causes rice blast disease, initiates conidiation in response to light when grown on Prune-Agar medium containing both carbon and nitrogen sources. Macroautophagy/autophagy was shown to be essential for M. oryzae conidiation and induced specifically upon exposure to light but is undetectable in the dark. Therefore, it is inferred that autophagy is naturally induced by light, rather than by starvation during M. oryzae conidiation. However, the signaling pathway(s) involved in such phototropic induction of autophagy remains unknown. We identified an M. oryzae ortholog of GCN5 (MGG_03677), encoding a histone acetyltransferase (HAT) that negatively regulates light- and nitrogen-starvation-induced autophagy, by acetylating the autophagy protein Atg7. Furthermore, we unveiled novel regulatory mechanisms on Gcn5 at both transcriptional and post-translational levels, governing its function associated with the unique phototropic response of autophagy in this pathogenic fungus. Thus, our study depicts a signaling network and regulatory mechanism underlying the autophagy induction by important environmental clues such as light and nutrients.
Collapse
Affiliation(s)
- Shulin Zhang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Meiling Liang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Naweed I Naqvi
- c Temasek Life Sciences Laboratory, and Department of Biological Sciences , National University of Singapore , Singapore
| | - Chaoxiang Lin
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Wanqiang Qian
- d The New Countryside Development Institute of South China Agricultural University , Guangzhou , China
| | - Lian-Hui Zhang
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| | - Yi Zhen Deng
- a Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture , South China Agricultural University , Guangzhou , China.,b Guangdong Province Key Laboratory of Microbial Signals and Disease Control, and Integrative Microbiology Research Centre , South China Agricultural University , Guangzhou , China
| |
Collapse
|
15
|
Xu D, Li W, Li B, Tian Y, Huang Y. The effect of selenium and polysaccharide of Atractylodes macrocephala Koidz. (PAMK) on endoplasmic reticulum stress and apoptosis in chicken spleen induced by heat stress. RSC Adv 2017. [DOI: 10.1039/c6ra27730f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and oxidative stress are involved in different types of stress induced injuries.
Collapse
Affiliation(s)
- Danning Xu
- College of Animal Science & Technology
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| | - Wanyan Li
- College of Animal Science & Technology
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| | - Bingxin Li
- College of Animal Science & Technology
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| | - Yunbo Tian
- College of Animal Science & Technology
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| | - Yunmao Huang
- College of Animal Science & Technology
- Zhongkai University of Agriculture and Engineering
- Guangzhou
- China
| |
Collapse
|
16
|
Dong X, Liao Y, Liu N, Hua X, Cai J, Liu J, Huang H. Combined therapeutic effects of bortezomib and anacardic acid on multiple myeloma cells via activation of the endoplasmic reticulum stress response. Mol Med Rep 2016; 14:2679-84. [DOI: 10.3892/mmr.2016.5533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 06/17/2016] [Indexed: 11/05/2022] Open
|
17
|
Chen J, Liu L, Liu Y, Liu X, Qu C, Meng F, Ma J, Lin Y, Xue Y. Low-Dose Endothelial-Monocyte-Activating Polypeptide-II Induced Autophagy by Down-Regulating miR-20a in U-87 and U-251 Glioma Cells. Front Cell Neurosci 2016; 10:128. [PMID: 27242439 PMCID: PMC4868923 DOI: 10.3389/fncel.2016.00128] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Accepted: 04/29/2016] [Indexed: 12/12/2022] Open
Abstract
Preliminary studies have shown that endothelial-monocyte-activating polypeptide-II (EMAP-II) induces autophagy and inhibits the viability of glioma cells via an unknown molecular mechanism. This study explored the possible mechanisms associated with EMAP-II-induced autophagy in glioma cells by regulation of the expression of microRNA-20a (miR-20a). EMAP-II effectively inhibited the viability, migration and invasion of human U-87 and U-251 glioma cells. EMAP-II also up-regulated the expression level of autophagy biomarker microtubule-associated protein one light chain 3 (LC3)-II/I, autophagy related gene ATG7 and ATG5, but down-regulated autophagy substrate P62/SQSTM1 protein expression. The expression levels of miR-20a decreased significantly after U-87 and U-251 cells were treated with EMAP-II. MiR-20a overexpression partly reversed the EMAP-II-induced up-regulation of LC3-II/I and down-regulation of P62/SQSTM1. MiR-20a had a negative regulatory effect on the expression of the proteins ATG7 and ATG5; which were also targets of miR-20a, as detected by a dual-luciferase reporter assay. In addition, both EMAP-II and miR-20a inhibition significantly reduced the viability, migration and invasion of U-87 and U-251 cells, and their combination showed a synergistic effect. Furthermore, nude mice carrying silencing-expressed miR-20a combined with EMAP-II treatment produced the smallest tumors and the highest survival. In summary, low-dose EMAP-II increased expression levels of ATG5 and ATG7 via down-regulation of the expression of miR-20a. This activated the autophagy pathway, thereby significantly inhibiting the viability, migration and invasion of U-87 and U-251 glioma cells. The combined treatment of EMAP-II with a miR-20a inhibitor showed a synergistic effect against glioma.
Collapse
Affiliation(s)
- Jiajia Chen
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Institute of Pathology and Pathophysiology, China Medical UniversityShenyang, China
| | - Libo Liu
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Institute of Pathology and Pathophysiology, China Medical UniversityShenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Chengbin Qu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China; Liaoning Research Center for Translational Medicine in Nervous System DiseaseShenyang, China
| | - Fanjie Meng
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Institute of Pathology and Pathophysiology, China Medical UniversityShenyang, China
| | - Jun Ma
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Institute of Pathology and Pathophysiology, China Medical UniversityShenyang, China
| | - Yang Lin
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Institute of Pathology and Pathophysiology, China Medical UniversityShenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China; Institute of Pathology and Pathophysiology, China Medical UniversityShenyang, China
| |
Collapse
|
18
|
Hollands A, Corriden R, Gysler G, Dahesh S, Olson J, Raza Ali S, Kunkel MT, Lin AE, Forli S, Newton AC, Kumar GB, Nair BG, Perry JJP, Nizet V. Natural Product Anacardic Acid from Cashew Nut Shells Stimulates Neutrophil Extracellular Trap Production and Bactericidal Activity. J Biol Chem 2016; 291:13964-13973. [PMID: 27226531 DOI: 10.1074/jbc.m115.695866] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 12/14/2022] Open
Abstract
Emerging antibiotic resistance among pathogenic bacteria is an issue of great clinical importance, and new approaches to therapy are urgently needed. Anacardic acid, the primary active component of cashew nut shell extract, is a natural product used in the treatment of a variety of medical conditions, including infectious abscesses. Here, we investigate the effects of this natural product on the function of human neutrophils. We find that anacardic acid stimulates the production of reactive oxygen species and neutrophil extracellular traps, two mechanisms utilized by neutrophils to kill invading bacteria. Molecular modeling and pharmacological inhibitor studies suggest anacardic acid stimulation of neutrophils occurs in a PI3K-dependent manner through activation of surface-expressed G protein-coupled sphingosine-1-phosphate receptors. Neutrophil extracellular traps produced in response to anacardic acid are bactericidal and complement select direct antimicrobial activities of the compound.
Collapse
Affiliation(s)
- Andrew Hollands
- Department of Pediatrics, University of California, San Diego, La Jolla, California 920934
| | - Ross Corriden
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Gabriela Gysler
- Department of Pediatrics, University of California, San Diego, La Jolla, California 920934
| | - Samira Dahesh
- Department of Pediatrics, University of California, San Diego, La Jolla, California 920934
| | - Joshua Olson
- Department of Pediatrics, University of California, San Diego, La Jolla, California 920934
| | - Syed Raza Ali
- Department of Pediatrics, University of California, San Diego, La Jolla, California 920934
| | - Maya T Kunkel
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Ann E Lin
- Department of Pediatrics, University of California, San Diego, La Jolla, California 920934
| | - Stefano Forli
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California 92037
| | - Alexandra C Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, California 92093
| | - Geetha B Kumar
- School of Biotechnology, Amrita University, Kollam, 690525 Kerala, India
| | - Bipin G Nair
- School of Biotechnology, Amrita University, Kollam, 690525 Kerala, India
| | - J Jefferson P Perry
- School of Biotechnology, Amrita University, Kollam, 690525 Kerala, India; Department of Biochemistry, University of California, Riverside, California 92521
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, California 920934; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093,.
| |
Collapse
|
19
|
Li F, Zheng X, Liu Y, Li P, Liu X, Ye F, Zhao T, Wu Q, Jin X, Li Q. Different Roles of CHOP and JNK in Mediating Radiation-Induced Autophagy and Apoptosis in Breast Cancer Cells. Radiat Res 2016; 185:539-48. [PMID: 27135967 DOI: 10.1667/rr14344.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Unfolded protein response (UPR) is comprised of complex and conserved stress pathways that function as a short-term adaptive mechanism to reduce levels of unfolded or misfolded proteins and maintain homeostasis in the endoplasmic reticulum (ER). UPR can be triggered by prolonged or persistent ER stress under many physiological or pathological conditions, including radiation exposure. Radiation-induced ER stress elicits autophagy and apoptosis in cancer cells, where C/EBP homologous protein (CHOP) and c-Jun NH2-terminal kinase (JNK) may play crucial roles. However, the specific mechanisms that regulate autophagy and apoptosis through CHOP and JNK after radiation exposure and how the balance of these activities determines the cellular radiosensitivity remain largely unclear. In this study, we found that exposure to X-ray radiation induced ER stress, UPR and high expression of CHOP and JNK. Furthermore, autophagy and apoptosis occurred in sequential order when breast cancer MDA-MB-231 and MCF-7 cells were exposed to X-ray radiation. CHOP gene knockdown with RNA interference inhibited autophagy and enhanced radiosensitivity in MDA-MB-231 cells, while impacting apoptosis and subsequently increasing radioresistance in MCF-7 cells. However, treatment with JNK inhibitor decreased autophagy while promoting apoptosis, thereby leading to radiosensitivity in both cell lines. Our results indicate that CHOP mediates radiation-induced autophagy and apoptosis in a cellular environment. Importantly, the functional consistency of regulating apoptosis and autophagy in these two irradiated breast cancer cell lines suggests that JNK may be more useful as a potential target for maximizing the efficacy of radiation therapy for breast cancers.
Collapse
Affiliation(s)
- Feifei Li
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and.,d University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaogang Zheng
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and.,d University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Liu
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and.,d University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Li
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and
| | - Xiongxiong Liu
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and
| | - Fei Ye
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and.,d University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Zhao
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and
| | - Qingfeng Wu
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaodong Jin
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and
| | - Qiang Li
- a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China;,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou 730000, China;,c Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou 730000, China; and
| |
Collapse
|
20
|
Radde BN, Alizadeh-Rad N, Price SM, Schultz DJ, Klinge CM. Anacardic Acid, Salicylic Acid, and Oleic Acid Differentially Alter Cellular Bioenergetic Function in Breast Cancer Cells. J Cell Biochem 2016; 117:2521-32. [PMID: 26990649 DOI: 10.1002/jcb.25544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Anacardic acid is a dietary and medicinal phytochemical that inhibits breast cancer cell proliferation and uncouples oxidative phosphorylation (OXPHOS) in isolated rat liver mitochondria. Since mitochondrial-targeted anticancer therapy (mitocans) may be useful in breast cancer, we examined the effect of anacardic acid on cellular bioenergetics and OXPHOS pathway proteins in breast cancer cells modeling progression to endocrine-independence: MCF-7 estrogen receptor α (ERα)+ endocrine-sensitive; LCC9 and LY2 ERα+, endocrine-resistant, and MDA-MB-231 triple negative breast cancer (TNBC) cells. At concentrations similar to cell proliferation IC50 s, anacardic acid reduced ATP-linked oxygen consumption rate (OCR), mitochondrial reserve capacity, and coupling efficiency while increasing proton leak, reflecting mitochondrial toxicity which was greater in MCF-7 compared to endocrine-resistant and TNBC cells. These results suggest tolerance in endocrine-resistant and TNBC cells to mitochondrial stress induced by anacardic acid. Since anacardic acid is an alkylated 2-hydroxybenzoic acid, the effects of salicylic acid (SA, 2-hydroxybenzoic acid moiety) and oleic acid (OA, monounsaturated alkyl moiety) were tested. SA inhibited whereas OA stimulated cell viability. In contrast to stimulation of basal OCR by anacardic acid (uncoupling effect), neither SA nor OA altered basal OCR- except OA inhibited basal and ATP-linked OCR, and increased ECAR, in MDA-MB-231 cells. Changes in OXPHOS proteins correlated with changes in OCR. Overall, neither the 2-hydroxybenzoic acid moiety nor the monounsaturated alky moiety of anacardic acid is solely responsible for the observed mitochondria-targeted anticancer activity in breast cancer cells and hence both moieties are required in the same molecule for the observed effects. J. Cell. Biochem. 117: 2521-2532, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brandie N Radde
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Negin Alizadeh-Rad
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - Stephanie M Price
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292
| | - David J Schultz
- Department of Biology, University of Louisville, Louisville, Kentucky 40292
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine, University of Louisville, Louisville, Kentucky 40292.
| |
Collapse
|
21
|
Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae. Appl Microbiol Biotechnol 2015; 100:323-35. [DOI: 10.1007/s00253-015-6915-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 07/28/2015] [Accepted: 08/03/2015] [Indexed: 11/26/2022]
|
22
|
Roles of oxidative stress and endoplasmic reticulum stress in selenium deficiency-induced apoptosis in chicken liver. Biometals 2015; 28:255-65. [PMID: 25773464 DOI: 10.1007/s10534-014-9819-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/26/2014] [Indexed: 01/08/2023]
Abstract
Oxidative stress and endoplasmic reticulum (ER) stress are involved in different types of stress-induced injuries. The aim of the present study was to evaluate the effect of Se deficiency on oxidative stress, ER stress and apoptosis in chicken livers. Chickens (1 day old, n = 180) were randomly divided into two groups: the L group [fed with a Se-deficient (Se 0.033 mg/kg) diet] and the control group [fed with a normal (Se 0.2 mg/kg) diet]. Factor-associated oxidative stress, catalase (CAT) activity, H2O2 production and the inhibition of hydroxyl radicals (·OH) in the chicken liver were determined on days 15, 25, 35, 45, 55 and 65, respectively. In addition, ER stress-related genes (GRP78, GRP94, ATF4, ATF6 and IRE) and apoptosis-related genes (caspase3 and Bcl-2) were examined by fluorescence quantitative PCR or western blot analysis. Apoptosis levels were also measured using ultrastructural observations and the TdT-mediated dUTP nick end labeling assay. The results showed that CAT activity and ·OH inhibition were decreased and that H2O2 production was increased in the low-Se group, which demonstrated that oxidative stress occurred in the chicken liver. The ER stress-related genes (GRP78, GRP94, ATF4, ATF6 and IRE) and the apoptosis-related gene caspase3 were increased (p < 0.05), while Bcl-2 was decreased (p < 0.05) by Se deficiency. In addition, apoptosis and ER lesions were observed by ultrastructural observations of the chicken liver in the low-Se group. The level of apoptosis and the number of apoptotic cells increased with time. These results indicated that the oxidative-ER stress pathway participates in Se deficiency-induced apoptosis in the chicken liver.
Collapse
|
23
|
Fang C, Zhang J, Qi D, Fan X, Luo J, Liu L, Tan Q. Evodiamine induces G2/M arrest and apoptosis via mitochondrial and endoplasmic reticulum pathways in H446 and H1688 human small-cell lung cancer cells. PLoS One 2014; 9:e115204. [PMID: 25506932 PMCID: PMC4266682 DOI: 10.1371/journal.pone.0115204] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 11/19/2014] [Indexed: 12/18/2022] Open
Abstract
The goal of this study was to evaluate the ability of EVO to decrease cell viability and promote cell cycle arrest and apoptosis in small cell lung cancer (SCLC) cells. Lung cancer has the highest incidence and mortality rates among all cancers. Chemotherapy is the primary treatment for SCLC; however, the drugs that are currently used for SCLC are less effective than those used for non-small cell lung cancer (NSCLC). Therefore, it is necessary to develop new drugs to treat SCLC. In this study, the effects of evodiamine (EVO) on cell growth, cell cycle arrest and apoptosis were investigated in the human SCLC cell lines NCI-H446 and NCI-H1688. The results represent the first report that EVO can significantly inhibit the viability of both H446 and H1688 cells in dose- and time-dependent manners. EVO induced cell cycle arrest at G2/M phase, induced apoptosis by up-regulating the expression of caspase-12 and cytochrome C protein, and induced the expression of Bax mRNA and by down-regulating of the expression of Bcl-2 mRNA in both H446 and H1688 cells. However, there was no effect on the protein expression of caspase-8. Taken together, the inhibitory effects of EVO on the growth of H446 and H1688 cells might be attributable to G2/M arrest and subsequent apoptosis, through mitochondria-dependent and endoplasmic reticulum stress-induced pathways (intrinsic caspase-dependent pathways) but not through the death receptor-induced pathway (extrinsic caspase-dependent pathway). Our findings suggest that EVO is a promising novel and potent antitumor drug candidate for SCLC. Furthermore, the cell cycle, the mitochondria and the ER stress pathways are rational targets for the future development of an EVO delivery system to treat SCLC.
Collapse
Affiliation(s)
- Chunshu Fang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jingqing Zhang
- Medicine Engineering Research Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Di Qi
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Xiaoqing Fan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Jianchun Luo
- Medicine Engineering Research Center, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ling Liu
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
| | - Qunyou Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, People’s Republic of China
- * E-mail:
| |
Collapse
|
24
|
Alam-Escamilla D, Estrada-Muñiz E, Solís-Villegas E, Elizondo G, Vega L. Genotoxic and cytostatic effects of 6-pentadecyl salicylic anacardic acid in transformed cell lines and peripheral blood mononuclear cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 777:43-53. [PMID: 25726174 DOI: 10.1016/j.mrgentox.2014.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/17/2022]
Abstract
In Mexico, as in many other countries, traditional medicine is used for the treatment of several diseases. In particular, Amphipterygium adstringens infusion is used for gastritis, gastric ulcers, and gastric cancer. Extracts from this tree have microbicidal effects against Helicobacter pylori, an important risk factor for gastric cancer development. Anacardic acids are constituents of A. adstringens, and 6-pentadecyl salicylic acid (6-PSA) is the most abundant. However, there is a lack of information regarding the effects of 6-PSA on cancer cells. Therefore, we investigated whether 6-PSA has differential effects on the induction of genotoxicity, cytostaticity, and apoptosis in normal human peripheral blood mononucleated cells (PBMCs), bone marrow polychromatic erythrocytes of Balb/c mice, and human transformed cell lines derived from both gastric cancer (AGS cells) and leukaemia (K562 cells). Treatment with 6-PSA (30-150 μM) reduced the viability of AGS and K562 cells together with a moderate, but significant, increase in the frequency of micronucleated cells and the induction of DNA breakage (Comet Assay). Moreover, 6-PSA increased the apoptosis rate in both the AGS and K562 cell lines in a caspase 8-dependent manner. In contrast, neither cytotoxicity nor genotoxicity were observed in PBMCs or bone marrow polychromatic erythrocytes of Balb/c mice after treatment with low doses of 6-PSA (0.2-2.0 mg/Kg). Instead, 6-PSA treatment resulted in the inhibition of PBMC proliferation, which was reversible after the compound was removed. Additionally, 6-PSA treatments (2-20 mg/Kg) increased the frequency of mature polychromatic erythrocytes in the bone marrow, suggesting a possible effect on the differentiation process of immune cells. The present results indicate that 6-PSA induces cytotoxicity and moderate genotoxicity, together with an increase in the apoptosis rate, in a caspase 8-dependent manner in gastric cancer cells. In contrast, a low toxicity was observed when PBMCs were exposed to 6-PSA.
Collapse
Affiliation(s)
- David Alam-Escamilla
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, G. A. Madero, 07360 México D.F., Mexico
| | - Elizabet Estrada-Muñiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, G. A. Madero, 07360 México D.F., Mexico
| | - Erik Solís-Villegas
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, G. A. Madero, 07360 México D.F., Mexico
| | - Guillermo Elizondo
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Libia Vega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. IPN 2508, San Pedro Zacatenco, G. A. Madero, 07360 México D.F., Mexico.
| |
Collapse
|
25
|
Caloric restriction mimetics: towards a molecular definition. Nat Rev Drug Discov 2014; 13:727-40. [PMID: 25212602 DOI: 10.1038/nrd4391] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caloric restriction, be it constant or intermittent, is reputed to have health-promoting and lifespan-extending effects. Caloric restriction mimetics (CRMs) are compounds that mimic the biochemical and functional effects of caloric restriction. In this Opinion article, we propose a unifying definition of CRMs as compounds that stimulate autophagy by favouring the deacetylation of cellular proteins. This deacetylation process can be achieved by three classes of compounds that deplete acetyl coenzyme A (AcCoA; the sole donor of acetyl groups), that inhibit acetyl transferases (a group of enzymes that acetylate lysine residues in an array of proteins) or that stimulate the activity of deacetylases and hence reverse the action of acetyl transferases. A unifying definition of CRMs will be important for the continued development of this class of therapeutic agents.
Collapse
|
26
|
Xiu YL, Zhao Y, Gou WF, Chen S, Takano Y, Zheng HC. Anacardic acid enhances the proliferation of human ovarian cancer cells. PLoS One 2014; 9:e99361. [PMID: 24921663 PMCID: PMC4055655 DOI: 10.1371/journal.pone.0099361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/14/2014] [Indexed: 12/28/2022] Open
Abstract
Background Anacardic acid (AA) is a mixture of 2-hydroxy-6-alkylbenzoic acid homologs. Certain antitumor activities of AA have been reported in a variety of cancers. However, the function of AA in ovarian cancer, to date, has remained unknown. Methods Ovarian cancer cell lines were exposed to AA, after which cell proliferation, apoptosis, invasion and migration assays were performed. Phalloidin staining was used to observe lamellipodia formation. Reverse transcription polymerase chain reaction (RT-PCR) and western blotting were used to assess the mRNA and protein expression levels of Phosphatidylinositol 3-kinase (PI3K), vascular endothelial growth factor (VEGF) and caspase 3. Results Our results showed that AA promotes ovarian cancer cell proliferation, inhibits late apoptosis, and induces cell migration and invasion, as well as lamellipodia formation. AA exposure significantly up-regulated PI3K and VEGF mRNA and protein expression, while, in contrast, it down-regulated caspase 3 mRNA and protein expression in comparison to untreated control cells. Conclusion Taken together, our results demonstrate for the first time that AA may potentiate the proliferation, invasion, metastasis and lamellipodia formation in ovarian cancer cell lines via PI3K, VEGF and caspase 3 pathways.
Collapse
Affiliation(s)
- Yin-Ling Xiu
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yang Zhao
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Wen-Feng Gou
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang, P.R. China
| | - Shuo Chen
- Department of Gynecology, The First Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yasuo Takano
- Clinical Cancer Institute, Kanagawa Cancer Center, Yokohama, Japan
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, Institute of Pathology and Pathophysiology, College of Basic Medicine, China Medical University, Shenyang, P.R. China
- * E-mail:
| |
Collapse
|
27
|
Cytotoxic autophagy in cancer therapy. Int J Mol Sci 2014; 15:10034-51. [PMID: 24905404 PMCID: PMC4100138 DOI: 10.3390/ijms150610034] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 04/17/2014] [Accepted: 05/19/2014] [Indexed: 01/01/2023] Open
Abstract
Autophagy is a process of cellular self-digestion, whereby the cell degrades subcellular materials in order to generate energy and metabolic precursors in order to prolong survival, classically under conditions of nutrient deprivation. Autophagy can also involve the degradation of damaged or aged organelles, and misfolded or damaged proteins to eliminate these components that might otherwise be deleterious to cellular survival. Consequently, autophagy has generally been considered a prosurvival response. Many, if not most chemotherapeutic drugs and radiation also promote autophagy, which is generally considered a cytoprotective response, in that its inhibition frequently promotes apoptotic cells death. Furthermore, it has been shown that conventional chemotherapeutic drugs and radiation alone rarely induce a form of autophagy that leads to cell death. However, there are multiple examples in the literature where newer chemotherapeutic agents, drug combinations or drugs in combination with radiation promote autophagic cell death. This review will describe autophagic cell death induced in breast tumor cells, lung cancer cells as well as glioblastoma, demonstrating that it cannot be concluded that stress induced autophagy is, of necessity, cytoprotective in function.
Collapse
|
28
|
High-throughput screen of natural product libraries for hsp90 inhibitors. BIOLOGY 2014; 3:101-38. [PMID: 24833337 PMCID: PMC4009755 DOI: 10.3390/biology3010101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Hsp90 has become the target of intensive investigation, as inhibition of its function has the ability to simultaneously incapacitate proteins that function in pathways that represent the six hallmarks of cancer. While a number of Hsp90 inhibitors have made it into clinical trials, a number of short-comings have been noted, such that the search continues for novel Hsp90 inhibitors with superior pharmacological properties. To identify new potential Hsp90 inhibitors, we have utilized a high-throughput assay based on measuring Hsp90-dependent refolding of thermally denatured luciferase to screen natural compound libraries. Over 4,000 compounds were screen with over 100 hits. Data mining of the literature indicated that 51 compounds had physiological effects that Hsp90 inhibitors also exhibit, and/or the ability to downregulate the expression levels of Hsp90-dependent proteins. Of these 51 compounds, seven were previously characterized as Hsp90 inhibitors. Four compounds, anthothecol, garcinol, piplartine, and rottlerin, were further characterized, and the ability of these compounds to inhibit the refolding of luciferase, and reduce the rate of growth of MCF7 breast cancer cells, correlated with their ability to suppress the Hsp90-dependent maturation of the heme-regulated eIF2α kinase, and deplete cultured cells of Hsp90-dependent client proteins. Thus, this screen has identified an additional 44 compounds with known beneficial pharmacological properties, but with unknown mechanisms of action as possible new inhibitors of the Hsp90 chaperone machine.
Collapse
|