1
|
Periferakis A, Tsigas G, Periferakis AT, Tone CM, Hemes DA, Periferakis K, Troumpata L, Badarau IA, Scheau C, Caruntu A, Savulescu-Fiedler I, Caruntu C, Scheau AE. Agonists, Antagonists and Receptors of Somatostatin: Pathophysiological and Therapeutical Implications in Neoplasias. Curr Issues Mol Biol 2024; 46:9721-9759. [PMID: 39329930 PMCID: PMC11430067 DOI: 10.3390/cimb46090578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/28/2024] Open
Abstract
Somatostatin is a peptide that plays a variety of roles such as neurotransmitter and endocrine regulator; its actions as a cell regulator in various tissues of the human body are represented mainly by inhibitory effects, and it shows potent activity despite its physiological low concentrations. Somatostatin binds to specific receptors, called somatostatin receptors (SSTRs), which have different tissue distributions and associated signaling pathways. The expression of SSTRs can be altered in various conditions, including tumors; therefore, they can be used as biomarkers for cancer cell susceptibility to certain pharmacological agents and can provide prognostic information regarding disease evolution. Moreover, based on the affinity of somatostatin analogs for the different types of SSTRs, the therapeutic range includes conditions such as tumors, acromegaly, post-prandial hypotension, hyperinsulinism, and many more. On the other hand, a number of somatostatin antagonists may prove useful in certain medical settings, based on their differential affinity for SSTRs. The aim of this review is to present in detail the principal characteristics of all five SSTRs and to provide an overview of the associated therapeutic potential in neoplasias.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Georgios Tsigas
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Aristodemos-Theodoros Periferakis
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Elkyda, Research & Education Centre of Charismatheia, 17675 Athens, Greece
| | - Carla Mihaela Tone
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Daria Alexandra Hemes
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs, 17236 Athens, Greece
| | - Lamprini Troumpata
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Ioana Anca Badarau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Radiology and Medical Imaging, "Foisor" Clinical Hospital of Orthopaedics, Traumatology and Osteoarticular TB, 030167 Bucharest, Romania
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, The "Carol Davila" Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, "Titu Maiorescu" University, 031593 Bucharest, Romania
| | - Ilinca Savulescu-Fiedler
- Department of Internal Medicine, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Internal Medicine and Cardiology, Coltea Clinical Hospital, 030167 Bucharest, Romania
| | - Constantin Caruntu
- Department of Physiology, The "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Andreea-Elena Scheau
- Department of Radiology and Medical Imaging, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
2
|
Sun K, White JC, He E, Van Gestel CAM, Zhang P, Peijnenburg WJGM, Qiu H. Earthworm Coelomocyte Internalization of MoS 2 Nanosheets: Multiplexed Imaging, Molecular Profiling, and Computational Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21637-21649. [PMID: 38012053 DOI: 10.1021/acs.est.3c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06504, United States
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Cornelis A M Van Gestel
- Faculty of Science, Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Willie J G M Peijnenburg
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden 2300 RA, The Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Tirado-Garibay AC, Falcón-Ruiz EA, Ochoa-Zarzosa A, López-Meza JE. GPER: An Estrogen Receptor Key in Metastasis and Tumoral Microenvironments. Int J Mol Sci 2023; 24:14993. [PMID: 37834441 PMCID: PMC10573234 DOI: 10.3390/ijms241914993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogens and their role in cancer are well-studied, and some cancer types are classified in terms of their response to them. In recent years, a G protein-coupled estrogen receptor (GPER) has been described with relevance in cancer. GPER is a pleiotropic receptor with tissue-specific activity; in normal tissues, its activation is related to correct development and homeostasis, while in cancer cells, it can be pro- or anti-tumorigenic. Also, GPER replaces estrogen responsiveness in estrogen receptor alpha (ERα)-lacking cancer cell lines. One of the most outstanding activities of GPER is its role in epithelial-mesenchymal transition (EMT), which is relevant for metastasis development. In addition, the presence of this receptor in tumor microenvironment cells contributes to the phenotypic plasticity required for the dissemination and maintenance of tumors. These characteristics suggest that GPER could be a promising therapeutic target for regulating cancer development. This review focuses on the role of GPER in EMT in tumorigenic and associated cells, highlighting its role in relation to the main hallmarks of cancer and possible therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología—FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, Mexico; (A.C.T.-G.); (E.A.F.-R.); (A.O.-Z.)
| |
Collapse
|
4
|
Squitti R, Catalli C, Gigante L, Marianetti M, Rosari M, Mariani S, Bucossi S, Mastromoro G, Ventriglia M, Simonelli I, Tondolo V, Singh P, Kumar A, Pal A, Rongioletti M. Non-Ceruloplasmin Copper Identifies a Subtype of Alzheimer’s Disease (CuAD): Characterization of the Cognitive Profile and Case of a CuAD Patient Carrying an RGS7 Stop-Loss Variant. Int J Mol Sci 2023; 24:ijms24076377. [PMID: 37047347 PMCID: PMC10094789 DOI: 10.3390/ijms24076377] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Alzheimer’s disease (AD) is a type of dementia whose cause is incompletely defined. Copper (Cu) involvement in AD etiology was confirmed by a meta-analysis on about 6000 participants, showing that Cu levels were decreased in AD brain specimens, while Cu and non-bound ceruloplasmin Cu (non-Cp Cu) levels were increased in serum/plasma samples. Non-Cp Cu was advocated as a stratification add-on biomarker of a Cu subtype of AD (CuAD subtype). To further circumstantiate this concept, we evaluated non-Cp Cu reliability in classifying subtypes of AD based on the characterization of the cognitive profile. The stratification of the AD patients into normal AD (non-Cp Cu ≤ 1.6 µmol/L) and CuAD (non-Cp Cu > 1.6 µmol/L) showed a significant difference in executive function outcomes, even though patients did not differ in disease duration and severity. Among the Cu-AD patients, a 76-year-old woman showed significantly abnormal levels in the Cu panel and underwent whole exome sequencing. The CuAD patient was detected with possessing the homozygous (c.1486T > C; p.(Ter496Argext*19) stop-loss variant in the RGS7 gene (MIM*602517), which encodes for Regulator of G Protein Signaling 7. Non-Cp Cu as an add-on test in the AD diagnostic pathway can provide relevant information about the underlying pathological processes in subtypes of AD and suggest specific therapeutic options.
Collapse
Affiliation(s)
- Rosanna Squitti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
- Correspondence: rosanna.squitti.fw.@fbf-isola.it or
| | - Claudio Catalli
- Osakidetza Basque Health Service, Department of Genetics, Cruces University Hospital, 48903 Barakaldo, Spain
- Neuromuscular Disorders Research Group, Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Laura Gigante
- Eurofins Genoma Group, Molecular Genetics Laboratory, 00138 Rome, Italy
| | - Massimo Marianetti
- Experimental Alzheimer Center, Fatebenefratelli Roman Province, 00189 Rome, Italy
| | - Mattia Rosari
- Experimental Alzheimer Center, Fatebenefratelli Roman Province, 00189 Rome, Italy
| | - Stefania Mariani
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
| | - Serena Bucossi
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
| | - Gioia Mastromoro
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
| | - Mariacarla Ventriglia
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
| | - Ilaria Simonelli
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
| | - Vincenzo Tondolo
- Digestive and Colorectal Surgery, Fatebenefratelli Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
- Digestive Surgery Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Parminder Singh
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh 160025, India
| | - Ashok Kumar
- Centre for Systems Biology and Bioinformatics, Panjab University, Chandigarh 160025, India
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, India
| | - Mauro Rongioletti
- Department of Laboratory Science, Research and Development Division, Fatebenefratelli Isola Tiberina—Gemelli Isola, 00186 Rome, Italy
| |
Collapse
|
5
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
6
|
Menon R, Christofides K, Jones CE. Endocytic recycling prevents copper accumulation in astrocytoma cells stimulated with copper-bound neurokinin B. Biochem Biophys Res Commun 2020; 523:739-744. [PMID: 31952788 DOI: 10.1016/j.bbrc.2019.12.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022]
Abstract
Neurokinin B (NKB) is a key neuropeptide in reproductive endocrinology where it contributes to the generation of pulses of gonadotropin-releasing hormone. NKB is a copper-binding peptide; in the absence of metal NKB rapidly adopts an amyloid structure, but copper binding inhibits amyloid formation and generates a structure that can activate the neurokinin 3 receptor. The fate of copper once it binds NKB and activates the neurokinin 3 receptor is not understood, but endocytosis of NKB occurs even when the peptide is coordinated to copper. Using astrocytoma cells that express endogenous neurokinin 3 receptor, this work shows that endocytosis of apo- and copper-bound NKB occurs in concert with the receptor via a trafficking pathway that includes the early endosome. When cells are stimulated with copper-bound NKB the cellular copper concentration does not significantly increase, however when the cells are pre-treated with the recycling inhibitor, brefeldin A, they are capable of accumulating copper. This data shows that copper-bound NKB can activate the neurokinin 3 receptor then endocytosis abstracts metal, peptide and receptor from the cell surface. The cell does not accumulate the copper but instead it enters recycling pathways that ultimately leads to metal release from the cell. The work reveals a novel receptor-mediated copper trafficking pathway that retains metal in membrane bound organelles until it is exported from the cell.
Collapse
Affiliation(s)
- Resmi Menon
- School of Science, Western Sydney University, Locked bag 1797, Penrith, 2759, New South Wales, Australia
| | - Katerina Christofides
- School of Science, Western Sydney University, Locked bag 1797, Penrith, 2759, New South Wales, Australia
| | - Christopher E Jones
- School of Science, Western Sydney University, Locked bag 1797, Penrith, 2759, New South Wales, Australia.
| |
Collapse
|
7
|
Jayawardena BM, Jones MR, Hong Y, Jones CE. Copper ions trigger disassembly of neurokinin B functional amyloid and inhibit de novo assembly. J Struct Biol 2019; 208:107394. [DOI: 10.1016/j.jsb.2019.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/23/2019] [Accepted: 09/23/2019] [Indexed: 01/24/2023]
|