1
|
Musavi H, Shokri Afra H, Sadeghkhani F, Ghalehnoei H, Khonakdar-Tarsi A, Mahjoub S. A molecular and computational study of galbanic acid as a regulator of Sirtuin1 pathway in inhibiting lipid accumulation in HepG2 cells. Arch Physiol Biochem 2024:1-9. [PMID: 38712991 DOI: 10.1080/13813455.2024.2336911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/26/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Sirtuin1 (SIRT1) plays a crucial role in the pathophysiology of non-alcoholic fatty liver disease. We investigated the mechanistic role of galbanic acid (Gal) as a regulator of SIRT1 in silico and in vitro. METHODS HepG2 cells were treated with Gal in the presence or absence of EX-527, a SIRT1-specific inhibitor, for 24 h. Sirtuin1 gene and protein expression were measured by RT-PCR and Western blotting, respectively. It has been docked to the allosteric reign of SIRT1 (PDB ID: 4ZZJ) to study the effect of Gal on SIRT1, and then the protein and complex molecular dynamic (MD) simulations had been studied in 100 ns. RESULTS The semi-quantitative results of Oil red (p < .03) and TG level (p < .009) showed a significant reduction in lipid accumulation by treatment with Gal. Also, a significant increase was observed in the gene and protein expression of SIRT1 (p < .05). MD studies have shown that the average root mean square deviation (RMSD) was about 0.51 Å for protein structure and 0.66 Å for the complex. The average of radius of gyration (Rg) is 2.33 and 2.32 Å for protein and complex, respectively, and the pattern of root mean square fluctuation (RMSF) was almost similar. CONCLUSION Computational studies show that Gal can be a great candidate to use as a SIRT1 ligand because it does not interfere with the structure of the protein, and other experimental studies showed that Gal treatment with SIRT1 inhibitor increases fat accumulation in HepG2 cells.
Collapse
Affiliation(s)
- Hadis Musavi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hajar Shokri Afra
- Gut and Liver Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farideh Sadeghkhani
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Hossein Ghalehnoei
- Department of Medical Biotechnology, Molecular and Cell Biology Research Center, Faculty of Advanced Technologist in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abbas Khonakdar-Tarsi
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Soleiman Mahjoub
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
2
|
Ding H, Ge K, Fan C, Liu D, Wu C, Li R, Yan FJ. Chlorogenic Acid Attenuates Hepatic Steatosis by Suppressing ZFP30. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:245-258. [PMID: 38148374 DOI: 10.1021/acs.jafc.3c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become a major global health problem with no approved pharmacological treatment for this disease. Thus, it is urgent to develop effective therapeutic targets for clinical intervention. Here, we show for the first time that ZFP30, a member of the KRAB-ZFP family, is significantly increased in NAFLD models. ZFP30 silencing ameliorates free fatty acid (FFA)-induced lipid accumulation; in contrast, the ZFP30 overexpression exacerbates the triglyceride accumulation and steatosis in hepatocytes. Further investigation revealed that the effects of ZFP30 on hepatic lipid accumulation were mainly attributed to the PPARα downregulation in the NAFLD model. Mechanistically, ZFP30 directly binded to the promoter of PPARα and recruited KAP1 to suppress its transcription. Moreover, chlorogenic acid (CGA) reversed the upregulation of ZFP30 in NAFLD, promoting the PPARα expression, resulting in enhanced fatty acid oxidation and alleviated hepatic steatosis. Collectively, our study indicates ZFP30 as a potential target for NAFLD treatment.
Collapse
Affiliation(s)
- Han Ding
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Kunyi Ge
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Changyu Fan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Dandan Liu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chenyu Wu
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Rongpeng Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Feng-Juan Yan
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
3
|
Wang N, Yang K, Wang J, Liang J, Yu S, Zhu A, Zhang R. Punicalagin relieves lipotoxic injuries on pancreatic β-cells via regulating the oxidative stress and endoplasmic reticulum stress-mediated apoptosis. In Vitro Cell Dev Biol Anim 2023; 59:575-585. [PMID: 37775711 DOI: 10.1007/s11626-023-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/24/2023] [Indexed: 10/01/2023]
Abstract
Cellular toxicity of hyperlipidemia has been long considered a major cause of various intractable disease such as diabetes. Discovering lipotoxicity antagonist with high efficiency and low side effects is of importance to develop therapeutics for relevant diseases. In the current study, we evaluate the anti-lipotoxic potential of punicalagin (PU) on pancreatic cells and investigate its underpinning mechanism involved. The administration of PU effectively improved cell viability, quenched intracellular reactive oxygen species, alleviated lipid peroxidation, and enhanced cellular antioxidative capacity in RINm5F cells stimulated by sodium palmitate. Besides that, PU treatment significantly inhibited the overload of mitochondrial calcium ions; alleviated the activation of endoplasmic reticulum (ER) stress mediators including glucose-regulated protein 78, protein kinase RNA-like ER kinase, eukaryotic initiation factor 2α, activating transcription factor 6, caspase 12, and C/EBP homologous protein (CHOP); and attenuated the expression of cleaved caspase 3 and poly ADP-ribose polymerase in test cells. Further RNA interference experiment results and miR211-5p expression analysis revealed that PU may directly mitigate CHOP expression and upregulate the expression of miR211-5p to reduce ER stress-induced pancreatic cell death. The efficacy of PU in maintaining redox equilibrium and diminishing ER stress on pancreatic cells stressed by hyperlipidemia suggests that PU can be used as a promising dietary natural product to safeguard the pancreatic health against lipotoxicity.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biotechnology, School of Food and Biological Engineering, Jiangsu University, Zhenjiang City, 212013, People's Republic of China.
| | - Kexin Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jun Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jinghe Liang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Shengbo Yu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Aiqing Zhu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Rui Zhang
- Department of Biochemistry, School of Medicine, Jiangsu University, Zhenjiang City, 212013, People's Republic of China.
| |
Collapse
|
4
|
Behne S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Chlorogenic and Isochlorogenic Acids in Coffee By-Products. Molecules 2023; 28:5540. [PMID: 37513412 PMCID: PMC10385244 DOI: 10.3390/molecules28145540] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorogenic and isochlorogenic acids are naturally occurring antioxidant dietary polyphenolic compounds found in high concentrations in plants, fruits, vegetables, coffee, and coffee by-products. The objective of this review was to assess the potential health risks associated with the oral consumption of coffee by-products containing chlorogenic and isochlorogenic acids, considering both acute and chronic exposure. An electronic literature search was conducted, revealing that 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-DCQA) are the major chlorogenic acids found in coffee by-products. Toxicological, pharmacokinetic, and clinical data from animal and human studies were available for the assessment, which indicated no significant evidence of toxic or adverse effects following acute oral exposure. The current state of knowledge suggests that long-term exposure to chlorogenic and isochlorogenic acids by daily consumption does not appear to pose a risk to human health when observed at doses within the normal range of dietary exposure. As a result, the intake of CQAs from coffee by-products can be considered reasonably safe.
Collapse
Affiliation(s)
- Sascha Behne
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
- Fachbereich II (Fachgruppe Chemie), Berliner Hochschule für Technik (BHT), Luxemburger Strasse 10, 13353 Berlin, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
5
|
Terzo S, Amato A, Magán-Fernández A, Castellino G, Calvi P, Chianetta R, Giglio RV, Patti AM, Nikolic D, Firenze A, Mulè F, Ciaccio M, Rizzo M. A Nutraceutical Containing Chlorogenic Acid and Luteolin Improves Cardiometabolic Parameters in Subjects with Pre-Obesity: A 6-Month Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2023; 15:nu15020462. [PMID: 36678333 PMCID: PMC9862908 DOI: 10.3390/nu15020462] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Pre-obesity is a condition that predisposes to the risk of developing obesity, cardiovascular diseases (CVD), and diabetes. Our previous study demonstrated that a Cynara cardunculus (L.) based nutraceutical named Altilix® (Bionap, Italy), containing chlorogenic acid and luteolin extracts, was able to improve several hepatic and cardio-metabolic parameters. Given this background, we conducted a post-hoc analysis of the Altilix® study in order to analyze the supplement’s effects in the subgroup of pre-obesity subjects on anthropometry (weight and waist circumference), glucose metabolism (HbA1C, HOMA-IR, and HOMA-β), lipid profile (total cholesterol, triglycerides, LDL-cholesterol and HDL-cholesterol), hepatic functionality (FLI, AST, ALT and AST/ALT), carotid-media thickness (CIMT) and endothelial function (FMD). Fifty subjects from the original study cohort (which consisted of 100 subjects) were chosen with BMI ≥ 25 and < 30 kg/m2. All subjects received the Altilix® supplement (150 mg/day) or placebo using a computer-based random allocation system. After six months of treatment Altilix® significantly reduced body weight, glycemic, and lipid parameters (total cholesterol, triglycerides, LDL-cholesterol) and improved hepatic functionality, CIMT, and FMD. In conclusion, these results confirm that Altilix® supplementation has a significant effect on cardiometabolic parameters not only in obese subjects but also in pre-obesity subjects.
Collapse
Affiliation(s)
- Simona Terzo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy
| | - Antonella Amato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy
| | - Antonio Magán-Fernández
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90100 Palermo, Italy
| | - Giuseppa Castellino
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90100 Palermo, Italy
| | - Pasquale Calvi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy
| | - Roberta Chianetta
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90100 Palermo, Italy
| | - Rosaria V. Giglio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, 90100 Palermo, Italy
| | - Angelo M. Patti
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, 90100 Palermo, Italy
| | - Dragana Nikolic
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90100 Palermo, Italy
| | - Alberto Firenze
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90100 Palermo, Italy
| | - Flavia Mulè
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neuroscience, and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, University of Palermo, 90100 Palermo, Italy
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90100 Palermo, Italy
- Correspondence:
| |
Collapse
|