1
|
McClain AK, Monteleone PP, Zoldan J. Sex in cardiovascular disease: Why this biological variable should be considered in in vitro models. SCIENCE ADVANCES 2024; 10:eadn3510. [PMID: 38728407 PMCID: PMC11086622 DOI: 10.1126/sciadv.adn3510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Cardiovascular disease (CVD), the world's leading cause of death, exhibits notable epidemiological, clinical, and pathophysiological differences between sexes. Many such differences can be linked back to cardiovascular sexual dimorphism, yet sex-specific in vitro models are still not the norm. A lack of sex reporting and apparent male bias raises the question of whether in vitro CVD models faithfully recapitulate the biology of intended treatment recipients. To ensure equitable treatment for the overlooked female patient population, sex as a biological variable (SABV) inclusion must become commonplace in CVD preclinical research. Here, we discuss the role of sex in CVD and underlying cardiovascular (patho)physiology. We review shortcomings in current SABV practices, describe the relevance of sex, and highlight emerging strategies for SABV inclusion in three major in vitro model types: primary cell, stem cell, and three-dimensional models. Last, we identify key barriers to inclusive design and suggest techniques for overcoming them.
Collapse
Affiliation(s)
- Anna K. McClain
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78751, USA
| | - Peter P. Monteleone
- Ascension Texas Cardiovascular, Austin, TX 78705, USA
- Dell School of Medicine, The University of Texas at Austin, Austin, TX 78712, USA
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78751, USA
| |
Collapse
|
2
|
Silva ILZ, Gomes-Júnior R, da Silva EB, Vaz IM, Jamur VR, de Freitas Souza BS, Shigunov P. Generation of an induced pluripotent stem cell line from a patient with epileptic encephalopathy caused by the CYFIP2 R87C variant. Hum Cell 2023; 36:2237-2246. [PMID: 37646972 DOI: 10.1007/s13577-023-00978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Induced pluripotent stem cells (iPSCs) opened the possibility to use patient cells as a model for several diseases. iPSCs can be reprogrammed from somatic cells collected in a non-invasive way, and then differentiated into any other cell type, while maintaining the donor´s genetic background. CYFIP2 variants were associated with the onset of an early form of epileptic encephalopathy. Studies with patients showed that the R87C variant seems to be one of the variants that causes more severe disease, however, to date there are no studies with a human cell model that allows investigation of the neuronal phenotype of the R87C variant. Here, we generated an iPSC line from a patient with epileptic encephalopathy caused by the CYFIP2 R87C variant. We obtained iPSC clones by reprogramming urinary progenitor cells from a female patient. The generated iPSC line presented a pluripotent stem cell morphology, normal karyotype, expressed pluripotency markers and could be differentiated into the three germ layers. In further studies, this cell line could be used as model for epileptic encephalopathy disease and drug screening studies.
Collapse
Affiliation(s)
| | - Rubens Gomes-Júnior
- Stem Cell Basic Biology Laboratory, Instituto Carlos Chagas, Fiocruz PR, Curitiba, PR, 81310-020, Brazil
| | - Evelin Brandão da Silva
- Stem Cell Basic Biology Laboratory, Instituto Carlos Chagas, Fiocruz PR, Curitiba, PR, 81310-020, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil
| | - Valderez Ravaglio Jamur
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, PR, 80215-901, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, 40296-710, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador, 41253-190, Brazil
| | - Patrícia Shigunov
- Stem Cell Basic Biology Laboratory, Instituto Carlos Chagas, Fiocruz PR, Curitiba, PR, 81310-020, Brazil.
| |
Collapse
|
3
|
Wang B, Li C, Ming J, Wu L, Fang S, Huang Y, Lin L, Liu H, Kuang J, Zhao C, Huang X, Feng H, Guo J, Yang X, Guo L, Zhang X, Chen J, Liu J, Zhu P, Pei D. The NuRD complex cooperates with SALL4 to orchestrate reprogramming. Nat Commun 2023; 14:2846. [PMID: 37208322 DOI: 10.1038/s41467-023-38543-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/08/2023] [Indexed: 05/21/2023] Open
Abstract
Cell fate decision involves rewiring of the genome, but remains poorly understood at the chromatin level. Here, we report that chromatin remodeling complex NuRD participates in closing open chromatin in the early phase of somatic reprogramming. Sall4, Jdp2, Glis1 and Esrrb can reprogram MEFs to iPSCs efficiently, but only Sall4 is indispensable capable of recruiting endogenous components of NuRD. Yet knocking down NuRD components only reduces reprogramming modestly, in contrast to disrupting the known Sall4-NuRD interaction by mutating or deleting the NuRD interacting motif at its N-terminus that renders Sall4 inept to reprogram. Remarkably, these defects can be partially rescured by grafting NuRD interacting motif onto Jdp2. Further analysis of chromatin accessibility dynamics demonstrates that the Sall4-NuRD axis plays a critical role in closing the open chromatin in the early phase of reprogramming. Among the chromatin loci closed by Sall4-NuRD encode genes resistant to reprogramming. These results identify a previously unrecognized role of NuRD in reprogramming, and may further illuminate chromatin closing as a critical step in cell fate control.
Collapse
Affiliation(s)
- Bo Wang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Chen Li
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ming
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Wu
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Shicai Fang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yi Huang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Joint School of Life Science, Guangzhou Medical University-Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lihui Lin
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Junqi Kuang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- Guangzhou Branch of the Supercomputing Center of Chinese Academy of Sciences, Guangzhou, China
| | - Chengchen Zhao
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Xingnan Huang
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Guo
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Xuejie Yang
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Liman Guo
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Xiaofei Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Jing Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- CAS Key Laboratory of Regenerative Biology, South China Institutes for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academic of Sciences, Guangzhou, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Pathogenesis, Targeted Prevention and Treatment of Heart Disease, Guangzhou Key Laboratory of Cardiac Pathogenesis and Prevention, Guangzhou, China.
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
4
|
Tellechea MF, Donaires FS, de Carvalho VS, Santana BA, da Silva FB, Tristão RS, Moreira LF, de Souza AF, Armenteros YM, Pereira LV, Calado RT. Defective hematopoietic differentiation of immune aplastic anemia patient-derived iPSCs. Cell Death Dis 2022; 13:412. [PMID: 35484113 PMCID: PMC9051057 DOI: 10.1038/s41419-022-04850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/09/2022]
Abstract
In acquired immune aplastic anemia (AA), pathogenic cytotoxic Th1 cells are activated and expanded, driving an immune response against the hematopoietic stem and progenitor cells (HSPCs) that provokes cell depletion and causes bone marrow failure. However, additional HSPC defects may contribute to hematopoietic failure, reflecting on disease outcomes and response to immunosuppression. Here we derived induced pluripotent stem cells (iPSCs) from peripheral blood (PB) erythroblasts obtained from patients diagnosed with immune AA using non-integrating plasmids to model the disease. Erythroblasts were harvested after hematologic response to immunosuppression was achieved. Patients were screened for germline pathogenic variants in bone marrow failure-related genes and no variant was identified. Reprogramming was equally successful for erythroblasts collected from the three immune AA patients and the three healthy subjects. However, the hematopoietic differentiation potential of AA-iPSCs was significantly reduced both quantitatively and qualitatively as compared to healthy-iPSCs, reliably recapitulating disease: differentiation appeared to be more severely affected in cells from the two patients with partial response as compared to the one patient with complete response. Telomere elongation and the telomerase machinery were preserved during reprogramming and differentiation in all AA-iPSCs. Our results indicate that iPSCs are a reliable platform to model immune AA and recapitulate clinical phenotypes. We propose that the immune attack may cause specific epigenetic changes in the HSPCs that limit adequate proliferation and differentiation.
Collapse
Affiliation(s)
- Maria Florencia Tellechea
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Flávia S Donaires
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vinícius S de Carvalho
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bárbara A Santana
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda B da Silva
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raissa S Tristão
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lílian F Moreira
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline F de Souza
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Yordanka M Armenteros
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Rodrigo T Calado
- Department of Medical Imaging, Hematology, and Oncology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Vaz IM, Borgonovo T, Kasai-Brunswick TH, Santos DSD, Mesquita FCP, Vasques JF, Gubert F, Rebelatto CLK, Senegaglia AC, Brofman PRS. Chromosomal aberrations after induced pluripotent stem cells reprogramming. Genet Mol Biol 2021; 44:e20200147. [PMID: 34496008 PMCID: PMC8425414 DOI: 10.1590/1678-4685-gmb-2020-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/15/2021] [Indexed: 12/03/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are generated from adult cells that have been reprogrammed to pluripotency. However, in vitro cultivation and genetic reprogramming increase genetic instability, which could result in chromosomal abnormalities. Maintenance of genetic stability after reprogramming is required for possible experimental and clinical applications. The aim of this study was to analyze chromosomal alterations by using the G-banding karyotyping method applied to 97 samples from 38 iPSC cell lines generated from peripheral blood or Wharton’s jelly. Samples from patients with long QT syndrome, Jervell and Lange-Nielsen syndrome and amyotrophic lateral sclerosis and from normal individuals revealed the following chromosomal alterations: acentric fragments, chromosomal fusions, premature centromere divisions, double minutes, radial figures, ring chromosomes, polyploidies, inversions and trisomies. An analysis of two samples generated from Wharton’s jelly before and after reprogramming showed that abnormal clones can emerge or be selected and generate an altered lineage. IPSC lines may show clonal and nonclonal chromosomal aberrations in several passages (from P6 to P34), but these aberrations are more common in later passages. Many important chromosomal aberrations were detected, showing that G-banding is very useful for evaluating genetic instability with important repercussions for the application of iPSC lines.
Collapse
Affiliation(s)
- Isadora May Vaz
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Núcleo de Tecnologia Celular, Curitiba, PR, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Tamara Borgonovo
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Núcleo de Tecnologia Celular, Curitiba, PR, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Tais Hanae Kasai-Brunswick
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brazil.,Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil
| | - Danúbia Silva Dos Santos
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brazil
| | | | - Juliana Ferreira Vasques
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Fernanda Gubert
- Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil.,Instituto de Ciências Biomédicas, Rio de Janeiro, RJ, Brazil
| | - Carmen Lúcia Kuniyoshi Rebelatto
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Núcleo de Tecnologia Celular, Curitiba, PR, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Alexandra Cristina Senegaglia
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Núcleo de Tecnologia Celular, Curitiba, PR, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| | - Paulo Roberto Slud Brofman
- Pontifícia Universidade Católica do Paraná, Escola de Medicina, Núcleo de Tecnologia Celular, Curitiba, PR, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Shibamiya A, Schulze E, Krauß D, Augustin C, Reinsch M, Schulze ML, Steuck S, Mearini G, Mannhardt I, Schulze T, Klampe B, Werner T, Saleem U, Knaust A, Laufer SD, Neuber C, Lemme M, Behrens CS, Loos M, Weinberger F, Fuchs S, Eschenhagen T, Hansen A, Ulmer BM. Cell Banking of hiPSCs: A Practical Guide to Cryopreservation and Quality Control in Basic Research. ACTA ACUST UNITED AC 2021; 55:e127. [PMID: 32956561 DOI: 10.1002/cpsc.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The reproducibility of stem cell research relies on the constant availability of quality-controlled cells. As the quality of human induced pluripotent stem cells (hiPSCs) can deteriorate in the course of a few passages, cell banking is key to achieve consistent results and low batch-to-batch variation. Here, we provide a cost-efficient route to generate master and working cell banks for basic research projects. In addition, we describe minimal protocols for quality assurance including tests for sterility, viability, pluripotency, and genetic integrity. © 2020 The Authors. Basic Protocol 1: Expansion of hiPSCs Basic Protocol 2: Cell banking of hiPSCs Support Protocol 1: Pluripotency assessment by flow cytometry Support Protocol 2: Thawing control: Viability and sterility Support Protocol 3: Potency, viral clearance, and pluripotency: Spontaneous differentiation and qRT-PCR Support Protocol 4: Identity: Short tandem repeat analysis.
Collapse
Affiliation(s)
- Aya Shibamiya
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Elisabeth Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Dana Krauß
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Current address: Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna, Austria
| | - Christa Augustin
- Department of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marina Reinsch
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Mirja Loreen Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Simone Steuck
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Giulia Mearini
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Ingra Mannhardt
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Thomas Schulze
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Birgit Klampe
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Tessa Werner
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Umber Saleem
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Anika Knaust
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sandra D Laufer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Christiane Neuber
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Marta Lemme
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Charlotta Sophie Behrens
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Malte Loos
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Florian Weinberger
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Sigrid Fuchs
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Bärbel Maria Ulmer
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| |
Collapse
|
7
|
Sajid A, Lalani EN, Chen B, Hashimoto T, Griffin DK, Bhartiya A, Thompson G, Robinson IK, Yusuf M. Ultra-Structural Imaging Provides 3D Organization of 46 Chromosomes of a Human Lymphocyte Prophase Nucleus. Int J Mol Sci 2021; 22:ijms22115987. [PMID: 34206020 PMCID: PMC8198510 DOI: 10.3390/ijms22115987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/18/2022] Open
Abstract
Three dimensional (3D) ultra-structural imaging is an important tool for unraveling the organizational structure of individual chromosomes at various stages of the cell cycle. Performing hitherto uninvestigated ultra-structural analysis of the human genome at prophase, we used serial block-face scanning electron microscopy (SBFSEM) to understand chromosomal architectural organization within 3D nuclear space. Acquired images allowed us to segment, reconstruct, and extract quantitative 3D structural information about the prophase nucleus and the preserved, intact individual chromosomes within it. Our data demonstrate that each chromosome can be identified with its homolog and classified into respective cytogenetic groups. Thereby, we present the first 3D karyotype built from the compact axial structure seen on the core of all prophase chromosomes. The chromosomes display parallel-aligned sister chromatids with familiar chromosome morphologies with no crossovers. Furthermore, the spatial positions of all 46 chromosomes revealed a pattern showing a gene density-based correlation and a neighborhood map of individual chromosomes based on their relative spatial positioning. A comprehensive picture of 3D chromosomal organization at the nanometer level in a single human lymphocyte cell is presented.
Collapse
Affiliation(s)
- Atiqa Sajid
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
| | - El-Nasir Lalani
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
| | - Bo Chen
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education, Tongji University, Shanghai 200092, China
| | - Teruo Hashimoto
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (T.H.); (G.T.)
| | | | - Archana Bhartiya
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
| | - George Thompson
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK; (T.H.); (G.T.)
| | - Ian K. Robinson
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mohammed Yusuf
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi 74800, Pakistan; (A.S.); (E.-N.L.)
- London Centre for Nanotechnology, University College London, London WC1H 0AH, UK; (B.C.); (A.B.); (I.K.R.)
- Correspondence:
| |
Collapse
|
8
|
Bhartiya A, Batey D, Cipiccia S, Shi X, Rau C, Botchway S, Yusuf M, Robinson IK. X-ray Ptychography Imaging of Human Chromosomes After Low-dose Irradiation. Chromosome Res 2021; 29:107-126. [PMID: 33786705 PMCID: PMC8328905 DOI: 10.1007/s10577-021-09660-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
Studies of the structural and functional role of chromosomes in cytogenetics have spanned more than 10 decades. In this work, we take advantage of the coherent X-rays available at the latest synchrotron sources to extract the individual masses of all 46 chromosomes of metaphase human B and T cells using hard X-ray ptychography. We have produced 'X-ray karyotypes' of both heavy metal-stained and unstained spreads to determine the gain or loss of genetic material upon low-level X-ray irradiation doses due to radiation damage. The experiments were performed at the I-13 beamline, Diamond Light Source, Didcot, UK, using the phase-sensitive X-ray ptychography method.
Collapse
Affiliation(s)
- Archana Bhartiya
- London Centre for Nanotechnology, University College, London, UK
- Department of Chemistry, University College, London, UK
- Research Complex at Harwell, Harwell Campus, Didcot, UK
| | - Darren Batey
- Diamond Light Source, Harwell Campus, Didcot, UK
| | | | - Xiaowen Shi
- Diamond Light Source, Harwell Campus, Didcot, UK
- Department of Physics, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | | | - Mohammed Yusuf
- London Centre for Nanotechnology, University College, London, UK
- Research Complex at Harwell, Harwell Campus, Didcot, UK
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan
| | - Ian K Robinson
- London Centre for Nanotechnology, University College, London, UK.
- Research Complex at Harwell, Harwell Campus, Didcot, UK.
- Condensed Matter Physics and Materials Science Division, Brookhaven National Lab, Upton, NY, 11973, USA.
| |
Collapse
|
9
|
Darren Tan CW, Forsthuber A, Ehmoser EK. Functional proteoliposome-like structure derived from simultaneous evisceration and enucleation of T-lymphoblastoid A3R5.7 cells: A top-down story. Exp Cell Res 2021; 400:112487. [PMID: 33476652 DOI: 10.1016/j.yexcr.2021.112487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Structurally-reduced cells and cell-derived structures are powerful tools for membrane studies. Using this approach, we probed whether a cell, without its nucleus and cytoplasm, is still capable of undergoing CD4-mediated membrane fusion. For this, we needed a cell-derived structure, akin to a giant liposome functionalised with CD4 and chemokine receptors. We present a method for the simultaneous removal of cytoplasmic and nuclear material from cells presenting CD4, CCR5, and CXCR4, using Colcemid treatment followed by hypotonic cytolysis, and then enriched using preparative flow cytometry. We show that the resultant cell membrane remains intact, retains presentation of CD4, CCR5, and CXCR4, and is still capable of CD4-mediated membrane fusion with a target cell. Finally, we detail how this protocol was developed, as well as how such samples should be handled for storage and assays. We envision the use of such systems for host-pathogen interaction studies, and the development of targeted delivery vehicles.
Collapse
Affiliation(s)
- Cherng-Wen Darren Tan
- University of Natural Resources and Life Sciences Vienna, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190, Vienna, Austria.
| | - Andreas Forsthuber
- University of Natural Resources and Life Sciences Vienna, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190, Vienna, Austria
| | - Eva-Kathrin Ehmoser
- University of Natural Resources and Life Sciences Vienna, Department of Nanobiotechnology, Institute for Synthetic Bioarchitectures, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
10
|
Wu M, Leung J, Liu L, Kam C, Chan KYK, Li RA, Feng S, Chen S. A Small-Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angew Chem Int Ed Engl 2020; 59:10327-10331. [PMID: 32163217 PMCID: PMC7318220 DOI: 10.1002/anie.201916718] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/04/2020] [Indexed: 01/12/2023]
Abstract
The chromosome periphery (CP) is a complex network that covers the outer surface of chromosomes. It acts as a carrier of nucleolar components, helps maintain chromosome structure, and plays an important role in mitosis. Current methods for fluorescence imaging of CP largely rely on immunostaining. We herein report a small-molecule fluorescent probe, ID-IQ, which possesses aggregation-induced emission (AIE) property, for CP imaging. By labelling the CP, ID-IQ sharply highlighted the chromosome boundaries, which enabled rapid segmentation of touching and overlapping chromosomes, direct identification of the centromere, and clear visualization of chromosome morphology. ID-IQ staining was also compatible with fluorescence in situ hybridization and could assist the precise location of the gene in designated chromosome. Altogether, this study provides a versatile cytogenetic tool for improved chromosome analysis, which greatly benefits the clinical diagnostic testing and genomic research.
Collapse
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Li Liu
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and GynaecologyQueen Mary HospitalHong KongChina
- Prenatal Diagnostic LaboratoryTsan Yuk HospitalHong KongChina
| | - Ronald A. Li
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- Dr. Li Dak-Sum Research CentreThe University of Hong KongHong KongChina
| | - Shun Feng
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengduSichuan610031China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative MedicineKarolinska InstitutetHong KongChina
- Dr. Li Dak-Sum Research CentreThe University of Hong KongHong KongChina
| |
Collapse
|
11
|
Wu M, Leung J, Liu L, Kam C, Chan KYK, Li RA, Feng S, Chen S. A Small‐Molecule AIE Chromosome Periphery Probe for Cytogenetic Studies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Ming‐Yu Wu
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Jong‐Kai Leung
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
| | - Li Liu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Chuen Kam
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
| | - Kelvin Yuen Kwong Chan
- Department of Obstetrics and Gynaecology Queen Mary Hospital Hong Kong China
- Prenatal Diagnostic Laboratory Tsan Yuk Hospital Hong Kong China
| | - Ronald A. Li
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| | - Shun Feng
- School of Life Science and Engineering Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Sijie Chen
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institutet Hong Kong China
- Dr. Li Dak-Sum Research Centre The University of Hong Kong Hong Kong China
| |
Collapse
|
12
|
Chan DY, Moralli D, Wheatley L, Jankowska JD, Monaco ZL. Multigene human artificial chromosome vector delivery with herpes simplex virus 1 amplicons. Exp Cell Res 2020; 388:111840. [PMID: 31930965 PMCID: PMC7066578 DOI: 10.1016/j.yexcr.2020.111840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/09/2020] [Indexed: 01/25/2023]
Abstract
Gene expression studies and gene therapy require efficient gene delivery into cells. Different technologies by viral and non-viral mechanisms have been used for gene delivery into cells. Small gene vectors transfer across the cell membrane with a relatively high efficiency, but not large genes or entire loci spanning several kilobases, which do not remain intact following introduction. Previously, we developed an efficient delivery system based on herpes virus simplex type 1 (HSV-1) amplicons to transfer large fragments of DNA incorporated in human artificial chromosome (HAC) vectors into the nucleus of human cells. The HSV-1 amplicon lacks the signals for cleavage and replication of its own genome, yet each amplicon has the capacity to incorporate up to 150 kb of exogenous DNA. In this study, we investigated whether the capacity of gene delivery could be increased by simultaneously introducing multiple HSV-1 modified amplicons carrying a gene expressing HAC vector into cells with the aim of generating a single artificial chromosome containing the desired genes. Following co-transduction of two HSV-1 HAC amplicons, artificial chromosomes were successfully generated containing the introduced genes, which were appropriately expressed in different human cell types.
Collapse
Affiliation(s)
- David Yl Chan
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | - Daniela Moralli
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lucy Wheatley
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Julia D Jankowska
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Zoia L Monaco
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK; Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
13
|
Fiedorowicz K, Rozwadowska N, Zimna A, Malcher A, Tutak K, Szczerbal I, Nowicka-Bauer K, Nowaczyk M, Kolanowski TJ, Łabędź W, Kubaszewski Ł, Kurpisz M. Tissue-specific promoter-based reporter system for monitoring cell differentiation from iPSCs to cardiomyocytes. Sci Rep 2020; 10:1895. [PMID: 32024875 PMCID: PMC7002699 DOI: 10.1038/s41598-020-58050-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022] Open
Abstract
The possibility of using stem cell-derived cardiomyocytes opens a new platform for modeling cardiac cell differentiation and disease or the development of new drugs. Progress in this field can be accelerated by high-throughput screening (HTS) technology combined with promoter reporter system. The goal of the study was to create and evaluate a responsive promoter reporter system that allows monitoring of iPSC differentiation towards cardiomyocytes. The lentiviral promoter reporter system was based on troponin 2 (TNNT2) and alpha cardiac actin (ACTC) with firefly luciferase and mCherry, respectively. The system was evaluated in two in vitro models. First, system followed the differentiation of TNNT2-luc-T2A-Puro-mCMV-GFP and hACTC-mcherry-WPRE-EF1-Neo from transduced iPSC line towards cardiomyocytes and revealed the significant decrease in both inserts copy number during the prolonged in vitro cell culture (confirmed by I-FISH, ddPCR, qPCR). Second, differentiated and contracting control cardiomyocytes (obtained from control non-reporter transduced iPSCs) were subsequently transduced with TNNT2-luc-T2A-Puro-CMV-GFP and hACTC-mcherry-WPRE-EF1-Neo lentiviruses to observe the functionality of obtained cardiomyocytes. Our results indicated that the reporter modified cell lines can be used for HTS applications, but it is essential to monitor the stability of the reporter sequence during extended cell in vitro culture.
Collapse
Affiliation(s)
| | | | - Agnieszka Zimna
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Tutak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland
| | | | | | | | - Wojciech Łabędź
- Department of Spondyloortopaedics and Biomechanics of the Spine, W. Dega University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Łukasz Kubaszewski
- Department of Spondyloortopaedics and Biomechanics of the Spine, W. Dega University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
14
|
Fasler-Kan E, Aliu N, Haecker FM, Maltsev N, Ruggiero S, Cholewa D, Bartenstein A, Milošević M, Berger SM. Chromosomal Heterogeneity of the G-401 Rhabdoid Tumor Cell Line: Unusual Partial 7p Trisomy. Front Med (Lausanne) 2019; 6:187. [PMID: 31544104 PMCID: PMC6729120 DOI: 10.3389/fmed.2019.00187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/05/2019] [Indexed: 11/18/2022] Open
Abstract
Rhabdoid tumor is a very aggressive and hardly curable pediatric malignancy. It commonly starts in the kidneys but also can occur in the brain, liver, and other organs. The treatment of this tumor usually involves a combination of surgery, radiation, and chemotherapy. Because this tumor is rare, there is still limited experience with a defined standard of care. Cytogenetic analysis is an important routine method to monitor chromosomal aberrations. We have analyzed metaphases of the G-401 rhabdoid tumor cell line. In these cells we have observed metaphases with derivative chromosome 12 arising from partial trisomy 7p. With increasing passage number the numbers of metaphases having this derivative chromosome 12 were found to be higher. In passage number 2 only one metaphase had this pathological chromosome 12. By passage number 10 and passage number 15 about 25 and 95% of this derivative chromosome 12 were found, respectively. We were able to subclone G-401 cells by limiting dilutions and successfully separated cells having apparently normal karyotypes from cells having derivative chromosome 12. Using the cell proliferation assay we showed that clones possessing the derivative chromosome 12 grew more rapidly than clones with normal chromosomes. The cell cycle analysis confirmed this observation. Overall, in this study we describe for the first time a 7p triplication in a rare rhabdoid tumor of kidney. Both types of clones described in this study could be used as a preclinical model to study the involvement of partial chromosome 7 alterations in the development of rhabdoid tumors.
Collapse
Affiliation(s)
- Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland.,Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Nijas Aliu
- Department of Human Genetics, University Children's Hospital, Inselspital, Bern, Switzerland
| | - Frank-Martin Haecker
- Department of Pediatric Surgery, Children's Hospital of Eastern Switzerland, St. Gallen, Switzerland.,Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Natalia Maltsev
- Department of Human Genetics and USA Computation Institute, University of Chicago, Chicago, IL, United States
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Dietmar Cholewa
- Department of Pediatric Surgery, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Andreas Bartenstein
- Department of Pediatric Surgery, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Milan Milošević
- Department of Pediatric Surgery, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
De Angelis MT, Santamaria G, Parrotta EI, Scalise S, Lo Conte M, Gasparini S, Ferlazzo E, Aguglia U, Ciampi C, Sgura A, Cuda G. Establishment and characterization of induced pluripotent stem cells (iPSCs) from central nervous system lupus erythematosus. J Cell Mol Med 2019; 23:7382-7394. [PMID: 31536674 PMCID: PMC6815917 DOI: 10.1111/jcmm.14598] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
Involvement of the central nervous system (CNS) is an uncommon feature in systemic lupus erythematosus (SLE), making diagnosis rather difficult and challenging due to the poor specificity of neuropathic symptoms and neurological symptoms. In this work, we used human‐induced pluripotent stem cells (hiPSCs) derived from CNS‐SLE patient, with the aim to dissect the molecular insights underlying the disease by gene expression analysis and modulation of implicated pathways. CNS‐SLE‐derived hiPSCs allowed us to provide evidence of Erk and Akt pathways involvement and to identify a novel cohort of potential biomarkers, namely CHCHD2, IDO1, S100A10, EPHA4 and LEFTY1, never reported so far. We further extended the study analysing a panel of oxidative stress‐related miRNAs and demonstrated, under normal or stress conditions, a strong dysregulation of several miRNAs in CNS‐SLE‐derived compared to control hiPSCs. In conclusion, we provide evidence that iPSCs reprogrammed from CNS‐SLE patient are a powerful useful tool to investigate the molecular mechanisms underlying the disease and to eventually develop innovative therapeutic approaches.
Collapse
Affiliation(s)
- Maria Teresa De Angelis
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Elvira Immacolata Parrotta
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| | - Sara Gasparini
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Regional Epilepsy Centre, Great Metropolitan Hospital, Reggio Calabria, Italy
| | - Clara Ciampi
- Department of Science, University of Rome " Roma Tre", Rome, Italy
| | - Antonella Sgura
- Department of Science, University of Rome " Roma Tre", Rome, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Stem Cell Laboratory, Research Center for Advanced Biochemistry and Molecular Biology, "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
16
|
Erkilic N, Gatinois V, Torriano S, Bouret P, Sanjurjo-Soriano C, Luca VD, Damodar K, Cereso N, Puechberty J, Sanchez-Alcudia R, Hamel CP, Ayuso C, Meunier I, Pellestor F, Kalatzis V. A Novel Chromosomal Translocation Identified due to Complex Genetic Instability in iPSC Generated for Choroideremia. Cells 2019; 8:cells8091068. [PMID: 31514470 PMCID: PMC6770680 DOI: 10.3390/cells8091068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) have revolutionized the study of human diseases as they can renew indefinitely, undergo multi-lineage differentiation, and generate disease-specific models. However, the difficulty of working with iPSCs is that they are prone to genetic instability. Furthermore, genetically unstable iPSCs are often discarded, as they can have unforeseen consequences on pathophysiological or therapeutic read-outs. We generated iPSCs from two brothers of a previously unstudied family affected with the inherited retinal dystrophy choroideremia. We detected complex rearrangements involving chromosomes 12, 20 and/or 5 in the generated iPSCs. Suspecting an underlying chromosomal aberration, we performed karyotype analysis of the original fibroblasts, and of blood cells from additional family members. We identified a novel chromosomal translocation t(12;20)(q24.3;q11.2) segregating in this family. We determined that the translocation was balanced and did not impact subsequent retinal differentiation. We show for the first time that an undetected genetic instability in somatic cells can breed further instability upon reprogramming. Therefore, the detection of chromosomal aberrations in iPSCs should not be disregarded, as they may reveal rearrangements segregating in families. Furthermore, as such rearrangements are often associated with reproductive failure or birth defects, this in turn has important consequences for genetic counseling of family members.
Collapse
Affiliation(s)
- Nejla Erkilic
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Vincent Gatinois
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Simona Torriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Pauline Bouret
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Carla Sanjurjo-Soriano
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Valerie De Luca
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Krishna Damodar
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Nicolas Cereso
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
| | - Jacques Puechberty
- Service of Clinical Genetics, Department of Medical Genetics, Rare Diseases and Personalized Medicine, CHU, Montpellier, France
| | - Rocio Sanchez-Alcudia
- Department of Genetics, Institute for Sanitary Investigation, Foundation Jimenez Diaz, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Christian P Hamel
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, CHU, 34295 Montpellier, France
| | - Carmen Ayuso
- Department of Genetics, Institute for Sanitary Investigation, Foundation Jimenez Diaz, 28040 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Isabelle Meunier
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France
- University of Montpellier, 34090 Montpellier, France
- National Reference Centre for Inherited Sensory Diseases, CHU, 34295 Montpellier, France
| | - Franck Pellestor
- Chromosomal Genetics Unit, Chromostem Platform, CHU, Montpellier, France
| | - Vasiliki Kalatzis
- Inserm U1051, Institute for Neurosciences of Montpellier, 34091 Montpellier CEDEX 5, France.
- University of Montpellier, 34090 Montpellier, France.
| |
Collapse
|
17
|
Rudzka DA, Spennati G, McGarry DJ, Chim YH, Neilson M, Ptak A, Munro J, Kalna G, Hedley A, Moralli D, Green C, Mason S, Blyth K, Mullin M, Yin H, Olson MF. Migration through physical constraints is enabled by MAPK-induced cell softening via actin cytoskeleton re-organization. J Cell Sci 2019; 132:132/11/jcs224071. [PMID: 31152052 PMCID: PMC6589089 DOI: 10.1242/jcs.224071] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/25/2019] [Indexed: 12/21/2022] Open
Abstract
Cancer cells are softer than the normal cells, and metastatic cells are even softer. These changes in biomechanical properties contribute to cancer progression by facilitating cell movement through physically constraining environments. To identify properties that enabled passage through physical constraints, cells that were more efficient at moving through narrow membrane micropores were selected from established cell lines. By examining micropore-selected human MDA MB 231 breast cancer and MDA MB 435 melanoma cancer cells, membrane fluidity and nuclear elasticity were excluded as primary contributors. Instead, reduced actin cytoskeleton anisotropy, focal adhesion density and cell stiffness were characteristics associated with efficient passage through constraints. By comparing transcriptomic profiles between the parental and selected populations, increased Ras/MAPK signalling was linked with cytoskeleton rearrangements and cell softening. MEK inhibitor treatment reversed the transcriptional, cytoskeleton, focal adhesion and elasticity changes. Conversely, expression of oncogenic KRas in parental MDA MB 231 cells, or oncogenic BRaf in parental MDA MB 435 cells, significantly reduced cell stiffness. These results reveal that MAPK signalling, in addition to tumour cell proliferation, has a significant role in regulating cell biomechanics. This article has an associated First Person interview with the first author of the paper. Highlighted Article: Selection for tumour cells that efficiently pass through narrow diameter microporous membranes reveals a prominent role for MAPK signalling in regulating cell elasticity.
Collapse
Affiliation(s)
- Dominika A Rudzka
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Giulia Spennati
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - David J McGarry
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Ya-Hua Chim
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Matthew Neilson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Aleksandra Ptak
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Gabriela Kalna
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Ann Hedley
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Daniela Moralli
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Catherine Green
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Susan Mason
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Margaret Mullin
- Electron Microscopy Facility, Department of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK
| | - Huabing Yin
- School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael F Olson
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK .,Institute of Cancer Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
18
|
Hayashi Y, Ohnuma K, Furue MK. Pluripotent Stem Cell Heterogeneity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1123:71-94. [DOI: 10.1007/978-3-030-11096-3_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Use of 3D imaging for providing insights into high-order structure of mitotic chromosomes. Chromosoma 2018; 128:7-13. [PMID: 30175387 PMCID: PMC6394650 DOI: 10.1007/s00412-018-0678-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
The high-order structure of metaphase chromosomes remains still under investigation, especially the 30-nm structure that is still controversial. Advanced 3D imaging has provided useful information for our understanding of this detailed structure. It is evident that new technologies together with improved sample preparations and image analyses should be adequately combined. This mini review highlights 3D imaging used for chromosome analysis so far with future imaging directions also highlighted.
Collapse
|
20
|
Chien Y, Chien CS, Chiang HC, Huang WL, Chou SJ, Chang WC, Chang YL, Leu HB, Chen KH, Wang KL, Lai YH, Liu YY, Lu KH, Li HY, Sung YJ, Jong YJ, Chen YJ, Chen CH, Yu WC. Interleukin-18 deteriorates Fabry cardiomyopathy and contributes to the development of left ventricular hypertrophy in Fabry patients with GLA IVS4+919 G>A mutation. Oncotarget 2018; 7:87161-87179. [PMID: 27888626 PMCID: PMC5349979 DOI: 10.18632/oncotarget.13552] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 11/07/2016] [Indexed: 12/19/2022] Open
Abstract
RATIONALE A high incidence of GLA IVS4+919 G>A mutation in patients with Fabry disease of the later-onset cardiac phenotype, has been reported in Taiwan. However, suitable biomarkers or potential therapeutic surrogates for Fabry cardiomyopathy (FC) in such patients under enzyme replacement treatment (ERT) remain unknown. OBJECTIVE Using FC patients carrying IVS4+919 G>A mutation, we constructed an induced pluripotent stem cell (iPSC)-based disease model to investigate the pathogenetic biomarkers and potential therapeutic targets in ERT-treated FC. RESULTS AND METHODS The iPSC-differentiated cardiomyocytes derived from FC-patients (FC-iPSC-CMs) carried IVS4+919 G>A mutation recapitulating FC characteristics, including low α-galactosidase A enzyme activity, cellular hypertrophy, and massive globotriaosylceramide accumulation. Microarray analysis revealed that interleukin-18 (IL-18), a pleiotropic cytokine involved in various myocardial diseases, was the most highly upregulated marker in FC-iPSC-CMs. Meanwhile, IL-18 levels were found to be significantly elevated in the culture media of FC-iPSC-CMs and patients' sera. Notably, the serum IL-18 levels were highly paralleled with the progression of left ventricular hypertrophy in Fabry patients receiving ERT. Finally, using FC-iPSC-CMs as in vitro FC model, neutralization of IL-18 with specific antibodies combined with ERT synergistically reduced the secretion of IL-18 and the progression of cardiomyocyte hypertrophy in FC-iPSC-CMs. CONCLUSION Our data demonstrated that cardiac IL-18 and circulating IL-18 are involved in the pathogenesis of FC and LVH. IL-18 may be a novel marker for evaluating ERT efficacy, and targeting IL-18 might be a potential adjunctive therapy combined with ERT for the treatment of advanced cardiomyopathy in FC patients with IVS4+919 G>A mutation.
Collapse
Affiliation(s)
- Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Huai-Chih Chiang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Wei-Lin Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Anatomy and Cell Biology, Taipei, Taiwan
| | - Shih-Jie Chou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Wei-Chao Chang
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University and Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Yuh-Lih Chang
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Pharmacology, Taipei, Taiwan
| | - Hsin-Bang Leu
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | - Kuan-Hsuan Chen
- Department of Pharmacy, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | - Kang-Ling Wang
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | | | - Yung-Yang Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Clinical Medicine, Taipei, Taiwan
| | - Kai-Hsi Lu
- Department of Medical Research, Cheng-Hsin Hospital, Taipei, Taiwan
| | - Hsin-Yang Li
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Anatomy and Cell Biology, Taipei, Taiwan
| | - Yen-Jen Sung
- Institute of Anatomy and Cell Biology, Taipei, Taiwan
| | - Yuh-Jyh Jong
- College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yann-Jang Chen
- Department of Life Sciences and Institute of Genome Sciences, Taipei, Taiwan
| | - Chung-Hsuan Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.,Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wen-Chung Yu
- Division of Cardiology & Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
21
|
Effects of Serial Passage on the Characteristics and Cardiac and Neural Differentiation of Human Umbilical Cord Wharton's Jelly-Derived Mesenchymal Stem Cells. Stem Cells Int 2015; 2016:9291013. [PMID: 26798365 PMCID: PMC4699056 DOI: 10.1155/2016/9291013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/31/2015] [Indexed: 01/29/2023] Open
Abstract
Background and Objective. It is important to guarantee the quality of stem cells. Serial passage is the main approach to expand stem cells. This study evaluated effects of serial passage on the biological characteristics of human umbilical cord Wharton's jelly-derived MSCs (WJ MSCs). Methods. Biological properties of WJ MSCs in the early (less than 10 passages, P10), middle (P11–20), and late (more than P20) phases including cell proliferation, cell cycle, phenotype, senescence, oncogene expression, stemness marker expression, and differentiation capacity were evaluated using flow cytometry, real-time PCR, immunocytofluorescence, and western blot. Results. It was found that there were no significant differences in cell proliferation, cell cycle, phenotype, and stemness marker expression in different phases. However, the expression of senescence-related gene, p21, and oncogene, c-Myc, was significantly upregulated in the late phase, which had close relations with the obviously increased cell senescence. Moreover, cardiac differentiation capability of WJ MSCs decreased whereas the propensity for neural differentiation increased significantly in the middle phase. Conclusions. This study reveals that WJ MSCs in the early and middle phases are relatively stable, and effect of serial passage on the lineage-specific differentiation should be considered carefully.
Collapse
|
22
|
Moralli D, Monaco ZL. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology. Chromosome Res 2015; 23:105-10. [PMID: 25657030 PMCID: PMC4365269 DOI: 10.1007/s10577-014-9456-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
De novo artificial chromosomes expressing genes have been generated in human embryonic stem cells (hESc) and are maintained following differentiation into other cell types. Human artificial chromosomes (HAC) are small, functional, extrachromosomal elements, which behave as normal chromosomes in human cells. De novo HAC are generated following delivery of alpha satellite DNA into target cells. HAC are characterized by high levels of mitotic stability and are used as models to study centromere formation and chromosome organisation. They are successful and effective as gene expression vectors since they remain autonomous and can accommodate larger genes and regulatory regions for long-term expression studies in cells unlike other viral gene delivery vectors currently used. Transferring the essential DNA sequences for HAC formation intact across the cell membrane has been challenging for a number of years. A highly efficient delivery system based on HSV-1 amplicons has been used to target DNA directly to the ES cell nucleus and HAC stably generated in human embryonic stem cells (hESc) at high frequency. HAC were detected using an improved protocol for hESc chromosome harvesting, which consistently produced high-quality metaphase spreads that could routinely detect HAC in hESc. In tumour cells, the input DNA often integrated in the host chromosomes, but in the host ES genome, it remained intact. The hESc containing the HAC formed embryoid bodies, generated teratoma in mice, and differentiated into neuronal cells where the HAC were maintained. The HAC structure and chromatin composition was similar to the endogenous hESc chromosomes. This review will discuss the technological advances in HAC vector delivery using HSV-1 amplicons and the improvements in the identification of de novo HAC in hESc.
Collapse
Affiliation(s)
- Daniela Moralli
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | |
Collapse
|
23
|
Lin L, Swerdel MR, Lazaropoulos MP, Hoffman GS, Toro-Ramos AJ, Wright J, Lederman H, Chen J, Moore JC, Hart RP. Spontaneous ATM Gene Reversion in A-T iPSC to Produce an Isogenic Cell Line. Stem Cell Reports 2015; 5:1097-1108. [PMID: 26677768 PMCID: PMC4682125 DOI: 10.1016/j.stemcr.2015.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
A spontaneously reverted iPSC line was identified from an A-T subject with heterozygous ATM truncation mutations. The reverted iPSC line expressed ATM protein and was capable of radiation-induced phosphorylation of CHK2 and H2A.X. Genome-wide SNP analysis confirmed a match to source T cells and also to a distinct, non-reverted iPSC line from the same subject. Rearranged T cell receptor sequences predict that the iPSC culture originated as several independently reprogrammed cells that resolved into a single major clone, suggesting that gene correction likely occurred early in the reprogramming process. Gene expression analysis comparing ATM(-/-) iPSC lines to unrelated ATM(+/-) cells identifies a large number of differences, but comparing only the isogenic pair of A-T iPSC lines reveals that the primary pathway affected by loss of ATM is a diminished expression of p53-related mRNAs. Gene reversion in culture, although likely a rare event, provided a novel, reverted cell line for studying ATM function.
Collapse
Affiliation(s)
- Lucy Lin
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Mavis R Swerdel
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P Lazaropoulos
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Gary S Hoffman
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Alana J Toro-Ramos
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Jennifer Wright
- A-T Clinic, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Howard Lederman
- A-T Clinic, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jianmin Chen
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Jennifer C Moore
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA; Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
24
|
Andrews PW, Baker D, Benvinisty N, Miranda B, Bruce K, Brüstle O, Choi M, Choi YM, Crook JM, de Sousa PA, Dvorak P, Freund C, Firpo M, Furue MK, Gokhale P, Ha HY, Han E, Haupt S, Healy L, Hei DJ, Hovatta O, Hunt C, Hwang SM, Inamdar MS, Isasi RM, Jaconi M, Jekerle V, Kamthorn P, Kibbey MC, Knezevic I, Knowles BB, Koo SK, Laabi Y, Leopoldo L, Liu P, Lomax GP, Loring JF, Ludwig TE, Montgomery K, Mummery C, Nagy A, Nakamura Y, Nakatsuji N, Oh S, Oh SK, Otonkoski T, Pera M, Peschanski M, Pranke P, Rajala KM, Rao M, Ruttachuk R, Reubinoff B, Ricco L, Rooke H, Sipp D, Stacey GN, Suemori H, Takahashi TA, Takada K, Talib S, Tannenbaum S, Yuan BZ, Zeng F, Zhou Q. Points to consider in the development of seed stocks of pluripotent stem cells for clinical applications: International Stem Cell Banking Initiative (ISCBI). Regen Med 2015; 10:1-44. [PMID: 25675265 DOI: 10.2217/rme.14.93] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- P W Andrews
- Department of Biomedical Science, The University of Sheffield, Sheffield, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Agu CA, Soares FAC, Alderton A, Patel M, Ansari R, Patel S, Forrest S, Yang F, Lineham J, Vallier L, Kirton CM. Successful Generation of Human Induced Pluripotent Stem Cell Lines from Blood Samples Held at Room Temperature for up to 48 hr. Stem Cell Reports 2015; 5:660-71. [PMID: 26388286 PMCID: PMC4624992 DOI: 10.1016/j.stemcr.2015.08.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/20/2015] [Accepted: 08/21/2015] [Indexed: 01/09/2023] Open
Abstract
The collection sites of human primary tissue samples and the receiving laboratories, where the human induced pluripotent stem cells (hIPSCs) are derived, are often not on the same site. Thus, the stability of samples prior to derivation constrains the distance between the collection site and the receiving laboratory. To investigate sample stability, we collected blood and held it at room temperature for 5, 24, or 48 hr before isolating peripheral blood mononuclear cells (PBMCs) and reprogramming into IPSCs. Additionally, PBMC samples at 5- and 48-hr time points were frozen in liquid nitrogen for 4 months and reprogrammed into IPSCs. hIPSC lines derived from all time points were pluripotent, displayed no marked difference in chromosomal aberration rates, and differentiated into three germ layers. Reprogramming efficiency at 24- and 48-hr time points was 3- and 10-fold lower, respectively, than at 5 hr; the freeze-thaw process of PBMCs resulted in no obvious change in reprogramming efficiency.
Collapse
Affiliation(s)
- Chukwuma A Agu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.
| | - Filipa A C Soares
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alex Alderton
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Minal Patel
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Rizwan Ansari
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sharad Patel
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Sally Forrest
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Jonathan Lineham
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Ludovic Vallier
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Anne McLaren Laboratory for Regenerative Medicine and Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK
| | | |
Collapse
|
26
|
Lian HY, Jiao GZ, Wang HL, Tan XW, Wang TY, Zheng LL, Kong QQ, Tan JH. Role of cytoskeleton in regulating fusion of nucleoli: a study using the activated mouse oocyte model. Biol Reprod 2014; 91:56. [PMID: 25061094 DOI: 10.1095/biolreprod.114.120188] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although fusion of nucleoli was observed during pronuclear development of zygotes and the behavior of nucleoli in pronuclei has been suggested as an indicator of embryonic developmental potential, the mechanism for nucleolar fusion is unclear. Although both cytoskeleton and the nucleolus are important cellular entities, there are no special reports on the relationship between the two. Role of cytoskeleton in regulating fusion of nucleoli was studied using the activated mouse oocyte model. Mouse oocytes were cultured for 6 h in activating medium (Ca²⁺-free CZB medium containing 10 mM SrCl₂) supplemented with or without inhibitors for cytoskeleton or protein synthesis before pronuclear formation, nucleolar fusion, and the activity of maturation-promoting factor (MPF) were examined. Whereas treatment with microfilament inhibitor cytochalasin D or B or intermediate filament inhibitor acrylamide suppressed nucleolar fusion efficiently, treatment with microtubule inhibitor demecolcine or nocodazole or protein synthesis inhibitor cycloheximide had no effect. The cytochalasin D- or acrylamide-sensitive temporal window coincided well with the reported temporal window for nucleolar fusion in activated oocytes. Whereas a continuous incubation with demecolcine prevented pronuclear formation, pronuclei formed normally when demecolcine was excluded during the first hour of activation treatment when the MPF activity dropped dramatically. The results suggest that 1) microfilaments and intermediate filaments but not microtubules support nucleolar fusion, 2) proteins required for nucleolar fusion including microfilaments and intermediate filaments are not de novo synthesized, and 3) microtubule disruption prevents pronuclear formation by activating MPF.
Collapse
Affiliation(s)
- Hua-Yu Lian
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Guang-Zhong Jiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Hui-Li Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Xiu-Wen Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Tian-Yang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Liang-Liang Zheng
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Qiao-Qiao Kong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| | - Jing-He Tan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai-an City, P.R. China
| |
Collapse
|
27
|
Kirov I, Divashuk M, Van Laere K, Soloviev A, Khrustaleva L. An easy "SteamDrop" method for high quality plant chromosome preparation. Mol Cytogenet 2014; 7:21. [PMID: 24602284 PMCID: PMC3995958 DOI: 10.1186/1755-8166-7-21] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/26/2014] [Indexed: 12/01/2022] Open
Abstract
Background The chromosome preparation is a crucial step for obtaining satisfactory results in molecular cytogenetic researches. The preparation of plant chromosomes for molecular cytogenetic purposes remains a challenge for some species. In contrast to human chromosome preparation, the processes occurring during plant chromosome preparation and causing chromosome spreading are still poorly understood. Results We studied the dynamics of plant chromosome spreading after dropping cell suspension on slides. We showed that steam stimulates cytoplasm hydrolysis and rapid chromosome spreading and that chromosomes stretch during this chromosome spreading. Based on these observations, we developed a novel method, named “SteamDrop”, for the preparation of well-spread mitotic and pachytene chromosomes and successfully used it for 28 plant species with large and small chromosomes. We applied cell suspensions in ethanol instead of the commonly used ethanol/acetic acid fixative. Mitotic and meiotic chromosomes prepared via “SteamDrop” were used in fluorescent in situ hybridization (FISH) experiments with repetitive and unique DNA probes. Long storage of cell suspensions in ethanol did not impair the quality of chromosome preparations. Conclusion The SteamDrop procedure provides a robust and routine method for high quality plant chromosome preparations. The method can be applied for metaphase as well as pachytene chromosome preparation in wide range of species. The chromosomes prepared by SteamDrop are well suitable for repetitive and unique DNA visualization.
Collapse
Affiliation(s)
| | | | | | | | - Ludmila Khrustaleva
- Department of Genetics and Biotechnology, Russian State Agrarian University-MTAA, Timiryazevskay str, 49, 127550 Moscow, Russia.
| |
Collapse
|
28
|
Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS One 2014; 9:e87388. [PMID: 24586273 PMCID: PMC3931621 DOI: 10.1371/journal.pone.0087388] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 12/24/2013] [Indexed: 11/19/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) offer the potential to study otherwise inaccessible cell types. Critical to this is the directed differentiation of hiPSCs into functional cell lineages. This is of particular relevance to research into neurological disease, such as Parkinson's disease (PD), in which midbrain dopaminergic neurons degenerate during disease progression but are unobtainable until post-mortem. Here we report a detailed study into the physiological maturation over time of human dopaminergic neurons in vitro. We first generated and differentiated hiPSC lines into midbrain dopaminergic neurons and performed a comprehensive characterisation to confirm dopaminergic functionality by demonstrating dopamine synthesis, release, and re-uptake. The neuronal cultures include cells positive for both tyrosine hydroxylase (TH) and G protein-activated inward rectifier potassium channel 2 (Kir3.2, henceforth referred to as GIRK2), representative of the A9 population of substantia nigra pars compacta (SNc) neurons vulnerable in PD. We observed for the first time the maturation of the slow autonomous pace-making (<10 Hz) and spontaneous synaptic activity typical of mature SNc dopaminergic neurons using a combination of calcium imaging and electrophysiology. hiPSC-derived neurons exhibited inositol tri-phosphate (IP3) receptor-dependent release of intracellular calcium from the endoplasmic reticulum in neuronal processes as calcium waves propagating from apical and distal dendrites, and in the soma. Finally, neurons were susceptible to the dopamine neuron-specific toxin 1-methyl-4-phenylpyridinium (MPP+) which reduced mitochondrial membrane potential and altered mitochondrial morphology. Mature hiPSC-derived dopaminergic neurons provide a neurophysiologically-defined model of previously inaccessible vulnerable SNc dopaminergic neurons to bridge the gap between clinical PD and animal models.
Collapse
|
29
|
Mirakhori F, Zeynali B, Salekdeh GH, Baharvand H. Induced Neural Lineage Cells as Repair Kits: So Close, Yet So Far Away. J Cell Physiol 2014; 229:728-42. [DOI: 10.1002/jcp.24509] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/06/2013] [Indexed: 12/15/2022]
Affiliation(s)
- Fahimeh Mirakhori
- School of Biology, College of Science; University of Tehran; Tehran Iran
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Bahman Zeynali
- School of Biology, College of Science; University of Tehran; Tehran Iran
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at the Cell Science Research Center; Royan Institute for Stem Cell Biology and Technology, ACECR; Tehran Iran
- Department of Developmental Biology; University of Science and Culture, ACECR; Tehran Iran
| |
Collapse
|
30
|
Hell MP, Thoma CR, Fankhauser N, Christinat Y, Weber TC, Krek W. miR-28-5p Promotes Chromosomal Instability in VHL-Associated Cancers by Inhibiting Mad2 Translation. Cancer Res 2014; 74:2432-43. [DOI: 10.1158/0008-5472.can-13-2041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Abstract
Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births(1,2), 60-80% of all miscarriages(3,4), 10% of stillbirths(2,5), 13% of individuals with congenital heart disease(6), 3-6% of infertility cases(2), and in many patients with developmental delay and birth defects(7). Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance(8,9). Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents(10-13). Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)(14,15).
Collapse
Affiliation(s)
- Bradley Howe
- Department of Genetics, Louisiana State University Health Science Center
| | | | | |
Collapse
|
32
|
Abstract
Chromosome (cytogenetic) analysis is widely used for the detection of chromosome instability. When followed by G-banding and molecular techniques such as fluorescence in situ hybridization (FISH), this assay has the powerful ability to analyze individual cells for aberrations that involve gains or losses of portions of the genome and rearrangements involving one or more chromosomes. In humans, chromosome abnormalities occur in approximately 1 per 160 live births(1,2), 60-80% of all miscarriages(3,4), 10% of stillbirths(2,5), 13% of individuals with congenital heart disease(6), 3-6% of infertility cases(2), and in many patients with developmental delay and birth defects(7). Cytogenetic analysis of malignancy is routinely used by researchers and clinicians, as observations of clonal chromosomal abnormalities have been shown to have both diagnostic and prognostic significance(8,9). Chromosome isolation is invaluable for gene therapy and stem cell research of organisms including nonhuman primates and rodents(10-13). Chromosomes can be isolated from cells of live tissues, including blood lymphocytes, skin fibroblasts, amniocytes, placenta, bone marrow, and tumor specimens. Chromosomes are analyzed at the metaphase stage of mitosis, when they are most condensed and therefore more clearly visible. The first step of the chromosome isolation technique involves the disruption of the spindle fibers by incubation with Colcemid, to prevent the cells from proceeding to the subsequent anaphase stage. The cells are then treated with a hypotonic solution and preserved in their swollen state with Carnoy's fixative. The cells are then dropped on to slides and can then be utilized for a variety of procedures. G-banding involves trypsin treatment followed by staining with Giemsa to create characteristic light and dark bands. The same procedure to isolate chromosomes can be used for the preparation of cells for procedures such as fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH), and spectral karyotyping (SKY)(14,15).
Collapse
Affiliation(s)
- Bradley Howe
- Department of Genetics, Louisiana State University Health Science Center
| | | | | |
Collapse
|
33
|
Hwang SM, See CJ, Choi J, Kim SY, Choi Q, Kim JA, Kwon J, Park SN, Im K, Oh IH, Lee DS. The application of an in situ karyotyping technique for mesenchymal stromal cells: a validation and comparison study with classical G-banding. Exp Mol Med 2013; 45:e68. [PMID: 24357832 PMCID: PMC3880460 DOI: 10.1038/emm.2013.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 12/02/2022] Open
Abstract
The cytogenetic analysis of mesenchymal stromal cells (MSCs) is essential for verifying the safety and stability of MSCs. An in situ technique, which uses cells grown on coverslips for karyotyping and minimizes cell manipulation, is the standard protocol for the chromosome analysis of amniotic fluids. Therefore, we applied the in situ karyotyping technique in MSCs and compared the quality of metaphases and karyotyping results with classical G-banding and chromosomal abnormalities with fluorescence in situ hybridization (FISH). Human adipose- and umbilical cord-derived MSC cell lines (American Type Culture Collection PCS-500-011, PCS-500-010) were used for evaluation. The quality of metaphases was assessed by analyzing the chromosome numbers in each metaphase, the overlaps of chromosomes and the mean length of chromosome 1. FISH was performed in the interphase nuclei of MSCs for 6q, 7q and 17q abnormalities and for the enumeration of chromosomes via oligo-FISH in adipose-derived MSCs. The number of chromosomes in each metaphase was more variable in classical G-banding. The overlap of chromosomes and the mean length of chromosome 1 as observed via in situ karyotyping were comparable to those of classical G-banding (P=0.218 and 0.674, respectively). Classical G-banding and in situ karyotyping by two personnel showed normal karyotypes for both cell lines in five passages. No numerical or structural chromosomal abnormalities were found by the interphase-FISH. In situ karyotyping showed equivalent karyotype results, and the quality of the metaphases was not inferior to classical G-banding. Thus, in situ karyotyping with minimized cell manipulation and the use of less cells would be useful for karyotyping MSCs.
Collapse
Affiliation(s)
- Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Cha-ja See
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jungeun Choi
- Department of Laboratory Medicine, Korea University Hospital, Seoul, Korea
| | - Seon Young Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Qute Choi
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ah Kim
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jiseok Kwon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Si Nae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyongok Im
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center, Department of Cellular Medicine, Research Center for Stem Cell Therapeutics Evaluation, Catholic University of Korea, Seoul, Korea
| | - Dong Soon Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
|
35
|
Danovi D, Folarin A, Gogolok S, Ender C, Elbatsh AMO, Engström PG, Stricker SH, Gagrica S, Georgian A, Yu D, U KP, Harvey KJ, Ferretti P, Paddison PJ, Preston JE, Abbott NJ, Bertone P, Smith A, Pollard SM. A high-content small molecule screen identifies sensitivity of glioblastoma stem cells to inhibition of polo-like kinase 1. PLoS One 2013; 8:e77053. [PMID: 24204733 PMCID: PMC3813721 DOI: 10.1371/journal.pone.0077053] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 08/29/2013] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults and there are few effective treatments. GBMs contain cells with molecular and cellular characteristics of neural stem cells that drive tumour growth. Here we compare responses of human glioblastoma-derived neural stem (GNS) cells and genetically normal neural stem (NS) cells to a panel of 160 small molecule kinase inhibitors. We used live-cell imaging and high content image analysis tools and identified JNJ-10198409 (J101) as an agent that induces mitotic arrest at prometaphase in GNS cells but not NS cells. Antibody microarrays and kinase profiling suggested that J101 responses are triggered by suppression of the active phosphorylated form of polo-like kinase 1 (Plk1) (phospho T210), with resultant spindle defects and arrest at prometaphase. We found that potent and specific Plk1 inhibitors already in clinical development (BI 2536, BI 6727 and GSK 461364) phenocopied J101 and were selective against GNS cells. Using a porcine brain endothelial cell blood-brain barrier model we also observed that these compounds exhibited greater blood-brain barrier permeability in vitro than J101. Our analysis of mouse mutant NS cells (INK4a/ARF(-/-), or p53(-/-)), as well as the acute genetic deletion of p53 from a conditional p53 floxed NS cell line, suggests that the sensitivity of GNS cells to BI 2536 or J101 may be explained by the lack of a p53-mediated compensatory pathway. Together these data indicate that GBM stem cells are acutely susceptible to proliferative disruption by Plk1 inhibitors and that such agents may have immediate therapeutic value.
Collapse
Affiliation(s)
- Davide Danovi
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Amos Folarin
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Sabine Gogolok
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Christine Ender
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Ahmed M. O. Elbatsh
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Pär G. Engström
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, United Kingdom
| | - Stefan H. Stricker
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Sladjana Gagrica
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| | - Ana Georgian
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Ding Yu
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Kin Pong U
- Institute of Child Health, University College London, London, United Kingdom
| | - Kevin J. Harvey
- EMD Millipore Corporation, San Diego, California, United States of America
| | - Patrizia Ferretti
- Institute of Child Health, University College London, London, United Kingdom
| | - Patrick J. Paddison
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jane E. Preston
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - N. Joan Abbott
- Institute of Pharmaceutical Science, King's College London, London, United Kingdom
| | - Paul Bertone
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, United Kingdom
- Genome Biology and Developmental Biology Units, European Molecular Biology Laboratory, Heidelberg, Germany
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Austin Smith
- Wellcome Trust–Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Steven M. Pollard
- Samantha Dickson Brain Cancer Unit and Department of Cancer Biology, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
36
|
Chen XM, Kan QC, Wang F, Kong HJ, Zhang YY, Yu WZ, Sun YP. Chromosome dynamic changes in two cultured Chinese human embryonic stem cell lines: single nucleotide polymorphism, copy number variation and loss of heterozygosity. J Cell Biochem 2013; 113:3520-7. [PMID: 22711576 DOI: 10.1002/jcb.24229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The quality and safety of human embryonic stem cells (hESCs) in clinical application depend on gene stability. Two Chinese hESC lines, Zh1 and Zh21, were incubated over a long period. We observed and compared the gene stability in the passage numbers 20, 17 for Zh1 cell line and passage numbers 27, 60, 68 for Zh21 cell line. Single nucleotide polymorphisis analysis indicated that hESCs in early passages had relative gene stability; and with the increase in passage number, gene instability became strong. We also found that there were copy number variations (CNVs) in both Zh21 and Zh1. We analyzed the CNVs of Chinese Han Beijing man (CHB; normal Chinese people) and found that the all CNV forms were the loss in Zh21, Zh1, and CHB. We also analyzed and compared the related pathways of the mutant genes. We propose three steps to ensure hESC safety. Firstly, besides the conventional methods such as pluripotent genes, chromosome G-banding and teratoma, high-resolution DNA chip analysis should also be adopted; secondly, chromosomal properties are monitored every 10 passages in less than passage 50 and every 5 passages in more than passage 50; thirdly, the related pathways of mutant genes should be observed because only the mutant genes with variations of their related pathways may affected cell functions.
Collapse
Affiliation(s)
- Xue-Mei Chen
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Lund RJ, Närvä E, Lahesmaa R. Genetic and epigenetic stability of human pluripotent stem cells. Nat Rev Genet 2012; 13:732-44. [PMID: 22965355 DOI: 10.1038/nrg3271] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Studies using high-resolution genome-wide approaches have recently reported that genomic and epigenomic alterations frequently accumulate in human pluripotent cells. Detailed characterization of these changes is crucial for understanding the impact of these alterations on self-renewal and proliferation, and particularly on the developmental and malignant potential of the cells. Such knowledge is required for the optimized and safe use of pluripotent cells for therapeutic purposes, such as regenerative cellular therapies using differentiated derivatives of pluripotent cells.In this Review, we summarize the current knowledge of the genomic and epigenomic stability of pluripotent human cells and the implications for stem cell research.
Collapse
Affiliation(s)
- Riikka J Lund
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, FIN-20520 Turku, Finland
| | | | | |
Collapse
|
38
|
Li Y, Héroux P, Kyrychenko I. Metabolic restriction of cancer cells in vitro causes karyotype contraction—an indicator of cancer promotion? Tumour Biol 2011; 33:195-205. [DOI: 10.1007/s13277-011-0262-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 10/27/2011] [Indexed: 12/24/2022] Open
|
39
|
Mandegar MA, Moralli D, Khoja S, Cowley S, Chan DYL, Yusuf M, Mukherjee S, Blundell MP, Volpi EV, Thrasher AJ, James W, Monaco ZL. Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells. Hum Mol Genet 2011; 20:2905-13. [PMID: 21593218 DOI: 10.1093/hmg/ddr144] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We present a novel and efficient non-integrating gene expression system in human embryonic stem cells (hESc) utilizing human artificial chromosomes (HAC), which behave as autonomous endogenous host chromosomes and segregate correctly during cell division. HAC are important vectors for investigating the organization and structure of the kinetochore, and gene complementation. HAC have so far been obtained in immortalized or tumour-derived cell lines, but never in stem cells, thus limiting their potential therapeutic application. In this work, we modified the herpes simplex virus type 1 amplicon system for efficient transfer of HAC DNA into two hESc. The deriving stable clones generated green fluorescent protein gene-expressing HAC at high frequency, which were stably maintained without selection for 3 months. Importantly, no integration of the HAC DNA was observed in the hESc lines, compared with the fibrosarcoma-derived control cells, where the exogenous DNA frequently integrated in the host genome. The hESc retained pluripotency, differentiation and teratoma formation capabilities. This is the first report of successfully generating gene expressing de novo HAC in hESc, and is a significant step towards the genetic manipulation of stem cells and potential therapeutic applications.
Collapse
Affiliation(s)
- Mohammad A Mandegar
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|