1
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Allan TJ, Zalusky MPG, Goffena J, Gibson SB, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel MN, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Gupta S, Jones EA, Weisz-Hubshman M, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic utility of DNA methylation analysis in genetically unsolved pediatric epilepsies and CHD2 episignature refinement. Nat Commun 2024; 15:6524. [PMID: 39107278 PMCID: PMC11303402 DOI: 10.1038/s41467-024-50159-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/28/2024] [Indexed: 08/09/2024] Open
Abstract
Sequence-based genetic testing identifies causative variants in ~ 50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. We interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 582 individuals with genetically unsolved DEEs. We identify rare differentially methylated regions (DMRs) and explanatory episignatures to uncover causative and candidate genetic etiologies in 12 individuals. Using long-read sequencing, we identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and four copy number variants. We also identify pathogenic variants associated with episignatures. Finally, we refine the CHD2 episignature using an 850 K methylation array and bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate variants as 2% (12/582) for unsolved DEE cases.
Collapse
Affiliation(s)
- Christy W LaFlamme
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cassandra Rastin
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Soham Sengupta
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Helen E Pennington
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Mathematics & Statistics, Rhodes College, Memphis, TN, 38112, USA
| | - Sophie J Russ-Hall
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Amy L Schneider
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Emily S Bonkowski
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Edith P Almanza Fuerte
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Talia J Allan
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Miranda Perez-Galey Zalusky
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Joy Goffena
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Sophia B Gibson
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Denis M Nyaga
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Nico Lieffering
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Malavika Hebbar
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
| | - Emily V Walker
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Scott R Olsen
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Pandurang Kolekar
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Mohamed Nadhir Djekidel
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Wojciech Rosikiewicz
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Haley McConkey
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Jennifer Kerkhof
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Michael A Levy
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Raissa Relator
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, 58100, Israel
| | - Tally Lerman-Sagie
- Fetal Neurology Clinic, Pediatric Neurology Unit, Wolfson Medical Center, Holon, 58100, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kristen L Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Gerarda Cappuccio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Nicolas Chatron
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Leigh Demain
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - David Genevieve
- Montpellier University, Inserm Unit 1183, Reference Center for Rare Diseases Developmental Anomaly and Malformative Syndrome, Clinical Genetic Department, CHU Montpellier, Montpellier, France
| | - Gaetan Lesca
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | - Tony Roscioli
- Neuroscience Research Australia (NeuRA), Sydney, NSW, Australia
- Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- New South Wales Health Pathology Randwick Genomics, Prince of Wales Hospital, Sydney, NSW, Australia
| | - Damien Sanlaville
- Department of Medical Genetics, Member of the ERN EpiCARE, University Hospital of Lyon and Claude Bernard Lyon I University, Lyon, France
- Pathophysiology and Genetics of Neuron and Muscle (PNMG), UCBL, CNRS UMR5261 - INSERM, U1315, Lyon, France
| | | | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Elizabeth A Jones
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Hospital, Genetic Department, Houston, TX, 77030, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pediatrics, Section of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- Cain Pediatric Neurology Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
- Texas Children's Hospital, Houston, TX, 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, 77030, USA
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital Memphis, Memphis, TN, 38105, USA
| | - Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zhaoming Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago, Wellington, 6242, New Zealand
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, VIC, Australia
- Florey Institute and Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Bekim Sadikovic
- Department of Pathology & Laboratory Medicine, Western University, London, ON, N5A 3K7, Canada.
- Verspeeten Clinical Genome Centre, London Health Science Centre, London, ON, N6A 5W9, Canada.
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
2
|
LaFlamme CW, Rastin C, Sengupta S, Pennington HE, Russ-Hall SJ, Schneider AL, Bonkowski ES, Almanza Fuerte EP, Galey M, Goffena J, Gibson SB, Allan TJ, Nyaga DM, Lieffering N, Hebbar M, Walker EV, Darnell D, Olsen SR, Kolekar P, Djekidel N, Rosikiewicz W, McConkey H, Kerkhof J, Levy MA, Relator R, Lev D, Lerman-Sagie T, Park KL, Alders M, Cappuccio G, Chatron N, Demain L, Genevieve D, Lesca G, Roscioli T, Sanlaville D, Tedder ML, Hubshman MW, Ketkar S, Dai H, Worley KC, Rosenfeld JA, Chao HT, Neale G, Carvill GL, Wang Z, Berkovic SF, Sadleir LG, Miller DE, Scheffer IE, Sadikovic B, Mefford HC. Diagnostic Utility of Genome-wide DNA Methylation Analysis in Genetically Unsolved Developmental and Epileptic Encephalopathies and Refinement of a CHD2 Episignature. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.10.11.23296741. [PMID: 37873138 PMCID: PMC10592992 DOI: 10.1101/2023.10.11.23296741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Sequence-based genetic testing currently identifies causative genetic variants in ∼50% of individuals with developmental and epileptic encephalopathies (DEEs). Aberrant changes in DNA methylation are implicated in various neurodevelopmental disorders but remain unstudied in DEEs. Rare epigenetic variations ("epivariants") can drive disease by modulating gene expression at single loci, whereas genome-wide DNA methylation changes can result in distinct "episignature" biomarkers for monogenic disorders in a growing number of rare diseases. Here, we interrogate the diagnostic utility of genome-wide DNA methylation array analysis on peripheral blood samples from 516 individuals with genetically unsolved DEEs who had previously undergone extensive genetic testing. We identified rare differentially methylated regions (DMRs) and explanatory episignatures to discover causative and candidate genetic etiologies in 10 individuals. We then used long-read sequencing to identify DNA variants underlying rare DMRs, including one balanced translocation, three CG-rich repeat expansions, and two copy number variants. We also identify pathogenic sequence variants associated with episignatures; some had been missed by previous exome sequencing. Although most DEE genes lack known episignatures, the increase in diagnostic yield for DNA methylation analysis in DEEs is comparable to the added yield of genome sequencing. Finally, we refine an episignature for CHD2 using an 850K methylation array which was further refined at higher CpG resolution using bisulfite sequencing to investigate potential insights into CHD2 pathophysiology. Our study demonstrates the diagnostic yield of genome-wide DNA methylation analysis to identify causal and candidate genetic causes as ∼2% (10/516) for unsolved DEE cases.
Collapse
|
3
|
Chen J, Zheng H, Wang Z, Wang J, He F, Zhang C, Xiong F. A female carrier of a novel DMD mutation with slightly skewed X-chromosome inactivation shows a suspected case of Becker muscular dystrophy in a Chinese family. Mol Genet Genomics 2021; 296:541-549. [PMID: 33566169 DOI: 10.1007/s00438-020-01757-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are both caused by mutations in DMD gene effecting the expression of dystrophin. Generally female carriers are asymptomatic; however, it has been suggested that carriers may exhibit symptoms. We investigated a 6-year-old Chinese girl exhibiting a suspected BMD phenotype, including persistently elevated creatine kinase and creatine kinase isoenzyme levels. The proband harbored a novel heterozygous mutation, c.3458_3459insAA, within exon 26 of the DMD gene inherited from her mother who had a completely normal phenotype and presented with mosaicism in her lymphocytes with 45, X [17%]/46, XX [83%]. In addition, X-chromosome inactivation (XCI) patterns in the peripheral blood of the child were slightly skewed: proband with 62% (mutant allele)/38% (normal allele) when compared with her mother with 32/68%. Amplification of regions of the cDNA revealed different ratios for the expression of these alleles: proband with 50/50% and her mother with 20/80%. Real-time PCR showed that mRNA expression was significantly decreased in both. We proposed that a frameshift or nonsense mutation may contribute to the development of symptoms in carriers. These phenotypes correlate with nonrandom XCI patterns and are compounded by the locus of the mutation. For incompletely skewed XCI patterns, although the mutant allele could suppress the expression of a normal allele, carriers would remain asymptomatic as long as there was adequate compensation from the normal allele. We also proposed a mechanism where mRNA from the mutant allele may be unstable and easily degraded, allowing for phenotypic compensation by the wildtype allele.
Collapse
Affiliation(s)
- Jianfan Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui Zheng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, People's Republic of China
| | - Cheng Zhang
- Department of Neurology, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China.
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, Guangdong Province, People's Republic of China.
| |
Collapse
|
4
|
Uehara DT, Mitsubuchi H, Inazawa J. A missense variant in NUF2, a component of the kinetochore NDC80 complex, causes impaired chromosome segregation and aneuploidy associated with microcephaly and short stature. Hum Genet 2021; 140:1047-1060. [PMID: 33721060 DOI: 10.1007/s00439-021-02273-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/28/2021] [Indexed: 12/11/2022]
Abstract
Mutations in proteins involved in cell division and chromosome segregation, such as microtubule-regulating, centrosomal and kinetochore proteins, are associated with microcephaly and/or short stature. In particular, the kinetochore plays an essential role in mitosis and cell division by mediating connections between chromosomal DNA and spindle microtubules. To date, only a few genes encoding proteins of the kinetochore complex have been identified as causes of syndromes that include microcephaly. We report a male patient with a rare de novo missense variant in NUF2, after trio whole-exome sequencing analysis. The patient presented with microcephaly and short stature, with additional features, such as bilateral vocal cord paralysis, micrognathia and atrial septal defect. NUF2 encodes a subunit of the NDC80 complex in the outer kinetochore, important for correct microtubule binding and spindle assembly checkpoint. The mutated residue is buried at the calponin homology (CH) domain at the N-terminus of NUF2, which interacts with the N-terminus of NDC80. The variant caused the loss of hydrophobic interactions in the core of the CH domain of NUF2, thereby impairing the stability of NDC80-NUF2. Analysis using a patient-derived lymphoblastoid cell line revealed markedly reduced protein levels of both NUF2 and NDC80, aneuploidy, increased micronuclei formation and spindle abnormality. Our findings suggest that NUF2 may be the first member of the NDC80 complex to be associated with a human disorder.
Collapse
Affiliation(s)
- Daniela Tiaki Uehara
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Hiroshi Mitsubuchi
- Department of Neonatology, Kumamoto University Hospital, Kumamoto, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
- Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
5
|
Benincá C, Zanette V, Brischigliaro M, Johnson M, Reyes A, Valle DAD, J Robinson A, Degiorgi A, Yeates A, Telles BA, Prudent J, Baruffini E, S F Santos ML, R de Souza RL, Fernandez-Vizarra E, Whitworth AJ, Zeviani M. Mutation in the MICOS subunit gene APOO (MIC26) associated with an X-linked recessive mitochondrial myopathy, lactic acidosis, cognitive impairment and autistic features. J Med Genet 2021; 58:155-167. [PMID: 32439808 PMCID: PMC7116790 DOI: 10.1136/jmedgenet-2020-106861] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/13/2020] [Accepted: 04/12/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Mitochondria provide ATP through the process of oxidative phosphorylation, physically located in the inner mitochondrial membrane (IMM). The mitochondrial contact site and organising system (MICOS) complex is known as the 'mitoskeleton' due to its role in maintaining IMM architecture. APOO encodes MIC26, a component of MICOS, whose exact function in its maintenance or assembly has still not been completely elucidated. METHODS We have studied a family in which the most affected subject presented progressive developmental delay, lactic acidosis, muscle weakness, hypotonia, weight loss, gastrointestinal and body temperature dysautonomia, repetitive infections, cognitive impairment and autistic behaviour. Other family members showed variable phenotype presentation. Whole exome sequencing was used to screen for pathological variants. Patient-derived skin fibroblasts were used to confirm the pathogenicity of the variant found in APOO. Knockout models in Drosophila melanogaster and Saccharomyces cerevisiae were employed to validate MIC26 involvement in MICOS assembly and mitochondrial function. RESULTS A likely pathogenic c.350T>C transition was found in APOO predicting an I117T substitution in MIC26. The mutation caused impaired processing of the protein during import and faulty insertion into the IMM. This was associated with altered MICOS assembly and cristae junction disruption. The corresponding mutation in MIC26 or complete loss was associated with mitochondrial structural and functional deficiencies in yeast and D. melanogaster models. CONCLUSION This is the first case of pathogenic mutation in APOO, causing altered MICOS assembly and neuromuscular impairment. MIC26 is involved in the assembly or stability of MICOS in humans, yeast and flies.
Collapse
Affiliation(s)
- Cristiane Benincá
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
- Department of Genetics, Federal University of Parana, Curitiba, Paraná, Brazil
| | - Vanessa Zanette
- Department of Genetics, Federal University of Parana, Curitiba, Paraná, Brazil
| | | | - Mark Johnson
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | - Aurelio Reyes
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | | | - Alan J Robinson
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | - Andrea Degiorgi
- Department of Chemistry, University of Parma, Parma, Emilia-Romagna, Italy
| | - Anna Yeates
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, UK
| | | | - Julien Prudent
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
| | - Enrico Baruffini
- Department of Chemistry, University of Parma, Parma, Emilia-Romagna, Italy
| | | | | | | | | | - Massimo Zeviani
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, Cambridgeshire, UK
- Department of Neurosciences, University of Padova, Padova, Veneto, Italy
| |
Collapse
|
6
|
Beck DB, Basar MA, Asmar AJ, Thompson JJ, Oda H, Uehara DT, Saida K, Pajusalu S, Talvik I, D'Souza P, Bodurtha J, Mu W, Barañano KW, Miyake N, Wang R, Kempers M, Tamada T, Nishimura Y, Okada S, Kosho T, Dale R, Mitra A, Macnamara E, Matsumoto N, Inazawa J, Walkiewicz M, Õunap K, Tifft CJ, Aksentijevich I, Kastner DL, Rocha PP, Werner A. Linkage-specific deubiquitylation by OTUD5 defines an embryonic pathway intolerant to genomic variation. SCIENCE ADVANCES 2021; 7:7/4/eabe2116. [PMID: 33523931 PMCID: PMC7817106 DOI: 10.1126/sciadv.abe2116] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/07/2020] [Indexed: 05/09/2023]
Abstract
Reversible modification of proteins with linkage-specific ubiquitin chains is critical for intracellular signaling. Information on physiological roles and underlying mechanisms of particular ubiquitin linkages during human development are limited. Here, relying on genomic constraint scores, we identify 10 patients with multiple congenital anomalies caused by hemizygous variants in OTUD5, encoding a K48/K63 linkage-specific deubiquitylase. By studying these mutations, we find that OTUD5 controls neuroectodermal differentiation through cleaving K48-linked ubiquitin chains to counteract degradation of select chromatin regulators (e.g., ARID1A/B, histone deacetylase 2, and HCF1), mutations of which underlie diseases that exhibit phenotypic overlap with OTUD5 patients. Loss of OTUD5 during differentiation leads to less accessible chromatin at neuroectodermal enhancers and aberrant gene expression. Our study describes a previously unidentified disorder we name LINKED (LINKage-specific deubiquitylation deficiency-induced Embryonic Defects) syndrome and reveals linkage-specific ubiquitin cleavage from chromatin remodelers as an essential signaling mode that coordinates chromatin remodeling during embryogenesis.
Collapse
Affiliation(s)
- David B Beck
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohammed A Basar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anthony J Asmar
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joyce J Thompson
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hirotsugu Oda
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniela T Uehara
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Inga Talvik
- Department of Neurology and Rehabilitation, Tallinn Children's Hospital, Tallinn, Estonia
| | - Precilla D'Souza
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joann Bodurtha
- Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Kristin W Barañano
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Raymond Wang
- Division of Metabolic Disorders, CHOC Children's Specialists, Orange, CA 92868, USA
- Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA 92967, USA
| | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Tomoko Tamada
- Department of Pediatrics, Hiroshima Prefectural Rehabilitation Center, Hiroshima, Japan
| | - Yutaka Nishimura
- Department of General Perinatology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University, Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Nagano, Japan
| | - Ryan Dale
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ellen Macnamara
- Undiagnosed Diseases Program, The Common Fund, Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Magdalena Walkiewicz
- National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, Tartu University Hospital, Tartu, Estonia
- Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Cynthia J Tifft
- Office of the Clinical Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Undiagnosed Diseases Program, The Common Fund, Office of the Director, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivona Aksentijevich
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel L Kastner
- Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Achim Werner
- Stem Cell Biochemistry Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
7
|
Panova AV, Bogomazova AN, Lagarkova MA, Kiselev SL. Methylation of the Human AR Locus Does Not Correlate with the Presence of Inactivated X Chromosome in Induced Pluripotent Stem Cells. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542002009x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Further delineation of the phenotype of PAK3-associated x-linked intellectual disability: Identification of a novel missense mutation and review of literature. Eur J Med Genet 2019; 63:103800. [PMID: 31678216 DOI: 10.1016/j.ejmg.2019.103800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 10/08/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
9
|
Copy number variation analysis in 83 children with early-onset developmental and epileptic encephalopathy after targeted resequencing of a 109-epilepsy gene panel. J Hum Genet 2019; 64:1097-1106. [DOI: 10.1038/s10038-019-0661-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/23/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022]
|
10
|
Sheikh TI, Harripaul R, Ayub M, Vincent JB. MeCP2 AT-Hook1 mutations in patients with intellectual disability and/or schizophrenia disrupt DNA binding and chromatin compaction in vitro. Hum Mutat 2018; 39:717-728. [DOI: 10.1002/humu.23409] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 02/07/2018] [Indexed: 01/29/2023]
Affiliation(s)
- Taimoor I. Sheikh
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
| | - Ricardo Harripaul
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
| | - Muhammad Ayub
- Lahore Institute of Research & Development; Lahore Pakistan
- Department of Psychiatry; Queen's University; Kingston Ontario Canada
| | - John B. Vincent
- Molecular Neuropsychiatry & Development (MiND) Lab; Campbell Family Mental Health Research Institute; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
11
|
Yoshida S, Nakanishi C, Okada H, Mori M, Yokawa J, Yoshimuta T, Ohta K, Konno T, Fujino N, Kawashiri MA, Yachie A, Yamagishi M, Hayashi K. Characteristics of induced pluripotent stem cells from clinically divergent female monozygotic twins with Danon disease. J Mol Cell Cardiol 2018; 114:234-242. [DOI: 10.1016/j.yjmcc.2017.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/04/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
|
12
|
Niethamer TK, Larson AR, O'Neill AK, Bershteyn M, Hsiao EC, Klein OD, Pomerantz JH, Bush JO. EPHRIN-B1 Mosaicism Drives Cell Segregation in Craniofrontonasal Syndrome hiPSC-Derived Neuroepithelial Cells. Stem Cell Reports 2017; 8:529-537. [PMID: 28238796 PMCID: PMC5355632 DOI: 10.1016/j.stemcr.2017.01.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 11/05/2022] Open
Abstract
Although human induced pluripotent stem cells (hiPSCs) hold great potential for the study of human diseases affecting disparate cell types, they have been underutilized in seeking mechanistic insights into the pathogenesis of congenital craniofacial disorders. Craniofrontonasal syndrome (CFNS) is a rare X-linked disorder caused by mutations in EFNB1 and characterized by craniofacial, skeletal, and neurological anomalies. Heterozygous females are more severely affected than hemizygous males, a phenomenon termed cellular interference that involves mosaicism for EPHRIN-B1 function. Although the mechanistic basis for cellular interference in CFNS has been hypothesized to involve Eph/ephrin-mediated cell segregation, no direct evidence for this has been demonstrated. Here, by generating hiPSCs from CFNS patients, we demonstrate that mosaicism for EPHRIN-B1 expression induced by random X inactivation in heterozygous females results in robust cell segregation in human neuroepithelial cells, thus supplying experimental evidence that Eph/ephrin-mediated cell segregation is relevant to pathogenesis in human CFNS patients. A novel iPSC line can effectively model a craniofacial condition Eph/ephrin-mediated cell segregation underlies CFNS Cell segregation occurs in CFNS neuroepithelial progenitor cells Neuroepithelial progenitors are a possible cell of origin for CFNS dysmorphogenesis
Collapse
Affiliation(s)
- Terren K Niethamer
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Andrew R Larson
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Audrey K O'Neill
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Marina Bershteyn
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Edward C Hsiao
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ophir D Klein
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jason H Pomerantz
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Orofacial Sciences, University of California, San Francisco, San Francisco, CA 94143, USA; Division of Plastic and Reconstructive Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Baird A, Barsby T, Guest DJ. Derivation of Canine Induced Pluripotent Stem Cells. Reprod Domest Anim 2015; 50:669-76. [PMID: 26074059 DOI: 10.1111/rda.12562] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/23/2015] [Indexed: 12/31/2022]
Abstract
Dogs and humans have many inherited genetic diseases in common and conditions that are increasingly prevalent in humans also occur naturally in dogs. The use of dogs for the experimental and clinical testing of stem cell and regenerative medicine products would benefit canine health and welfare and provide relevant animal models for the translation of therapies to the human field. Induced pluripotent stem cells (iPSCs) have the capacity to turn into all cells of the body and therefore have the potential to provide cells for therapeutic use and for disease modelling. The objective of this study was to derive and characterize iPSCs from karyotypically abnormal adult canine cells. Aneuploid adipose-derived mesenchymal stromal cells (AdMSCs) from an adult female Weimeraner were re-programmed into iPSCs via overexpression of four human pluripotency factors (Oct 4, Sox2, Klf4 and c-myc) using retroviral vectors. The iPSCs showed similarity to human ESCs with regard to morphology, pluripotency marker expression and the ability to differentiate into derivatives of all three germ layers in vitro (endoderm, ectoderm and mesoderm). The iPSCs also demonstrated silencing of the viral transgenes and re-activation of the silent X chromosome, suggesting full reprogramming had occurred. The levels of aneuploidy observed in the AdMSCs were maintained in the iPSCs. This finding demonstrates the potential for generating canine induced pluripotent stem cells for use as disease models in addition to regenerative medicine and pharmaceutical testing.
Collapse
Affiliation(s)
- Aeg Baird
- Animal Health Trust, Kentford, Newmarket, Suffolk, UK
| | - T Barsby
- Animal Health Trust, Kentford, Newmarket, Suffolk, UK
| | - D J Guest
- Animal Health Trust, Kentford, Newmarket, Suffolk, UK
| |
Collapse
|
14
|
Avitzour M, Mor-Shaked H, Yanovsky-Dagan S, Aharoni S, Altarescu G, Renbaum P, Eldar-Geva T, Schonberger O, Levy-Lahad E, Epsztejn-Litman S, Eiges R. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells. Stem Cell Reports 2014; 3:699-706. [PMID: 25418717 PMCID: PMC4235235 DOI: 10.1016/j.stemcr.2014.09.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5′-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases. FMR1 epigenetic gene silencing commonly occurs in the undifferentiated FXS cells FXS HESCs are heterogeneous for repeat size and methylation levels This study underscores the importance of multiple HESC lines in disease modeling
Collapse
Affiliation(s)
- Michal Avitzour
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Hagar Mor-Shaked
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Shira Yanovsky-Dagan
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Shira Aharoni
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Gheona Altarescu
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Paul Renbaum
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Talia Eldar-Geva
- IVF Unit, Department of Obstetrics and Gynecology, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Oshrat Schonberger
- IVF Unit, Department of Obstetrics and Gynecology, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Ephrat Levy-Lahad
- Zohar PGD Lab, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Silvina Epsztejn-Litman
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel
| | - Rachel Eiges
- Stem Cell Research Laboratory, Medical Genetics Institute, Shaare Zedek Medical Center affiliated with the Hebrew University School of Medicine, Jerusalem 91031, Israel.
| |
Collapse
|
15
|
Hu W, Wang T, Xu J, Li H. MicroRNA mediates DNA methylation of target genes. Biochem Biophys Res Commun 2014; 444:676-81. [PMID: 24508262 DOI: 10.1016/j.bbrc.2014.01.171] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
Abstract
Small RNAs represented by microRNA (miRNA) plays important roles in plant development and responds to biotic and abiotic stresses. Previous studies have placed special emphasis on gene-repression mediated by miRNA. In this work, the DNA methylation pattern of microRNA genes (MIRs) was interrogated. Full-length cDNA and EST were used to confirm the entity of pri-miRNA. In parallel, miRNA in 24 nucleotides (nt) was pooled to detect chromatin modification effect by using bisulfite sequencing data. 97 MIRs were supported by full-length cDNA and 30 more were hit by EST. Notably, methylation levels of conserved MIRs were significantly lower than the non-conserved at all contexts (CG, CHG, and CHH). Additionally, a substantial part of 24-nt miRNA was able to induce target site methylation, providing a broader perspective for researchers.
Collapse
Affiliation(s)
- Wangxiong Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang-California International Nanosystems Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Tingzhang Wang
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianhong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hongzhi Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
16
|
Tao H, Shi KH, Yang JJ, Huang C, Liu LP, Li J. Epigenetic regulation of cardiac fibrosis. Cell Signal 2013; 25:1932-8. [PMID: 23602934 DOI: 10.1016/j.cellsig.2013.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 02/05/2023]
Abstract
Cardiac fibrosis is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal function. In recent years, despite the underlying mechanisms of cardiac fibrosis are still unknown, numerous studies suggest that epigenetic modifications impact on the development of cardiac fibrosis. Epigenetic modifications control cell proliferation, differentiation, migration, and so on. Epigenetic modifications contain three main processes: DNA methylation, histone modifications, and silencing by microRNAs. We here outline the recent work pertaining to epigenetic changes in cardiac fibrosis. This review focuses on the epigenetic regulation of cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Induced pluripotent stem cells (iPSCs) hold great promise for autologous cell therapies, but significant roadblocks remain to translating iPSCs to the bedside. For example, concerns about the presumed autologous transplantation potential of iPSCs have been raised by a recent paper demonstrating that iPSC-derived teratomas were rejected by syngeneic hosts. Additionally, the reprogramming process can alter genomic and epigenomic states, so a key goal at this point is to determine the clinical relevance of these changes and minimize those that prove to be deleterious. Finally, thus far few studies have examined the efficacy and tumorigenicity of iPSCs in clinically relevant transplantation scenarios, an essential requirement for the FDA. We discuss potential solutions to these hurdles to provide a roadmap for iPSCs to "jump the dish" and become useful therapies.
Collapse
Affiliation(s)
- Bonnie Barrilleaux
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | | |
Collapse
|