1
|
Abbaszadeh F, Javadpour P, Mousavi Nasab MM, Jorjani M. The Role of Vitamins in Spinal Cord Injury: Mechanisms and Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:4293391. [PMID: 38938696 PMCID: PMC11211004 DOI: 10.1155/2024/4293391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 06/29/2024]
Abstract
Spinal cord injury (SCI) is a common neurological disease worldwide, often resulting in a substantial decrease in quality of life, disability, and in severe cases, even death. Unfortunately, there is currently no effective treatment for this disease. Nevertheless, current basic and clinical evidence suggests that vitamins, with their antioxidant properties and biological functions, may play a valuable role in improving the quality of life for individuals with SCI. They can promote overall health and facilitate the healing process. In this review, we discuss the mechanisms and therapeutic potential of vitamins in the treatment of SCI.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pegah Javadpour
- Neuroscience Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoumeh Jorjani
- Neurobiology Research CenterShahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of PharmacologySchool of MedicineShahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother 2023; 157:114011. [PMID: 36410123 DOI: 10.1016/j.biopha.2022.114011] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.
Collapse
|
3
|
Li Z, Zhao T, Ding J, Gu H, Wang Q, Wang Y, Zhang D, Gao C. A reactive oxygen species-responsive hydrogel encapsulated with bone marrow derived stem cells promotes repair and regeneration of spinal cord injury. Bioact Mater 2023; 19:550-568. [PMID: 35600969 PMCID: PMC9108756 DOI: 10.1016/j.bioactmat.2022.04.029] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 10/29/2022] Open
Abstract
Spinal cord injury (SCI) is an overwhelming and incurable disabling event accompanied by complicated inflammation-related pathological processes, such as excessive reactive oxygen species (ROS) produced by the infiltrated inflammatory immune cells and released to the extracellular microenvironment, leading to the widespread apoptosis of the neuron cells, glial and oligodendroctyes. In this study, a thioketal-containing and ROS-scavenging hydrogel was prepared for encapsulation of the bone marrow derived mesenchymal stem cells (BMSCs), which promoted the neurogenesis and axon regeneration by scavenging the overproduced ROS and re-building a regenerative microenvironment. The hydrogel could effectively encapsulate BMSCs, and played a remarkable neuroprotective role in vivo by reducing the production of endogenous ROS, attenuating ROS-mediated oxidative damage and downregulating the inflammatory cytokines such as interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), resulting in a reduced cell apoptosis in the spinal cord tissue. The BMSCs-encapsulated ROS-scavenging hydrogel also reduced the scar formation, and improved the neurogenesis of the spinal cord tissue, and thus distinctly enhanced the motor functional recovery of SCI rats. Our work provides a combinational strategy against ROS-mediated oxidative stress, with potential applications not only in SCI, but also in other central nervous system diseases with similar pathological conditions.
Collapse
|
4
|
Szymoniuk M, Litak J, Sakwa L, Dryla A, Zezuliński W, Czyżewski W, Kamieniak P, Blicharski T. Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells 2022; 12:120. [PMID: 36611914 PMCID: PMC9818156 DOI: 10.3390/cells12010120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal Cord Injury (SCI) is a common neurological disorder with devastating psychical and psychosocial sequelae. The majority of patients after SCI suffer from permanent disability caused by motor dysfunction, impaired sensation, neuropathic pain, spasticity as well as urinary complications, and a small number of patients experience a complete recovery. Current standard treatment modalities of the SCI aim to prevent secondary injury and provide limited recovery of lost neurological functions. Stem Cell Therapy (SCT) represents an emerging treatment approach using the differentiation, paracrine, and self-renewal capabilities of stem cells to regenerate the injured spinal cord. To date, multipotent stem cells including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) represent the most investigated types of stem cells for the treatment of SCI in preclinical and clinical studies. The microenvironment of SCI has a significant impact on the survival, proliferation, and differentiation of transplanted stem cells. Therefore, a deep understanding of the pathophysiology of SCI and molecular mechanisms through which stem cells act may help improve the treatment efficacy of SCT and find new therapeutic approaches such as stem-cell-derived exosomes, gene-modified stem cells, scaffolds, and nanomaterials. In this literature review, the pathogenesis of SCI and molecular mechanisms of action of multipotent stem cells including MSCs, NSCs, and HSCs are comprehensively described. Moreover, the clinical efficacy of multipotent stem cells in SCI treatment, an optimal protocol of stem cell administration, and recent therapeutic approaches based on or combined with SCT are also discussed.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Aleksandra Dryla
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Zezuliński
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopaedics, Medical University in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
5
|
Jiang K, Sun Y, Chen X. Mechanism Underlying Acupuncture Therapy in Spinal Cord Injury: A Narrative Overview of Preclinical Studies. Front Pharmacol 2022; 13:875103. [PMID: 35462893 PMCID: PMC9021644 DOI: 10.3389/fphar.2022.875103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/14/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal cord injury (SCI) results from various pathogenic factors that destroy the normal structure and function of the spinal cord, subsequently causing sensory, motor, and autonomic nerve dysfunction. SCI is one of the most common causes of disability and death globally. It leads to severe physical and mental injury to patients and causes a substantial economic burden on families and the society. The pathological changes and underlying mechanisms within SCI involve oxidative stress, apoptosis, inflammation, etc. As a traditional therapy, acupuncture has a positive effect promoting the recovery of SCI. Acupuncture-induced neuroprotection includes several mechanisms such as reducing oxidative stress, inhibiting the inflammatory response and neuronal apoptosis, alleviating glial scar formation, promoting neural stem cell differentiation, and improving microcirculation within the injured area. Therefore, the recent studies exploring the mechanism of acupuncture therapy in SCI will help provide a theoretical basis for applying acupuncture and seeking a better treatment target and acupuncture approach for SCI patients.
Collapse
Affiliation(s)
- Kunpeng Jiang
- Department of Hand and Foot Surgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Yulin Sun
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xinle Chen
- Department of Neurosurgery, Zhejiang Rongjun Hospital, Jiaxing, China
- *Correspondence: Xinle Chen,
| |
Collapse
|
6
|
Zeng YS, Ding Y, Xu HY, Zeng X, Lai BQ, Li G, Ma YH. Electro-acupuncture and its combination with adult stem cell transplantation for spinal cord injury treatment: A summary of current laboratory findings and a review of literature. CNS Neurosci Ther 2022; 28:635-647. [PMID: 35174644 PMCID: PMC8981476 DOI: 10.1111/cns.13813] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
The incidence and disability rate of spinal cord injury (SCI) worldwide are high, imposing a heavy burden on patients. Considerable research efforts have been directed toward identifying new strategies to effectively treat SCI. Governor Vessel electro‐acupuncture (GV‐EA), used in traditional Chinese medicine, combines acupuncture with modern electrical stimulation. It has been shown to improve the microenvironment of injured spinal cord (SC) by increasing levels of endogenous neurotrophic factors and reducing inflammation, thereby protecting injured neurons and promoting myelination. In addition, axons extending from transplanted stem cell‐derived neurons can potentially bridge the two severed ends of tissues in a transected SC to rebuild neuronal circuits and restore motor and sensory functions. However, every single treatment approach to severe SCI has proven unsatisfactory. Combining different treatments—for example, electro‐acupuncture (EA) with adult stem cell transplantation—appears to be a more promising strategy. In this review, we have summarized the recent progress over the past two decades by our team especially in the use of GV‐EA for the repair of SCI. By this strategy, we have shown that EA can stimulate the nerve endings of the meningeal branch. This would elicit the dorsal root ganglion neurons to secrete excess amounts of calcitonin gene‐related peptide centrally in the SC. The neuropeptide then activates the local cells to secrete neurotrophin‐3 (NT‐3), which mediates the survival and differentiation of donor stem cells overexpressing the NT‐3 receptor, at the injury/graft site of the SC. Increased local production of NT‐3 facilitates reconstruction of host neural tissue such as nerve fiber regeneration and myelination. All this events in sequence would ultimately strengthen the cortical motor‐evoked potentials and restore the motor function of paralyzed limbs. The information presented herein provides a basis for future studies on the clinical application of GV‐EA and adult stem cell transplantation for the treatment of SCI.
Collapse
Affiliation(s)
- Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hao-Yu Xu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuan-Huan Ma
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, Guangdong Province, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Ma T, Wu J, Mu J, Gao J. Biomaterials reinforced MSCs transplantation for spinal cord injury repair. Asian J Pharm Sci 2021; 17:4-19. [PMID: 35261642 PMCID: PMC8888140 DOI: 10.1016/j.ajps.2021.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/08/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Due to the complex pathophysiological mechanism, spinal cord injury (SCI) has become one of the most intractable central nervous system (CNS) diseases to therapy. Stem cell transplantation, mesenchymal stem cells (MSCs) particularly, appeals to more and more attention along with the encouraging therapeutic results for the functional regeneration of SCI. However, traditional cell transplantation strategies have some limitations, including the unsatisfying survival rate of MSCs and their random diffusion from the injection site to ambient tissues. The application of biomaterials in tissue engineering provides a new horizon. Biomaterials can not only confine MSCs in the injured lesions with higher cell viability, but also promote their therapeutic efficacy. This review summarizes the strategies and advantages of biomaterials reinforced MSCs transplantation to treat SCI in recent years, which are clarified in the light of various therapeutic effects in pathophysiological aspects of SCI.
Collapse
Affiliation(s)
- Teng Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahe Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Jiafu Mu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Corresponding author.
| |
Collapse
|
8
|
Xu H, Yang Y, Deng QW, Zhang BB, Ruan JW, Jin H, Wang JH, Ren J, Jiang B, Sun JH, Zeng YS, Ding Y. Governor Vessel Electro-Acupuncture Promotes the Intrinsic Growth Ability of Spinal Neurons through Activating Calcitonin Gene-Related Peptide/α-Calcium/Calmodulin-Dependent Protein Kinase/Neurotrophin-3 Pathway after Spinal Cord Injury. J Neurotrauma 2020; 38:734-745. [PMID: 33121345 DOI: 10.1089/neu.2020.7155] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) invariably results in neuronal death and failure of axonal regeneration. This is attributed mainly to the hostile microenvironment and the poor intrinsic regrowth capacity of the injured spinal neurons. We have reported previously that electro-acupuncture on Governor Vessel acupoints (GV-EA) can promote neuronal survival and axonal regeneration of injured spinal cord. However, the underlying mechanism for this has remained uncertain. The present study aimed to explore the neural afferent pathway of GV-EA stimulation and the possible mechanism by which GV-EA can activate the intrinsic growth ability of injured spinal neurons. By cholera toxin B (CTB) retrograde labeling, immunostaining, and enzyme-linked immunosorbent assay (ELISA), we showed here that GV-EA could stimulate the spinal nerve branches of the dorsal root ganglion cells. This would then increase the release of calcitonin gene-related peptide (CGRP) from the afferent terminals in the spinal cord. It is of note that the effect was abrogated after dorsal rhizotomy. Additionally, both in vivo and in vitro results showed that CGRP would act on the post-synaptic spinal cord neurons and triggered the synthesis and secretion of neurotrophin-3 (NT-3) by activating the calcitonin gene-related peptide (CGRP)/ receptor activity-modifying protein (RAMP)1/calcium/calmodulin-dependent protein kinase (αCaMKII) pathway. Remarkably, the observed effect was prevented by the dorsal rhizotomy and the blockers of the CGRP/RAMP1/αCaMKII pathway. More importantly, increase in NT-3 promoted the survival, axonal regrowth, and synaptic maintenance of spinal cord neurons in the injured spinal cord. Therefore, it is concluded that increase in NT-3 production is one of the mechanisms by which GV-EA can activate the intrinsic growth ability of spinal neurons after SCI. The experimental results have reinforced the theoretical basis of GV-EA for its clinical efficacy in patients with SCI.
Collapse
Affiliation(s)
- Haoyu Xu
- Department of Histology and Embryology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Wen Deng
- Department of Histology and Embryology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bao-Bao Zhang
- Department of Histology and Embryology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jing-Wen Ruan
- Department of Acupuncture, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Jin
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun-Hua Wang
- Department of Histology and Embryology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiale Ren
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jia-Hui Sun
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuan-Shan Zeng
- Department of Histology and Embryology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ying Ding
- Department of Histology and Embryology, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, the 1st Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Li J, Bai X, Guan X, Yuan H, Xu X. Treatment of Optic Canal Decompression Combined with Umbilical Cord Mesenchymal Stem (Stromal) Cells for Indirect Traumatic Optic Neuropathy: A Phase 1 Clinical Trial. Ophthalmic Res 2020; 64:398-404. [PMID: 33091914 DOI: 10.1159/000512469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE This study was aimed to investigate the safety and feasibility of umbilical cord-derived mesenchymal stem cell (MSC) transplantation in patients with traumatic optic neuropathy (TON). METHODS This is a single-center, prospective, open-labeled phase 1 study that enrolled 20 patients with TON. Patients consecutively underwent either optic canal decompression combined with MSC local implantation treatment (group 1) or only optic canal decompression (group 2). Patients were evaluated on the first day, seventh day, first month, third month, and sixth month postoperatively. Adverse events, such as fever, urticarial lesions, nasal infection, and death, were recorded at each visit. The primary outcome was changes in best-corrected visual acuity. The secondary outcomes were changes in color vision, relative afferent pupillary defect, and flash visual evoked potential. RESULTS All 20 patients completed the 6-month follow-up. None of them had any systemic or ocular complications. The change in best-corrected visual acuity at follow-up was not significantly different between group 1 and group 2 (p > 0.05); however, group 1 showed better visual outcome than group 2. Both groups showed significant improvements in vision compared with the baseline (p < 0.05); however, there were no statistically significant differences between the groups (p > 0.05). In addition, no adverse events related to local transplantation were observed in the patients. CONCLUSIONS A single, local MSC transplantation in the optic nerve is safe for patients with TON.
Collapse
Affiliation(s)
- Jia Li
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xu Bai
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiaoyue Guan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongfeng Yuan
- Department of Ophthalmology, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Xu
- Department of Stem Cell and Regenerative Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China,
| |
Collapse
|
10
|
Yang Z, Zheng C, Zhang F, Lin B, Cao M, Tian X, Zhang J, Zhang X, Shen J. Magnetic resonance imaging of enhanced nerve repair with mesenchymal stem cells combined with microenvironment immunomodulation in neurotmesis. Muscle Nerve 2020; 61:815-825. [PMID: 32170960 DOI: 10.1002/mus.26862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/04/2020] [Accepted: 03/11/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The immuno-microenvironment of injured nerves adversely affects mesenchymal stem cell (MSC) therapy for neurotmesis. Magnetic resonance imaging (MRI) can be used noninvasively to monitor nerve degeneration and regeneration. The aim of this study was to investigate nerve repair after MSC transplantation combined with microenvironment immunomodulation in neurotmesis by using multiparametric MRI. METHODS Rats with sciatic nerve transection and surgical coaptation were treated with MSCs combined with immunomodulation or MSCs alone. Serial multiparametric MRI examinations were performed over an 8-week period after surgery. RESULTS Nerves treated with MSCs combined with immunomodulation showed better functional recovery, rapid recovery of nerve T2, fractional anisotropy and radial diffusivity values, and more rapid restoration of the fiber tracks than nerves treated with MSCs alone. DISCUSSION Transplantation of MSCs in combination with immunomodulation can exert a synergistic repair effect on neurotmesis, which can be monitored by multiparametric MRI.
Collapse
Affiliation(s)
- Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chushan Zheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Binglin Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Minghui Cao
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuwei Tian
- Department of Radiology, The First People's Hospital of Kashgar, Kashgar, China
| | - Jingzhong Zhang
- The Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiao Zhang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
11
|
Li X, Zhan J, Hou Y, Hou Y, Chen S, Luo D, Luan J, Wang L, Lin D. Coenzyme Q10 Regulation of Apoptosis and Oxidative Stress in H 2O 2 Induced BMSC Death by Modulating the Nrf-2/NQO-1 Signaling Pathway and Its Application in a Model of Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6493081. [PMID: 31915512 PMCID: PMC6930770 DOI: 10.1155/2019/6493081] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/16/2019] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) has always been considered to be a devastating problem that results in catastrophic dysfunction, high disability rate, low mortality rate, and huge cost for the patient. Stem cell-based therapy, especially using bone marrow mesenchymal stem cells (BMSCs), is a promising strategy for the treatment of SCI. However, SCI results in low rates of cell survival and a poor microenvironment, which limits the therapeutic efficiency of BMSC transplantation. Coenzyme Q10 (CoQ10) is known as a powerful antioxidant, which inhibits lipid peroxidation and scavenges free radicals, and its combined effect with BMSC transplantation has been shown to have a powerful impact on protecting the vitality of cells, as well as antioxidant and antiapoptotic compounds in SCI. Therefore, we aimed to evaluate whether CoQ10 could decrease oxidative stress against the apoptosis of BMSCs in vitro and explored its molecular mechanisms. Furthermore, we investigated the protective effect of CoQ10 combined with BMSCs transplanted into a SCI model to verify its ability. Our results demonstrate that CoQ10 treatment significantly decreases the expression of the proapoptotic proteins Bax and Caspase-3, as shown through TUNEL-positive staining and the products of oxidative stress (ROS), while increasing the expression of the antiapoptotic protein Bcl-2 and the products of antioxidation, such as glutathione (GSH), against apoptosis and oxidative stress, in a H2O2-induced model. We also identified consistent results from the CoQ10 treatment of BMSCs transplanted into SCI rats in vivo. Moreover, the Nrf-2 signaling pathway was also investigated in order to detail its molecular mechanism, and the results show that it plays an important role, both in vitro and in vivo. Thus, CoQ10 exerts an antiapoptotic and antioxidant effect, as well as improves the microenvironment in vitro and in vivo. It may also protect BMSCs from oxidative stress and enhance their therapeutic efficiency when transplanted for SCI treatment.
Collapse
Affiliation(s)
- Xing Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiheng Zhan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yu Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yonghui Hou
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shudong Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Dan Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jiyao Luan
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Le Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dingkun Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, Guangdong 510120, China
- Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou 510405, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
12
|
Xing H, Yin H, Sun C, Ren X, Tian Y, Yu M, Jiang T. Preparation of an acellular spinal cord scaffold to improve its biological properties. Mol Med Rep 2019; 20:1075-1084. [PMID: 31173271 PMCID: PMC6625434 DOI: 10.3892/mmr.2019.10364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 04/30/2019] [Indexed: 11/14/2022] Open
Abstract
In recent years, acellular spinal cord scaffolds have been extensively studied in tissue engineering. Notably, acellular spinal cord scaffolds may be used to treat spinal cord injury; however, the method of preparation can result in low efficiency and may affect the biological properties of cells. This study aimed to use EDC crosslinking, combined with chemical extraction for tissue decellularization, in order to improve the efficiency of acellular scaffolds. To make the improved stent available for the clinical treatment of spinal cord injury, it is necessary to study its immunogenicity. Therefore, this study also focused on the adherence of rat bone marrow mesenchymal stem cells to scaffolds, and their differentiation into neuron-like cells in the presence of suitable trophic factors. The results revealed that EDC crosslinking combined with chemical extraction methods may significantly improve the efficiency of acellular scaffolds, and may also confer better biological characteristics, including improved immunogenicity. Notably, it was able to promote adhesion of rat bone marrow mesenchymal stem cells and their differentiation into neuron-like cells. These results suggested that the improved preparation method may be promising for the construction of multifunctional acellular scaffolds for the treatment of spinal cord injury.
Collapse
Affiliation(s)
- Hui Xing
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Hong Yin
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Chao Sun
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Xianjun Ren
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Yongyang Tian
- Emergency Department of University‑Town Hospital of Chongqing Medical University, Chongqing 401331, P.R. China
| | - Miao Yu
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Tao Jiang
- Department of Orthopedics, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
13
|
Yu Z, Xu N, Zhang N, Xiong Y, Wang Z, Liang S, Zhao D, Huang F, Zhang C. Repair of Peripheral Nerve Sensory Impairments via the Transplantation of Bone Marrow Neural Tissue-Committed Stem Cell-Derived Sensory Neurons. Cell Mol Neurobiol 2019; 39:341-353. [PMID: 30684112 DOI: 10.1007/s10571-019-00650-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/04/2019] [Indexed: 01/20/2023]
Abstract
The present study aimed to investigate the efficacy of transplantation of bone marrow neural tissue-committed stem cell-derived sensory neuron-like cells for the repair of peripheral nerve sensory impairments in rats. Bone marrow was isolated and cultured to obtain the neural tissue-committed stem cells (NTCSCs), and the differentiation of these cells into sensory neuron-like cells was induced. Bone marrow mesenchymal stem cells (BMSCs), bone marrow NTCSCs, and bone marrow NTCSC-derived sensory neurons (NTCSC-SNs) were transplanted by microinjection into the L4 and L5 dorsal root ganglions (DRGs) in an animal model of sensory defect. On the 2nd, 4th, 8th, and 12th week after the transplantation, the effects of the three types of stem cells on the repair of the sensory functional defect were analyzed via behavioral observation, sensory function evaluation, electrophysiological examination of the sciatic nerve, and morphological observation of the DRGs. The results revealed that the transplanted BMSCs, NTCSCs, and NTCSC-SNs were all able to repair the sensory nerves. In addition, the effect of the NTCSC-SNs was significantly better than that of the other two types of stem cells. The general posture and gait of the animals in the sensory defect model exhibited evident improvement over time. Plantar temperature sensitivity and pain sensitivity gradually recovered, and the sensation latency was reduced, with faster sensory nerve conduction velocity. Transplantation of NTCSC-SNs can improve the repair of peripheral nerve sensory defects in rats.
Collapse
Affiliation(s)
- Zhenhai Yu
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Department of Human Anatomy, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, People's Republic of China
| | - Ning Xu
- Department of Gastroenterology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Naili Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yanlian Xiong
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Zhiqiang Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Shaohua Liang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Dongmei Zhao
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Fei Huang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Chuansen Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Department of Human Anatomy, College of Basic Medical Sciences, Second Military Medical University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
14
|
Li G, Che MT, Zeng X, Qiu XC, Feng B, Lai BQ, Shen HY, Ling EA, Zeng YS. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res A 2018; 106:2158-2170. [PMID: 29577604 PMCID: PMC6055812 DOI: 10.1002/jbm.a.36414] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 01/12/2023]
Abstract
Spinal cord injury (SCI) normally results in cell death, scarring, cavitation, inhibitory molecules release, etc., which are regarded as a huge obstacle to reconnect the injured neuronal circuits because of the lack of effective stimulus. In this study, a functional gelatin sponge scaffold was used to inhibit local inflammation, enhance nerve fiber regeneration, and improve neural conduction in the canine. This scaffold had good porosity and modified with neurotrophin‐3 (NT‐3)/fibroin complex, which showed sustained release in vitro. After the scaffold was transplanted into canine spinal cord hemisection model, hindlimb movement, and neural conduction were improved evidently. Migrating host cells, newly formed neurons with associated synaptic structures together with functional blood vessels with intact endothelium in the regenerating tissue were identified. Taken together, the results demonstrated that using bioactive scaffold could establish effective microenvironment stimuli for endogenous regeneration, providing a potential and practical strategy for treatment of spinal cord injury. © 2018 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2158‐2170, 2018.
Collapse
Affiliation(s)
- Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Hui-Yong Shen
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
15
|
Biomaterial Scaffolds in Regenerative Therapy of the Central Nervous System. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7848901. [PMID: 29805977 PMCID: PMC5899851 DOI: 10.1155/2018/7848901] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/18/2018] [Accepted: 02/21/2018] [Indexed: 02/08/2023]
Abstract
The central nervous system (CNS) is the most important section of the nervous system as it regulates the function of various organs. Injury to the CNS causes impairment of neurological functions in corresponding sites and further leads to long-term patient disability. CNS regeneration is difficult because of its poor response to treatment and, to date, no effective therapies have been found to rectify CNS injuries. Biomaterial scaffolds have been applied with promising results in regeneration medicine. They also show great potential in CNS regeneration for tissue repair and functional recovery. Biomaterial scaffolds are applied in CNS regeneration predominantly as hydrogels and biodegradable scaffolds. They can act as cellular supportive scaffolds to facilitate cell infiltration and proliferation. They can also be combined with cell therapy to repair CNS injury. This review discusses the categories and progression of the biomaterial scaffolds that are applied in CNS regeneration.
Collapse
|
16
|
Cai W, Shen WD. Anti-Apoptotic Mechanisms of Acupuncture in Neurological Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:515-535. [PMID: 29595076 DOI: 10.1142/s0192415x1850026x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis, known as programmed cell death, plays a significant role in the pathogenesis of neurological diseases. Most of these diseases can be obviously alleviated by means of acupuncture treatment. Current research studies have shown that the efficacy of acupuncture to these medical conditions is closely associated with the anti-apoptotic potentials. Mainly based on the acupuncture's anti-apoptotic efficacy in prevalent neurological disorders, including cerebral ischemia-reperfusion injury, Alzheimer's disease, depression or stress related-modes, spinal cord injuries, etc., this review comes to a conclusion that the anti-apoptotic effect of acupuncture treatment for neurological diseases, evidently reflected through Bcl-2, Bax or caspase expression change, results from regulating mitochondrial or autophagic dysfunction as well as reducing oxidative stress and inflammation. The possible mechanisms of acupuncture's anti-apoptotic effect are associated with a series of downstream signaling pathways and the up-regulated expression of neurotrophic factors. It is of great importance to illuminate the exact mechanisms of acupuncture treatment for neurological dysfunctions.
Collapse
Affiliation(s)
- Wa Cai
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wei-Dong Shen
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
17
|
Fan WL, Liu P, Wang G, Pu JG, Xue X, Zhao JH. Transplantation of hypoxic preconditioned neural stem cells benefits functional recovery via enhancing neurotrophic secretion after spinal cord injury in rats. J Cell Biochem 2018; 119:4339-4351. [PMID: 28884834 DOI: 10.1002/jcb.26397] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/30/2017] [Indexed: 12/25/2022]
Abstract
Spinal cord injury (SCI) is a debilitating, costly, and common pathological condition that affects the function of central nervous system (CNS). To date, there are few promising therapeutic strategies available for SCI. To look for a suitable therapeutic strategy, we have developed a sublethal hypoxic preconditioning procedure using Fluorescence-activated cell sorting (FACS) analysis, LDH releasing, and cell viability assays in vitro. Meanwhile, we have examined the benefits of neural stem cells (NSCs) transplantation prior to hypoxic preconditioning on functional recovery and potential mechanism via MRI screening, H&E, and Nissl staining, immunofluorescence staining and Elisa assays. Our data showed that transplantation of hypoxic prconditioned NSCs could enhance neuronal survival, especially 5-TH+ and ChAT+ neurons, in the injured spinal cord to reinforce functional benefits. The hypoxia exposure upregulated HIF-1α, neurotrophic and growth factors including neurotrophin-3 (NT-3), glial cell-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in vitro and in vivo. Furthermore, functional recovery, including locomotor and hypersensitivities to mechanical and thermal stimulation assessed via behavioral and sensory tests, improved significantly in rats with engraftment of NSCs after hypoxia exposure from day 14 post-SCI, compared with the control and N-NSCs groups. In short, the approach employed in this study could result in functional recovery via upregulating neurotrophic and growth factors, which implies that hypoxic preconditioning strategy could serve as an effective and feasible strategy for cell-based therapy in the treatment of SCI in rats.
Collapse
Affiliation(s)
- Wei-Li Fan
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Peng Liu
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Guan Wang
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Jun-Gang Pu
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Xin Xue
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| | - Jian-Hua Zhao
- Department of Spinal Surgery, Daping Hospital, Research Institute of Surgery, The Third Military Medical University, Chongqing, China
| |
Collapse
|
18
|
Xiao LY, Wang XR, Yang Y, Yang JW, Cao Y, Ma SM, Li TR, Liu CZ. Applications of Acupuncture Therapy in Modulating Plasticity of Central Nervous System. Neuromodulation 2017; 21:762-776. [PMID: 29111577 DOI: 10.1111/ner.12724] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Acupuncture is widely applied for treatment of various neurological disorders. This manuscript will review the preclinical evidence of acupuncture in mediating neural plasticity, the mechanisms involved. MATERIALS AND METHODS We searched acupuncture, plasticity, and other potential related words at the following sites: PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure (CNKI), and VIP information data base. The following keywords were used: acupuncture, electroacupuncture, plasticity, neural plasticity, neuroplasticity, neurogenesis, neuroblast, stem cell, progenitor cell, BrdU, synapse, synapse structure, synaptogenesis, axon, axon regeneration, synaptic plasticity, LTP, LTD, neurotrophin, neurotrophic factor, BDNF, GDNF, VEGF, bFGF, EGF, NT-3, NT-4, NT-5, p75NTR, neurotransmitter, acetylcholine, norepinephrine, noradrenaline, dopamine, monamine. We assessed the effects of acupuncture on plasticity under pathological conditions in this review. RESULTS Relevant references were reviewed and presented to reflect the effects of acupuncture on neural plasticity. The acquired literatures mainly focused on neurogenesis, alterations of synapses, neurotrophins (NTs), and neurotranimitters. Acupuncture methods mentioned in this article include manual acupuncture and electroacupuncture. CONCLUSIONS The cumulative evidences demonstrated that acupuncture could induce neural plasticity in rodents exposed to cerebral ischemia. Neural plasticity mediated by acupuncture in other neural disorders, such as Alzheimer's disease, Parkinson's disease, and depression, were also investigated and there is evidence of positive role of acupuncture induced plasticity in these disorders as well. Mediation of neural plasticity by acupuncture is likely associated with its modulation on NTs and neurotransmitters. The exact mechanisms underlying acupuncture's effects on neural plasticity remain to be elucidated. Neural plasticity may be the potential bridge between acupuncture and the treatment of various neurological diseases.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Beijing University of Chinese Medicine, Beijing, China.,Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Xue-Rui Wang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Ye Yang
- Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Yang
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Yan Cao
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Si-Ming Ma
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, China
| | - Tian-Ran Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Cun-Zhi Liu
- Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
19
|
Abstract
Spinal cord injury (SCI) represents one of the most complicated and heterogeneous pathological processes of central nervous system (CNS) impairments, which is still beyond functional regeneration. Transplantation of mesenchymal stem cells (MSCs) has been shown to promote the repair of the injured spinal cord tissues in animal models, and therefore, there is much interest in the clinical use of these cells. However, many questions which are essential to improve the therapy effects remain unanswered. For instance, the functional roles and related molecular regulatory mechanisms of MSCs in vivo are not yet completely determined. It is important for transplanted cells to migrate into the injured tissue, to survive and undergo neural differentiation, or to play neural protection roles by various mechanisms after SCI. In this review, we will focus on some of the recent knowledge about the biological behavior and function of MSCs in SCI. Meanwhile, we highlight the function of biomaterials to direct the behavior of MSCs based on our series of work on silk fibroin biomaterials and attempt to emphasize combinational strategies such as tissue engineering for functional improvement of SCI.
Collapse
|
20
|
Li G, Che MT, Zhang K, Qin LN, Zhang YT, Chen RQ, Rong LM, Liu S, Ding Y, Shen HY, Long SM, Wu JL, Ling EA, Zeng YS. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials 2016; 83:233-48. [DOI: 10.1016/j.biomaterials.2015.11.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/10/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
|
21
|
Qiu XC, Jin H, Zhang RY, Ding Y, Zeng X, Lai BQ, Ling EA, Wu JL, Zeng YS. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection. Stem Cell Res Ther 2015; 6:105. [PMID: 26012641 PMCID: PMC4482203 DOI: 10.1186/s13287-015-0100-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 05/18/2015] [Indexed: 12/21/2022] Open
Abstract
Introduction Severe spinal cord injury often causes temporary or permanent damages in strength, sensation, or autonomic functions below the site of the injury. So far, there is still no effective treatment for spinal cord injury. Mesenchymal stem cells (MSCs) have been used to repair injured spinal cord as an effective strategy. However, the low neural differentiation frequency of MSCs has limited its application. The present study attempted to explore whether the grafted MSC-derived neural-like cells in a gelatin sponge (GS) scaffold could maintain neural features or transdifferentiate into myelin-forming cells in the transected spinal cord. Methods We constructed an engineered tissue by co-seeding of MSCs with genetically enhanced expression of neurotrophin-3 (NT-3) and its high-affinity receptor tropomyosin receptor kinase C (TrkC) separately into a three-dimensional GS scaffold to promote the MSCs differentiating into neural-like cells and transplanted it into the gap of a completely transected rat spinal cord. The rats received extensive post-operation care, including cyclosporin A administrated once daily for 2 months. Results MSCs modified genetically could differentiate into neural-like cells in the MN + MT (NT-3-MSCs + TrKC-MSCs) group 14 days after culture in the GS scaffold. However, after the MSC-derived neural-like cells were transplanted into the injury site of spinal cord, some of them appeared to lose the neural phenotypes and instead transdifferentiated into myelin-forming cells at 8 weeks. In the latter, the MSC-derived myelin-forming cells established myelin sheaths associated with the host regenerating axons. And the injured host neurons were rescued, and axon regeneration was induced by grafted MSCs modified genetically. In addition, the cortical motor evoked potential and hindlimb locomotion were significantly ameliorated in the rat spinal cord transected in the MN + MT group compared with the GS and MSC groups. Conclusion Grafted MSC-derived neural-like cells in the GS scaffold can transdifferentiate into myelin-forming cells in the completely transected rat spinal cord. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0100-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Hui Jin
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Rong-Yi Zhang
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Ying Ding
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Bi-Qin Lai
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Jin-Lang Wu
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China. .,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
22
|
Liu Z, He B, Zhang RY, Zhang K, Ding Y, Ruan JW, Ling EA, Wu JL, Zeng YS. Electroacupuncture Promotes the Differentiation of Transplanted Bone Marrow Mesenchymal Stem Cells Preinduced With Neurotrophin-3 and Retinoic Acid Into Oligodendrocyte-Like Cells in Demyelinated Spinal Cord of Rats. Cell Transplant 2014; 24:1265-81. [PMID: 24856958 DOI: 10.3727/096368914x682099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Transplantation of bone marrow mesenchymal stem cells (MSCs) promotes functional recovery in multiple sclerosis (MS) patients and in a murine model of MS. However, there is only a modicum of information on differentiation of grafted MSCs into oligodendrocyte-like cells in MS. The purpose of this study was to transplant neurotrophin-3 (NT-3) and retinoic acid (RA) preinduced MSCs (NR-MSCs) into a demyelinated spinal cord induced by ethidium bromide and to investigate whether EA treatment could promote NT-3 secretion in the demyelinated spinal cord. We also sought to determine whether increased NT-3 could further enhance NR-MSCs overexpressing the tyrosine receptor kinase C (TrkC) to differentiate into more oligodendrocyte-like cells, resulting in increased remyelination and nerve conduction in the spinal cord. Our results showed that NT-3 and RA increased transcription of TrkC mRNA in cultured MSCs. EA increased NT-3 levels and promoted differentiation of oligodendrocyte-like cells from grafted NR-MSCs in the demyelinated spinal cord. There was evidence of myelin formation by grafted NR-MSCs. In addition, NR-MSC transplantation combined with EA treatment (the NR-MSCs + EA group) reduced demyelination and promoted remyelination. Furthermore, the conduction of cortical motor-evoked potentials has improved compared to controls. Together, our data suggest that preinduced MSC transplantation combined with EA treatment not only increased MSC differentiation into oligodendrocyte-like cells forming myelin sheaths, but also promoted remyelination and functional improvement of nerve conduction in the demyelinated spinal cord.
Collapse
Affiliation(s)
- Zhou Liu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|