1
|
Fuentes-Mateos R, Gosens R. Disinherit your Descendants by Rewriting the Chronic Pulmonary Obstructive Disease Epigenetic Script. Am J Respir Cell Mol Biol 2024; 70:153-154. [PMID: 38060824 PMCID: PMC10914766 DOI: 10.1165/rcmb.2023-0387ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Affiliation(s)
- Rocío Fuentes-Mateos
- Department of Molecular Pharmacology University of Groningen Groningen, the Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology University of Groningen Groningen, the Netherlands
| |
Collapse
|
2
|
Sun G, Zheng Y, Fu X, Zhang W, Ren J, Ma S, Sun S, He X, Wang Q, Ji Z, Cheng F, Yan K, Liu Z, Belmonte JCI, Qu J, Wang S, Chai R, Liu GH. Single-cell transcriptomic atlas of mouse cochlear aging. Protein Cell 2023; 14:180-201. [PMID: 36933008 PMCID: PMC10098046 DOI: 10.1093/procel/pwac058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive functional deterioration in the cochlea is associated with age-related hearing loss (ARHL). However, the cellular and molecular basis underlying cochlear aging remains largely unknown. Here, we established a dynamic single-cell transcriptomic landscape of mouse cochlear aging, in which we characterized aging-associated transcriptomic changes in 27 different cochlear cell types across five different time points. Overall, our analysis pinpoints loss of proteostasis and elevated apoptosis as the hallmark features of cochlear aging, highlights unexpected age-related transcriptional fluctuations in intermediate cells localized in the stria vascularis (SV) and demonstrates that upregulation of endoplasmic reticulum (ER) chaperon protein HSP90AA1 mitigates ER stress-induced damages associated with aging. Our work suggests that targeting unfolded protein response pathways may help alleviate aging-related SV atrophy and hence delay the progression of ARHL.
Collapse
Affiliation(s)
- Guoqiang Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yandong Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing 211189, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiaojuan He
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Zhejun Ji
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Fang Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Ziyi Liu
- Shandong Provincial Hospital and School of Laboratory Animal Science, Shandong First Medical University, Jinan 250000, China
| | | | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing 211189, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
3
|
He Y, Zheng Z, Liu C, Li W, Zhao L, Nie G, Li H. Inhibiting DNA methylation alleviates cisplatin-induced hearing loss by decreasing oxidative stress-induced mitochondria-dependent apoptosis via the LRP1-PI3K/AKT pathway. Acta Pharm Sin B 2022; 12:1305-1321. [PMID: 35530135 PMCID: PMC9069410 DOI: 10.1016/j.apsb.2021.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss. This study aimed to assess the potential effect of the DNA methyltransferase (DNMT) inhibitor RG108 on cisplatin-induced ototoxicity. Immunohistochemistry, apoptosis assay, and auditory brainstem response (ABR) were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells (HCs) and spiral ganglion neurons (SGNs). Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential (MMP) assessment. Reactive oxygen species (ROS) amounts were evaluated by Cellrox green and Mitosox-red probes. Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates (OCRs). The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs, and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation. Furthermore, RG108 upregulated BCL-2 and downregulated APAF1, BAX, and BAD in HEI-OC1 cells, and triggered the PI3K/AKT pathway. Decreased expression of low-density lipoprotein receptor-related protein 1 (LRP1) and high methylation of the LRP1 promoter were observed after cisplatin treatment. RG108 treatment can increase LRP1 expression and decrease LRP1 promoter methylation. In conclusion, RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin via activating the LRP1-PI3K/AKT pathway.
Collapse
Key Words
- 5-mC, 5-methylcytosine
- ABR, auditory brainstem response
- Apoptosis
- Cisplatin
- DNMT
- DNMT, DNA methyltransferase
- EdU, 5-ethynyl-2′-deoxyuridine
- HCs, hair cells
- Hair cell
- IHCs, inner hair cells
- LRP1, low-density lipoprotein receptor-related protein 1
- MMP, mitochondrial membrane potential
- Mitochondrial dysfunction
- OCRs, oxygen consumption rates
- OHCs, outer hair cells
- PI, propidium iodide
- RG108
- ROS
- ROS, reactive oxygen species
- SGNs, spiral ganglion neurons
- Spiral ganglion neurons
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling
Collapse
|
4
|
Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai C, Nie G, He Y. The DNA methylation inhibitor RG108 protects against noise-induced hearing loss. Cell Biol Toxicol 2021; 37:751-771. [PMID: 33723744 PMCID: PMC8490244 DOI: 10.1007/s10565-021-09596-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 02/22/2021] [Indexed: 11/29/2022]
Abstract
Background Noise-induced hearing loss represents a commonly diagnosed type of hearing disability, severely impacting the quality of life of individuals. The current work is aimed at assessing the effects of DNA methylation on noise-induced hearing loss. Methods Blocking DNA methyltransferase 1 (DNMT1) activity with a selective inhibitor RG108 or silencing DNMT1 with siRNA was used in this study. Auditory brainstem responses were measured at baseline and 2 days after trauma in mice to assess auditory functions. Whole-mount immunofluorescent staining and confocal microcopy of mouse inner ear specimens were performed to analyze noise-induced damage in cochleae and the auditory nerve at 2 days after noise exposure. Results The results showed that noise exposure caused threshold elevation of auditory brainstem responses and cochlear hair cell loss. Whole-mount cochlea staining revealed a reduction in the density of auditory ribbon synapses between inner hair cells and spiral ganglion neurons. Inhibition of DNA methyltransferase activity via a non-nucleoside specific pharmacological inhibitor, RG108, or silencing of DNA methyltransferase-1 with siRNA significantly attenuated ABR threshold elevation, hair cell damage, and the loss of auditory synapses. Conclusions This study suggests that inhibition of DNMT1 ameliorates noise-induced hearing loss and indicates that DNMT1 may be a promising therapeutic target. Graphical abstract Graphical Headlights • RG108 protected against noise-induced hearing loss • RG108 administration protected against noise-induced hair cell loss and auditory neural damage. • RG108 administration attenuated oxidative stress-induced DNA damage and subsequent apoptosis-mediated cell loss in the cochlea after noise exposure. ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s10565-021-09596-y.
Collapse
Affiliation(s)
- Zhiwei Zheng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Shan Zeng
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chang Liu
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Wen Li
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Liping Zhao
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China
| | - Chengfu Cai
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, People's Republic of China
| | - Guohui Nie
- Department of Otolaryngology and Institute of Translational Medicine, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518035, China.
| | - Yingzi He
- ENT institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, China.
- NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, China.
| |
Collapse
|
5
|
Deng X, Hu Z. Generation of Cochlear Hair Cells from Sox2 Positive Supporting Cells via DNA Demethylation. Int J Mol Sci 2020; 21:ijms21228649. [PMID: 33212773 PMCID: PMC7696585 DOI: 10.3390/ijms21228649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/23/2022] Open
Abstract
Regeneration of auditory hair cells in adult mammals is challenging. It is also difficult to track the sources of regenerated hair cells, especially in vivo. Previous paper found newly generated hair cells in deafened mouse by injecting a DNA methyltransferase inhibitor 5-azacytidine into the inner ear. This paper aims to investigate the cell sources of new hair cells. Transgenic mice with enhanced green fluorescent protein (EGFP) expression controlled by the Sox2 gene were used in the study. A combination of kanamycin and furosemide was applied to deafen adult mice, which received 4 mM 5-azacytidine injection into the inner ear three days later. Mice were followed for 3, 5, 7 and 14 days after surgery to track hair cell regeneration. Immunostaining of Myosin VIIa and EGFP signals were used to track the fate of Sox2-expressing supporting cells. The results show that (i) expression of EGFP in the transgenic mice colocalized the supporting cells in the organ of Corti, and (ii) the cell source of regenerated hair cells following 5-azacytidine treatment may be supporting cells during 5-7 days post 5-azacytidine injection. In conclusion, 5-azacytidine may promote the conversion of supporting cells to hair cells in chemically deafened adult mice.
Collapse
Affiliation(s)
- Xin Deng
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, MI 48201, USA;
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University, Detroit, MI 48201, USA;
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA
- Correspondence: ; Tel.: +313-577-0675
| |
Collapse
|
6
|
Ma Y, Ye Y, Liu Y, Chen J, Cen Y, Chen W, Yu C, Zeng Q, Zhang A, Yang G. DNMT1-mediated Foxp3 gene promoter hypermethylation involved in immune dysfunction caused by arsenic in human lymphocytes. Toxicol Res (Camb) 2020; 9:519-529. [PMID: 32905139 DOI: 10.1093/toxres/tfaa056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 07/05/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Growing evidence indicates that arsenic can cause long-lasting and irreversible damage to the function of the human immune system. It is known that forkhead box protein 3(Foxp3), which is specifically expressed in regulatory T cells (Tregs), plays a decisive role in immunoregulation and is regulated by DNA methylation. While evidence suggests that epigenetic regulated Foxp3 is involved in the immune disorders caused by arsenic exposure, the specific mechanism remains unclear. In this study, after primary human lymphocytes were treated with different doses of NaAsO2, our results showed that arsenic induced the high expression of DNMT1 and Foxp3 gene promoter methylation level, thereby inhibiting the expression levels of Foxp3, followed by decreasing Tregs and reducing related anti-inflammatory cytokines, such as interleukin 10 (IL-10) and interleukin 10 (IL-35), and increasing the ratio of CD4+/CD8+ T cells in lymphocytes. Treatment with DNA methyltransferase inhibitor 5-Aza-CdR can notably inhibit the expression of DNMT1, effectively restoring the hypermethylation of the Foxp3 promoter region in primary human lymphocytes and upregulating the expression levels of Foxp3, balancing the ratio of CD4+/CD8+ T cells in lymphocytes. It also activates the secretion of anti-inflammatory cytokines and restores the immune regulatory functions of Tregs. In conclusion, our study provides limited evidence that DNMT1-mediated Foxp3 gene promoter hypermethylation is involved in immune dysfunction caused by arsenic in primary human lymphocytes. The study can provide a scientific basis for further understanding the arsenic-induced immune dysfunction in primary human lymphocytes.
Collapse
Affiliation(s)
- Yemei Ma
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Ying Ye
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yining Liu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Jing Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Yanli Cen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Wenyan Chen
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Chun Yu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qibing Zeng
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guanghong Yang
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
7
|
Linscott ML, Chung WCJ. TET1 regulates fibroblast growth factor 8 transcription in gonadotropin releasing hormone neurons. PLoS One 2019; 14:e0220530. [PMID: 31361780 PMCID: PMC6667164 DOI: 10.1371/journal.pone.0220530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/17/2019] [Indexed: 12/18/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the ontogenesis of gonadotropin-releasing hormone (GnRH) neurons, which control the hypothalamus-pituitary-gonadal (HPG) axis, and therefore reproductive success. Indeed, FGF8 and FGFR1 deficiency severely compromises vertebrate reproduction in mice and humans and is associated with Kallmann Syndrome (KS), a congenital disease characterized by hypogonadotropic hypogonadism associated with anosmia. Our laboratory demonstrated that FGF8 signaling through FGFR1, both of which are KS-related genes, is necessary for proper GnRH neuron development in mice and humans. Here, we investigated the possibility that non-genetic factors, such as the epigenome, may contribute to KS onset. For this purpose, we developed an embryonic explant model, utilizing the mouse olfactory placode (OP), the birthplace of GnRH neurons. We show that TET1, which converts 5-methylcytosine residues (5mC) to 5-hydroxymethylated cytosines (5hmC), controls transcription of Fgf8 during GnRH neuron ontogenesis. Through MeDIP and ChIP RT-qPCR we found that TET1 bound to specific CpG islands on the Fgf8 promoter. We found that the temporal expression of Fgf8 correlates with not only TET1 binding, but also with 5hmC enrichment. siRNA knockdown of Tet1 reduced Fgf8 and Fgfr1 mRNA expression. During this time period, Fgf8 also switched histone status, most likely via recruitment of EZH2, a major component of the polycomb repressor complex-2 (PRC2) at E13.5. Together, these studies underscore the significance of epigenetics and chromatin modifications to temporally regulated genes involved in KS.
Collapse
Affiliation(s)
- Megan L. Linscott
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Wilson C. J. Chung
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States of America
- School of Biomedical Sciences, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
8
|
Chuang SM, Lu JH, Lin KL, Long CY, Lee YC, Hsiao HP, Tsai CC, Wu WJ, Yang HJ, Juan YS. Epigenetic regulation of COX‑2 expression by DNA hypomethylation via NF‑κB activation in ketamine‑induced ulcerative cystitis. Int J Mol Med 2019; 44:797-812. [PMID: 31257475 PMCID: PMC6657979 DOI: 10.3892/ijmm.2019.4252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/05/2019] [Indexed: 01/03/2023] Open
Abstract
The present study investigated the methylation of CpG sites in the cyclooxygenase (COX)-2 promoter via nuclear factor (NF)-κB transcriptional regulation and elucidated its effect on the COX-2 transcriptional expression in a ketamine-induced ulcerative cystitis (KIC) animal model. The results of the present study revealed that ketamine treatment induced NF-κB p65 translocation to nuclei and activated COX-2 expression and prostaglandin (PGE)2 production in bladder tissue, whereas COX-2 inhibitor suppressed the inflammatory effect. Moreover, DNA hypomethylation of the COX-2 promoter region located from -1,522 to -829 bp might contribute to transcriptional regulation of COX-2 expression and induce a pro-inflammatory response in KIC. Ketamine treatment increased the binding of NF-κB and permissive histone H3 lysine-4 (H3K4)m3, but caused a decrease in the repressive histone H3K27m3 and H3K36m3 on the COX-2 promoter ranging from -1,522 to -1,331 bp as determined by a chromatin immunoprecipitation assay. Moreover, in the ketamine group, the level of Ten-Eleven-Translocation methylcytosine dioxygenase for demethylation as determined by reverse transcription-quantitative PCR assay was increased in comparison with the control group, but that was not the case for the level of DNA methyltransferases for methylation. The present findings revealed that there was a hypomethylation pattern of the COX-2 promoter in association with the level of COX-2 transcription in KIC.
Collapse
Affiliation(s)
- Shu-Mien Chuang
- Translational Research Center, Cancer Center, Department of Medical Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Jian-He Lu
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Kun-Ling Lin
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Cheng-Yu Long
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Yung-Chin Lee
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Hui-Pin Hsiao
- Division of Genetics, Endocrinology and Metabolism, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, R.O.C
| | - Chia-Chun Tsai
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Wen-Jeng Wu
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Hui-Jun Yang
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan, R.O.C
| |
Collapse
|
9
|
Hu Z, Tao L, Liu Z, Jiang Y, Deng X. Identification of Neural Stem Cells from Postnatal Mouse Auditory Cortex In Vitro. Stem Cells Dev 2019; 28:860-870. [PMID: 31038014 DOI: 10.1089/scd.2018.0247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Auditory signals are processed in multiple central nervous system structures, including the auditory cortex (AC). Development of stem cell biology provides the opportunity to identify neural stem cells (NSCs) in the central nervous system. However, it is unclear whether NSCs exist in the AC. The aim of this study is to determine the existence of NSCs in the postnatal mouse AC. To accomplish this aim, postnatal mouse AC tissues were dissected and dissociated into singular cells and small cell clumps, which were suspended in the culture medium to observe neurosphere formation. The spheres were examined by quantitative real-time polymerase chain reaction and immunofluorescence to determine expression of NSC genes and proteins. In addition, AC-spheres were cultured in the presence or absence of astrocyte-conditioned medium (ACM) to study neural differentiation. The results show that AC-derived cells were able to proliferate to form neurospheres, which expressed multiple NSC genes and proteins, including SOX2 and NESTIN. AC-derived NSCs (AC-NSCs) differentiated into cells expressing neuronal and glial cell markers. However, the neuronal generation rate is low in the culture medium containing nerve growth factor, ∼8%. To stimulate neuronal generation, AC-NSCs were cultured in the culture medium containing ACM. In the presence of ACM, ∼29% AC-NSCs differentiated into cells expressing neuronal marker class III β-tubulin (TUJ1). It was observed that the length of neurites of AC-NSC-derived neurons in the ACM group was significantly longer than that of the control group. In addition, synaptic protein immunostaining showed significantly higher expression of synaptic proteins in the ACM group. These results suggest that ACM is able to stimulate neuronal differentiation, extension of neurites, and expression of synaptic proteins. Identifying AC-NSCs and determining effects of ACM on NSC differentiation will be important for the auditory research and other neural systems.
Collapse
Affiliation(s)
- Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Li Tao
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Zhenjie Liu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Yiyun Jiang
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Xin Deng
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
10
|
Walters BJ, Cox BC. Approaches for the study of epigenetic modifications in the inner ear and related tissues. Hear Res 2019; 376:69-85. [PMID: 30679030 PMCID: PMC6456365 DOI: 10.1016/j.heares.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/12/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
DNA methylation and histone modifications such as methylation, acetylation, and phosphorylation, are two types of epigenetic modifications that alter gene expression. These additions to DNA regulatory elements or to the tails of histones can be inherited or can also occur de novo. Since epigenetic modifications can have significant effects on various processes at both the cellular and organismal level, there has been a rapid increase in research on this topic throughout all fields of biology in recent years. However, epigenetic research is relativity new for the inner ear field, likely due to the limited number of cells present and their quiescent nature. Here, we provide an overview of methods used to detect DNA methylation and histone modifications with a focus on those that have been validated for use with limited cell numbers and a discussion of the strengths and limitations for each. We also provide examples for how these methods have been used to investigate the epigenetic landscape in the inner ear and related tissues.
Collapse
Affiliation(s)
- Bradley J Walters
- Departments of Neurobiology and Anatomical Sciences, and of Otolaryngology and Communicative Sciences, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Brandon C Cox
- Departments of Pharmacology and Surgery, Division of Otolaryngology, Southern Illinois University School of Medicine, Springfield, IL 62711, USA.
| |
Collapse
|
11
|
Gong Y, Wan JH, Zou W, Lian GY, Qin JL, Wang QM. MiR-29a inhibits invasion and metastasis of cervical cancer via modulating methylation of tumor suppressor SOCS1. Future Oncol 2019; 15:1729-1744. [PMID: 31038361 DOI: 10.2217/fon-2018-0497] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aims: To investigate roles of miR-29a-DNMT1-SOCS1 axis in cervical cancer invasion and migration. Materials & methods: The methylation level of SOCS1 was determined by methylation specific PCR. The cell apoptosis, proliferation, migration and invasion were examined by Annexin-V/PI staining, MTT and colony formation assays, plus scratch and transwell assays respectively. The expressions of epithelial-mesenchymal transition and NF-κB related proteins were determined by western blotting. Results: MiR-29a was downregulated, accompanied with DNMT1 upregulation and SOCS1 downregulation in cervical cancer tissues. MiR-29a suppressed DNMT1, inhibited SOCS1 promoter methylation and upregulated its expression. Moreover, miR-29a promoted cell apoptosis, suppressed proliferation, inhibited migration and invasion via inactivation of NF-κB signaling pathway in cervical cancer cells. Conclusion: MiR-29a-DNMT1-SOCS1 axis plays an important role on invasion and metastasis in cervical cancer via NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yi Gong
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Jun-Hui Wan
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Wei Zou
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Guang-Yu Lian
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun-Li Qin
- Department of Obstetrics & Gynecology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Qing-Ming Wang
- Department of Hematology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| |
Collapse
|
12
|
Lenz DR, Gunewardene N, Abdul-Aziz DE, Wang Q, Gibson TM, Edge ASB. Applications of Lgr5-Positive Cochlear Progenitors (LCPs) to the Study of Hair Cell Differentiation. Front Cell Dev Biol 2019; 7:14. [PMID: 30873406 PMCID: PMC6401656 DOI: 10.3389/fcell.2019.00014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Abstract
The mouse cochlea contains approximately 15,000 hair cells. Its dimensions and location, and the small number of hair cells, make mechanistic, developmental and cellular replacement studies difficult. We recently published a protocol to expand and differentiate murine neonatal cochlear progenitor cells into 3D organoids that recapitulate developmental pathways and can generate large numbers of hair cells with intact stereociliary bundles, molecular markers of the native cells and mechanotransduction channel activity, as indicated by FM1-43 uptake. Here, we elaborate on the method and application of these Lgr5-positive cochlear progenitors, termed LCPs, to the study of inner ear development and differentiation. We demonstrate the use of these cells for testing several drug candidates, gene silencing and overexpression, as well as genomic modification using CRISPR/Cas9. We thus establish LCPs as a valuable in vitro tool for the analysis of progenitor cell manipulation and hair cell differentiation.
Collapse
Affiliation(s)
- Danielle R Lenz
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Niliksha Gunewardene
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Dunia E Abdul-Aziz
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Quan Wang
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Tyler M Gibson
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States
| | - Albert S B Edge
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States.,Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA, United States.,Harvard Stem Cell Institute, Cambridge, MA, United States
| |
Collapse
|
13
|
Taghizadeh M, Noruzinia M. Lovastatin Reduces Stemness via Epigenetic Reprograming of BMP2 and GATA2 in Human Endometrium and Endometriosis. CELL JOURNAL 2017; 19:50-64. [PMID: 28367417 PMCID: PMC5241518 DOI: 10.22074/cellj.2016.3894] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/22/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The stem cell theory in the endometriosis provides an advanced avenue of targeting these cells as a novel therapy to eliminate endometriosis. In this regard, studies showed that lovastatin alters the cells from a stem-like state to more differentiated condition and reduces stemness. The aim of this study was to investigate whether lovastatin treatment could influence expression and methylation patterns of genes regulating differentiation of endometrial mesenchymal stem cells (eMSCs) such as BMP2, GATA2 and RUNX2 as well as eMSCs markers. MATERIALS AND METHODS In this experimental investigation, MSCs were isolated from endometrial and endometriotic tissues and treated with lovastatin and decitabin. To investigate the osteogenic and adipogenic differentiation of eMSCs treated with the different concentration of lovastatin and decitabin, BMP2, RUNX2 and GATA2 expressions were measured by real-time polymerase chain reaction (PCR). To determine involvement of DNA methylation in BMP2 and GATA2 gene regulations of eMSCs, we used quantitative Methylation Specific PCR (qMSP) for evaluation of the BMP2 promoter status and differentially methylated region of GATA2 exon 4. RESULTS In the present study, treatment with lovastatin increased expression of BMP2 and RUNX2 and induced BMP2 promoter demethylation. We also demonstrated that lovastatin treatment down-regulated GATA2 expression via inducing methylation. In addition, the results indicated that CD146 cell marker was decreased to 53% in response to lovastatin treatment compared to untreated group. CONCLUSION These findings indicated that lovastatin treatment could increase the differentiation of eMSCs toward osteogenic and adiogenic lineages, while it decreased expression of eMSCs markers and subsequently reduced the stemness.
Collapse
Affiliation(s)
| | - Mehrdad Noruzinia
- P.O.Box: 11115-331Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
14
|
Zhou Y, Hu Z. Epigenetic DNA Demethylation Causes Inner Ear Stem Cell Differentiation into Hair Cell-Like Cells. Front Cell Neurosci 2016; 10:185. [PMID: 27536218 PMCID: PMC4971107 DOI: 10.3389/fncel.2016.00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
The DNA methyltransferase (DNMT) inhibitor 5-azacytidine (5-aza) causes genomic demethylation to regulate gene expression. However, it remains unclear whether 5-aza affects gene expression and cell fate determination of stem cells. In this study, 5-aza was applied to mouse utricle sensory epithelia-derived progenitor cells (MUCs) to investigate whether 5-aza stimulated MUCs to become sensory hair cells. After treatment, MUCs increased expression of hair cell genes and proteins. The DNA methylation level (indicated by percentage of 5-methylcytosine) showed a 28.57% decrease after treatment, which causes significantly repressed DNMT1 protein expression and DNMT activity. Additionally, FM1-43 permeation assays indicated that the permeability of 5-aza-treated MUCs was similar to that of sensory hair cells, which may result from mechanotransduction channels. This study not only demonstrates a possible epigenetic approach to induce tissue specific stem/progenitor cells to become sensory hair cell-like cells, but also provides a cell model to epigenetically modulate stem cell fate determination.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| | - Zhengqing Hu
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
15
|
Linscott ML, Chung WCJ. Fibroblast Growth Factor 8 Expression in GT1-7 GnRH-Secreting Neurons Is Androgen-Independent, but Can Be Upregulated by the Inhibition of DNA Methyltransferases. Front Cell Dev Biol 2016; 4:34. [PMID: 27200347 PMCID: PMC4853385 DOI: 10.3389/fcell.2016.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/13/2016] [Indexed: 11/13/2022] Open
Abstract
Fibroblast growth factor 8 (FGF8) is a potent morphogen that regulates the embryonic development of hypothalamic neuroendocrine cells. Indeed, using Fgf8 hypomorphic mice, we showed that reduced Fgf8 mRNA expression completely eliminated the presence of gonadotropin-releasing hormone (GnRH) neurons. These findings suggest that FGF8 signaling is required during the embryonic development of mouse GnRH neurons. Additionally, in situ hybridization studies showed that the embryonic primordial birth place of GnRH neurons, the olfactory placode, is highly enriched for Fgf8 mRNA expression. Taken together these data underscore the importance of FGF8 signaling for GnRH emergence. However, an important question remains unanswered: How is Fgf8 gene expression regulated in the developing embryonic mouse brain? One major candidate is the androgen receptor (AR), which has been shown to upregulate Fgf8 mRNA in 60-70% of newly diagnosed prostate cancers. Therefore, we hypothesized that ARs may be involved in the regulation of Fgf8 transcription in the developing mouse brain. To test this hypothesis, we used chromatin-immunoprecipitation (ChIP) assays to elucidate whether ARs interact with the 5'UTR region upstream of the translational start site of the Fgf8 gene in immortalized mouse GnRH neurons (GT1-7) and nasal explants. Our data showed that while AR interacts with the Fgf8 promoter region, this interaction was androgen-independent, and that androgen treatment did not affect Fgf8 mRNA levels, indicating that androgen signaling does not induce Fgf8 transcription. In contrast, inhibition of DNA methyltransferases (DNMT) significantly upregulated Fgf8 mRNA levels indicating that Fgf8 transcriptional activity may be dependent on DNA methylation status.
Collapse
Affiliation(s)
- Megan L Linscott
- Department of Biological Sciences, Kent State University Kent, OH, USA
| | - Wilson C J Chung
- Department of Biological Sciences, Kent State UniversityKent, OH, USA; School of Biomedical Sciences, Kent State UniversityKent, OH, USA
| |
Collapse
|
16
|
Huan YJ, Wu ZF, Zhang JG, Zhu J, Xie BT, Wang JY, Li JY, Xue BH, Kong QR, Liu ZH. Alteration of the DNA methylation status of donor cells impairs the developmental competence of porcine cloned embryos. J Reprod Dev 2015; 62:71-7. [PMID: 26537205 PMCID: PMC4768780 DOI: 10.1262/jrd.2015-048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nuclear reprogramming induced by somatic cell nuclear transfer is an inefficient process, and donor cell DNA
methylation status is thought to be a major factor affecting cloning efficiency. Here, the role of donor cell
DNA methylation status regulated by 5-aza-2'-deoxycytidine (5-aza-dC) or
5-methyl-2'-deoxycytidine-5'-triphosphate (5-methyl-dCTP) in the early development of porcine cloned embryos
was investigated. Our results showed that 5-aza-dC or 5-methyl-dCTP significantly reduced or increased the
global methylation levels and altered the methylation and expression levels of key genes in donor cells.
However, the development of cloned embryos derived from these cells was reduced. Furthermore, disrupted
pseudo-pronucleus formation and transcripts of early embryo development-related genes were observed in cloned
embryos derived from these cells. In conclusion, our results demonstrated that alteration of the DNA
methylation status of donor cells by 5-aza-dC or 5-methyl-dCTP disrupted nuclear reprogramming and impaired
the developmental competence of porcine cloned embryos.
Collapse
Affiliation(s)
- Yan Jun Huan
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Slieker RC, Roost MS, van Iperen L, Suchiman HED, Tobi EW, Carlotti F, de Koning EJP, Slagboom PE, Heijmans BT, Chuva de Sousa Lopes SM. DNA Methylation Landscapes of Human Fetal Development. PLoS Genet 2015; 11:e1005583. [PMID: 26492326 PMCID: PMC4619663 DOI: 10.1371/journal.pgen.1005583] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/16/2015] [Indexed: 12/14/2022] Open
Abstract
Remodelling the methylome is a hallmark of mammalian development and cell differentiation. However, current knowledge of DNA methylation dynamics in human tissue specification and organ development largely stems from the extrapolation of studies in vitro and animal models. Here, we report on the DNA methylation landscape using the 450k array of four human tissues (amnion, muscle, adrenal and pancreas) during the first and second trimester of gestation (9,18 and 22 weeks). We show that a tissue-specific signature, constituted by tissue-specific hypomethylated CpG sites, was already present at 9 weeks of gestation (W9). Furthermore, we report large-scale remodelling of DNA methylation from W9 to W22. Gain of DNA methylation preferentially occurred near genes involved in general developmental processes, whereas loss of DNA methylation mapped to genes with tissue-specific functions. Dynamic DNA methylation was associated with enhancers, but not promoters. Comparison of our data with external fetal adrenal, brain and liver revealed striking similarities in the trajectory of DNA methylation during fetal development. The analysis of gene expression data indicated that dynamic DNA methylation was associated with the progressive repression of developmental programs and the activation of genes involved in tissue-specific processes. The DNA methylation landscape of human fetal development provides insight into regulatory elements that guide tissue specification and lead to organ functionality.
Collapse
Affiliation(s)
- Roderick C. Slieker
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias S. Roost
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Liesbeth van Iperen
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Eka D. Suchiman
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Elmar W. Tobi
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Françoise Carlotti
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eelco J. P. de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Hubrecht Institute, Utrecht, The Netherlands
| | - P. Eline Slagboom
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Bastiaan T. Heijmans
- Molecular Epidemiology Section, Leiden University Medical Center, Leiden, The Netherlands
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
18
|
Wang W, Wang J, Li M, Ying J, Jing H. 5-Azacitidine induces demethylation of PTPL1 and inhibits growth in non-Hodgkin lymphoma. Int J Mol Med 2015; 36:698-704. [PMID: 26133246 PMCID: PMC4533776 DOI: 10.3892/ijmm.2015.2269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/25/2015] [Indexed: 12/31/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) consists of various lymphoid malignancies with a diverse clinical pathology and biological characteristics. Methylation of cytosine residues by DNA methyltransferases at CpG dinucleotides in the promoter region of the genes is a major epigenetic modification in mammalian genomes that can have profound effects on gene expression. The PTPL1 methylation pattern was screened by methylation‑specific polymerase chain reaction (MSP) in 7 lymphoma‑derived cell lines and in 47 samples of diffuse large B cell lymphoma (DLBCL). The PTPL1 gene was hypermethylated in the CA46, Raji, Jurkat and DB cell lines; however, it was unmethylated in the Hut78, Maver and Z138 cell lines. The expression of PTPL1 mRNA was re‑inducible by 5‑azacytidine (5‑Aza), an agent of DNA demethylation. The methylations were detected in 59.6% of DLBCL versus 6.3% in reactive lymph node proliferation. Therefore, the present data showed that PTPL1 was epigenetically regulated in NHL suggesting an involvement of the PTPL1 tumor‑suppressor genes in NHL, and highlights 5-Aza as a potential therapeutic candidate for NHL.
Collapse
Affiliation(s)
- Wenming Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jing Wang
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Min Li
- Department of Pathology, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Jianming Ying
- Department of Pathology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing 100021, P.R. China
| | - Hongmei Jing
- Department of Hematology, Peking University Third Hospital, Beijing 100191, P.R. China
| |
Collapse
|