1
|
van Bavel JJA, Beekman HDM, Smoczyńska A, van der Heyden MAG, Vos MA. I Ks Activator ML277 Mildly Affects Repolarization and Arrhythmic Outcome in the CAVB Dog Model. Biomedicines 2023; 11:biomedicines11041147. [PMID: 37189765 DOI: 10.3390/biomedicines11041147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Long QT syndrome type 1 with affected IKs is associated with a high risk for developing Torsade de Pointes (TdP) arrhythmias and eventually sudden cardiac death. Therefore, it is of high interest to explore drugs that target IKs as antiarrhythmics. We examined the antiarrhythmic effect of IKs channel activator ML277 in the chronic atrioventricular block (CAVB) dog model. TdP arrhythmia sensitivity was tested in anesthetized mongrel dogs (n = 7) with CAVB in series: (1) induction experiment at 4 ± 2 weeks CAVB: TdP arrhythmias were induced with our standardized protocol using dofetilide (0.025 mg/kg), and (2) prevention experiment at 10 ± 2 weeks CAVB: the antiarrhythmic effect of ML277 (0.6-1.0 mg/kg) was tested by infusion for 5 min preceding dofetilide. ML277: (1) temporarily prevented repolarization prolongation induced by dofetilide (QTc: 538 ± 65 ms at induction vs. 393 ± 18 ms at prevention, p < 0.05), (2) delayed the occurrence of the first arrhythmic event upon dofetilide (from 129 ± 28 s to 180 ± 51 s, p < 0.05), and (3) decreased the arrhythmic outcome with a significant reduction in the number of TdP arrhythmias, TdP score, arrhythmia score and total arrhythmic events (from 669 ± 132 to 401 ± 228, p < 0.05). IKs channel activation by ML277 temporarily suppressed QT interval prolongation, delayed the occurrence of the first arrhythmic event and reduced the arrhythmic outcome in the CAVB dog model.
Collapse
Affiliation(s)
- Joanne J A van Bavel
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Henriëtte D M Beekman
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Agnieszka Smoczyńska
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Marcel A G van der Heyden
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart & Lungs, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
2
|
Shah D, Prajapati C, Penttinen K, Cherian RM, Koivumäki JT, Alexanova A, Hyttinen J, Aalto-Setälä K. hiPSC-Derived Cardiomyocyte Model of LQT2 Syndrome Derived from Asymptomatic and Symptomatic Mutation Carriers Reproduces Clinical Differences in Aggregates but Not in Single Cells. Cells 2020; 9:cells9051153. [PMID: 32392813 PMCID: PMC7290503 DOI: 10.3390/cells9051153] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the HERG gene encoding the potassium ion channel HERG, represent one of the most frequent causes of long QT syndrome type-2 (LQT2). The same genetic mutation frequently presents different clinical phenotypes in the family. Our study aimed to model LQT2 and study functional differences between the mutation carriers of variable clinical phenotypes. We derived human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) from asymptomatic and symptomatic HERG mutation carriers from the same family. When comparing asymptomatic and symptomatic single LQT2 hiPSC-CMs, results from allelic imbalance, potassium current density, and arrhythmicity on adrenaline exposure were similar, but a difference in Ca2+ transients was observed. The major differences were, however, observed at aggregate level with increased susceptibility to arrhythmias on exposure to adrenaline or potassium channel blockers on CM aggregates derived from the symptomatic individual. The effect of this mutation was modeled in-silico which indicated the reactivation of an inward calcium current as one of the main causes of arrhythmia. Our in-vitro hiPSC-CM model recapitulated major phenotype characteristics observed in LQT2 mutation carriers and strong phenotype differences between LQT2 asymptomatic vs. symptomatic were revealed at CM-aggregate level.
Collapse
Affiliation(s)
- Disheet Shah
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
- Correspondence:
| | - Chandra Prajapati
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Kirsi Penttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Reeja Maria Cherian
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Jussi T. Koivumäki
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Anna Alexanova
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology and BioMediTech Institute, Tampere University, 33520 Tampere, Finland; (C.P.); (K.P.); (R.M.C.); (J.T.K.); (A.A.); (J.H.); (K.A.-S.)
- Heart Hospital, Tampere University Hospital, 33520 Tampere, Finland
| |
Collapse
|
3
|
Dong L, Li G, Gao Y, Lin L, Zheng Y, Cao XB. Exploring the form- And time-dependent effect of low-frequency electromagnetic fields on maintenance of hippocampal long-term potentiation. Eur J Neurosci 2020; 52:3166-3180. [PMID: 32065697 DOI: 10.1111/ejn.14705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
Low-frequency electromagnetic field (LF-EMF) stimulation is an emerging neuromodulation tool that is attracting more attention because of its non-invasive and well-controlled characteristics. However, the effect of different LF-EMF features including the forms and the time of addition on neuronal activity has not been completely understood. In this study, we used multi-electrode array (MEA) systems to develop a flexible in vitro magnetic stimulation device with plug-and-play features that allows for real-time delivery of LF-EMFs to biological tissues. Crucially, the method enables different forms of LF-EMF to be added at any time to a long-term potentiation (LTP) experiment without interrupting the process of LTP induction. We demonstrated that the slope of field excitatory postsynaptic potentials (fEPSPs) decreased significantly under post or priming uninterrupted sine LF-EMFs. The fEPSPs slope would continue to decline significantly when LF-EMFs were added two times with a 20-min interval. Paired-pulse ratio (PPR) was analyzed and the results reflected that LF-EMFs induced LTP was expressed postsynaptically. The results of pharmacological experiments indicated that AMPA receptor activity was involved in the process of LTP loss caused by post-LF-EMFs. Moreover, the effect of priming sine or Quadripulse stimulation (QPS)-patterned LF-EMFs depended on the time interval between the end of LF-EMF and the beginning of baseline recording. Interestingly, the effect of sine LF-EMFs on LTP would not disappear within 120 min, while the impact of QPS-patterned LF-EMFs on LTP might disappear after 90 min. These results indicated that LF-EMF might have a form- and time-dependent effect on LTP.
Collapse
Affiliation(s)
- Lei Dong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Yang Gao
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane, Queensland, Australia
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Biomedical Detecting Techniques & Instruments, Tianjin University, Tianjin, China
| | - Yu Zheng
- School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, China
| | | |
Collapse
|
4
|
Scaling and correlation properties of RR and QT intervals at the cellular level. Sci Rep 2019; 9:3651. [PMID: 30842620 PMCID: PMC6403385 DOI: 10.1038/s41598-019-40247-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
We study complex scaling properties of RR and QT intervals of electrocardiograms (ECGs) with their equivalences at the cellular level, that is, inter-beat intervals (IBI) and field potential durations (FPD) of spontaneously beating human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) aggregates. Our detrended fluctuation analysis and Poincaré plots reveal remarkable similarities between the ECG and hiPSC-CM data. In particular, no statistically significant difference was found in the short- and long-term scaling exponents α1 and α2 of RR and QT intervals and their cellular equivalences. Previously unknown scaling properties of FPDs of hiPSC-CM aggregates reveal that the increasing scaling exponent of QT intervals as a function of the time scale, is an intrinsic feature at the cellular level.
Collapse
|
5
|
Deep Learning-Based Proarrhythmia Analysis Using Field Potentials Recorded From Human Pluripotent Stem Cells Derived Cardiomyocytes. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE-JTEHM 2019. [PMCID: PMC6570462 DOI: 10.1109/jtehm.2019.2907945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG. Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential. Cardiovasc Res 2018; 114:1828-1842. [PMID: 30169602 PMCID: PMC6887927 DOI: 10.1093/cvr/cvy208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
In the past few years, the use of specific cell types derived from induced pluripotent stem cells (iPSCs) has developed into a powerful approach to investigate the cellular pathophysiology of numerous diseases. Despite advances in therapy, heart disease continues to be one of the leading causes of death in the developed world. A major difficulty in unravelling the underlying cellular processes of heart disease is the extremely limited availability of viable human cardiac cells reflecting the pathological phenotype of the disease at various stages. Thus, the development of methods for directed differentiation of iPSCs to cardiomyocytes (iPSC-CMs) has provided an intriguing option for the generation of patient-specific cardiac cells. In this review, a comprehensive overview of the currently published iPSC-CM models for hereditary heart disease is compiled and analysed. Besides the major findings of individual studies, detailed methodological information on iPSC generation, iPSC-CM differentiation, characterization, and maturation is included. Both, current advances in the field and challenges yet to overcome emphasize the potential of using patient-derived cell models to mimic genetic cardiac diseases.
Collapse
Affiliation(s)
- Alain van Mil
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Geerthe Margriet Balk
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Klaus Neef
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jan Willem Buikema
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Folkert W Asselbergs
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Faculty of Population Health Sciences, Institute of Cardiovascular Science, University College London, London, UK
- Durrer Center for Cardiovascular Research, Netherlands Heart Institute, Utrecht, the Netherlands
- Farr Institute of Health Informatics Research and Institute of Health Informatics, University College London, London, UK
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pieter A Doevendans
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Joost P G Sluijter
- Division Heart and Lungs, Department of Cardiology, Experimental Cardiology Laboratory, Regenerative Medicine Center, University Medical Center Utrecht, Internal Mail No G03.550, GA Utrecht, the Netherlands
- Division Heart and Lungs, Department of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
7
|
Tse G, Du Y, Hao G, Li KHC, Chan FYW, Liu T, Li G, Bazoukis G, Letsas KP, Wu WKK, Cheng SH, Wong WT. Quantification of Beat-To-Beat Variability of Action Potential Durations in Langendorff-Perfused Mouse Hearts. Front Physiol 2018; 9:1578. [PMID: 30538638 PMCID: PMC6277547 DOI: 10.3389/fphys.2018.01578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 10/22/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Beat-to-beat variability in action potential duration (APD) is an intrinsic property of cardiac tissue and is altered in pro-arrhythmic states. However, it has never been examined in mice. Methods: Left atrial or ventricular monophasic action potentials (MAPs) were recorded from Langendorff-perfused mouse hearts during regular 8 Hz pacing. Time-domain, frequency-domain and non-linear analyses were used to quantify APD variability. Results: Mean atrial APD (90% repolarization) was 23.5 ± 6.3 ms and standard deviation (SD) was 0.9 ± 0.5 ms (n = 6 hearts). Coefficient of variation (CoV) was 4.0 ± 1.9% and root mean square (RMS) of successive differences in APDs was 0.3 ± 0.2 ms. The peaks for low- and high-frequency were 0.7 ± 0.5 and 2.7 ± 0.9 Hz, respectively, with percentage powers of 39.0 ± 20.5 and 59.3 ± 22.9%. Poincaré plots of APDn+1 against APDn revealed ellipsoid shapes. The ratio of the SD along the line-of-identity (SD2) to the SD perpendicular to the line-of-identity (SD1) was 8.28 ± 4.78. Approximate and sample entropy were 0.57 ± 0.12 and 0.57 ± 0.15, respectively. Detrended fluctuation analysis revealed short- and long-term fluctuation slopes of 1.80 ± 0.15 and 0.85 ± 0.29, respectively. When compared to atrial APDs, ventricular APDs were longer (ANOVA, P < 0.05), showed lower mean SD and CoV but similar RMS of successive differences in APDs and showed lower SD2 (P < 0.05). No difference in the remaining parameters was observed. Conclusion: Beat-to-beat variability in APD is observed in mouse hearts during regular pacing. Atrial MAPs showed greater degree of variability than ventricular MAPs. Non-linear techniques offer further insights on short-term and long-term variability and signal complexity.
Collapse
Affiliation(s)
- Gary Tse
- Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Hao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Fiona Yin Wah Chan
- School of Biological Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - George Bazoukis
- Laboratory of Cardiac Electrophysiology, Second Department of Cardiology, Evangelismos General Hospital of Athens, Athens, Greece
| | - Konstantinos P Letsas
- Laboratory of Cardiac Electrophysiology, Second Department of Cardiology, Evangelismos General Hospital of Athens, Athens, Greece
| | - William K K Wu
- State Key Laboratory of Digestive Disease, Department of anesthesia and Intensive Care, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, College of Veterinary Medicine and Life Science, City University of Hong Kong, Hong Kong, China.,State Key Laboratory of Marine Pollution at City University of Hong Kong, Hong Kong, China.,Department of Materials Science and Engineering, College of Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Wing Tak Wong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
8
|
Complex aberrant splicing in the induced pluripotent stem cell–derived cardiomyocytes from a patient with long QT syndrome carrying KCNQ1-A344Aspl mutation. Heart Rhythm 2018; 15:1566-1574. [DOI: 10.1016/j.hrthm.2018.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Indexed: 02/06/2023]
|