1
|
Miao X, Li X, Ma P, Li M, Jiang Y, Wang P, Zhou X, Wang L, Shang P, Zhang Q, Feng F. NLRP3 inflammasome-mediated disruption of mitochondrial homeostasis in alveolar macrophages contributes to ozone-induced acute lung inflammatory injury. Acta Biochim Biophys Sin (Shanghai) 2024. [PMID: 39420831 DOI: 10.3724/abbs.2024171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Ozone (O 3), a prevalent atmospheric pollutant, can induce lung injury. However, the molecular mechanisms of O 3-induced acute lung inflammatory injury remain unclear. In this study, we investigate the abnormal changes in and molecular mechanism of mitochondrial homeostasis in alveolar macrophages (AMs) in O 3-induced acute lung inflammatory injury mice. Mitochondria and mitochondrial reactive oxygen species (mtROS) are labeled with Mito-Tracker® Deep Red and MitoSOX Red, respectively. Mitochondrial DNA (mtDNA) in AMs from the bronchoalveolar lavage fluid (BALF) is detected via real-time PCR, and the expressions of mitochondrial fusion/fission-related and biogenesis-related proteins in AMs are determined via immunofluorescence staining. Our data show that in O 3-induced acute lung inflammatory injury mice, the number of AMs and the protein expression of the NLRP3 inflammasome complex in the lung tissue are increased. In AMs from O 3-exposed mice, the number of mitochondria, mtROS, and fission-related protein DRP1 are increased, but the levels of Na +-K +-ATPase, fusion-related protein OPA1, biogenesis-related protein NRF1 and mtDNA are significantly decreased. Compared with that in O 3-exposed WT mice, lung inflammation is attenuated, especially the indicators of mitochondrial homeostatic imbalance in AMs, which are alleviated in NLRP3 ‒/‒ and Caspase-1 ‒/‒ mice after O 3 exposure. These findings indicate that the NLRP3 inflammasome-mediated imbalance in mitochondrial homeostasis in AMs contributes to O 3-induced acute lung inflammatory injury. This study may provide a new target for the prevention of lung inflammation induced by O 3.
Collapse
Affiliation(s)
- Xinyi Miao
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xinling Li
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Pengwei Ma
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyuan Li
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yuting Jiang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Pengpeng Wang
- Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaolei Zhou
- Department of Pulmonary Medicine, Chest Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450000, China
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Pingping Shang
- Key Laboratory of Tobacco Chemistry, Zhengzhou Tobacco Research Institute, CNTC, Zhengzhou 450001, China
| | - Qiao Zhang
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Feifei Feng
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
2
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2024:10.1007/s12035-024-04359-2. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
3
|
Wen W, Zhou J, Zhan C, Wang J. Microglia as a Game Changer in Epilepsy Comorbid Depression. Mol Neurobiol 2024; 61:4021-4037. [PMID: 38048030 DOI: 10.1007/s12035-023-03810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
As one of the most common neurological diseases, epilepsy is often accompanied by psychiatric disorders. Depression is the most universal comorbidity of epilepsy, especially in temporal lobe epilepsy (TLE). Therefore, it is urgently needed to figure out potential mechanisms and the optimization of therapeutic strategies. Microglia play a pivotal role in the coexistent relationship between epilepsy and depression. Activated microglia released cytokines like IL-6 and IL-1β, orchestrating neuroinflammation especially in the hippocampus, worsening both depression and epilepsy. The decrease of intracellular K+ is a common part in various molecular changes. The P2X7-NLRP3-IL-1β is a major inflammatory pathway that disrupts brain network. Extra ATP and CX3CL1 also lead to neuronal excitotoxicity and blood-brain barrier (BBB) disruption. Regulating neuroinflammation aiming at microglia-related molecules is capable of suspending the vicious mutual aggravating circle of epilepsy and depression. Other overlaps between epilepsy and depression lie in transcriptomic, neuroimaging, diagnosis and treatment. Hippocampal sclerosis (HS) and amygdala enlargement (AE) may be the underlying macroscopic pathological changes according to current studies. Extant evidence shows that cognitive behavioral therapy (CBT) and antidepressants like selective serotonin-reuptake inhibitors (SSRIs) are safe, but the effect is limited. Improvement in depression is likely to reduce the frequency of seizure. More comprehensive experiments are warranted to better understand the relationship between them.
Collapse
Affiliation(s)
- Wenrong Wen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jingsheng Zhou
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chang'an Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jun Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou Avenue North, Guangzhou, 1838, Guangdong Province, China.
- The First Clinical Medicine College, Southern Medical University, Guangzhou, Guangdong Province, China.
- Neural Networks Surgery Team, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
4
|
Lin J(C, Hwang S(W, Luo H, Mohamud Y. Double-Edged Sword: Exploring the Mitochondria-Complement Bidirectional Connection in Cellular Response and Disease. BIOLOGY 2024; 13:431. [PMID: 38927311 PMCID: PMC11200454 DOI: 10.3390/biology13060431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Mitochondria serve an ultimate purpose that seeks to balance the life and death of cells, a role that extends well beyond the tissue and organ systems to impact not only normal physiology but also the pathogenesis of diverse diseases. Theorized to have originated from ancient proto-bacteria, mitochondria share similarities with bacterial cells, including their own circular DNA, double-membrane structures, and fission dynamics. It is no surprise, then, that mitochondria interact with a bacterium-targeting immune pathway known as a complement system. The complement system is an ancient and sophisticated arm of the immune response that serves as the body's first line of defense against microbial invaders. It operates through a complex cascade of protein activations, rapidly identifying and neutralizing pathogens, and even aiding in the clearance of damaged cells and immune complexes. This dynamic system, intertwining innate and adaptive immunity, holds secrets to understanding numerous diseases. In this review, we explore the bidirectional interplay between mitochondrial dysfunction and the complement system through the release of mitochondrial damage-associated molecular patterns. Additionally, we explore several mitochondria- and complement-related diseases and the potential for new therapeutic strategies.
Collapse
Affiliation(s)
- Jingfei (Carly) Lin
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Sinwoo (Wendy) Hwang
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
5
|
Zhan T, Tang S, Du J, Liu J, Yu B, Yang Y, Xie Y, Qiu Y, Li G, Gao Y. Implication of lncRNA MSTRG.81401 in Hippocampal Pyroptosis Induced by P2X7 Receptor in Type 2 Diabetic Rats with Neuropathic Pain Combined with Depression. Int J Mol Sci 2024; 25:1186. [PMID: 38256257 PMCID: PMC10816120 DOI: 10.3390/ijms25021186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Major depressive disorder (MDD) is a common complication of diabetes and is often observed alongside diabetic neuropathic pain (DNP) as a comorbidity in diabetic patients. Long non-coding RNA (lncRNA) plays an important role in various pathophysiological processes. The P2X7 receptor is responsible for triggering inflammatory responses, such as pyroptosis, linked to pain and depression. The aim of this study was to investigate the effect of lncRNA MSTRG.81401 on hippocampal pyroptosis induced by the P2X7 receptor in diabetic rats with DNP combined with MDD (DNP + MDD). Our results showed that the expression of lncRNA MSTRG.81401 was significantly elevated in the hippocampus of DNP + MDD rats compared with the control group. Following the administration of shRNA targeting lncRNA MSTRG.81401, a notable elevation in mechanical and thermal pain thresholds was observed in rats with comorbid DNP and MDD. Additionally, significant improvements in depression-like behaviors were evident in the open-field test (OFT), sucrose preference test (SPT), and forced swim test (FST). In the DNP + MDD rats, elevated levels in hippocampal P2X7 receptor mRNA and protein were observed, along with increased co-expression of P2X7 and the astrocytic marker glial fibrillary acidic protein (GFAP). Meanwhile, in DNP + MDD rats, the heightened mRNA expression of NOD-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), pyroptosis-related protein Gasdermin D (GSDMD), caspase-1, IL-1β, IL-18, and TNF-α was detected, in addition to increased serum levels of IL-1β, IL-18 and TNF-α. After shRNA treatment with lncRNA MSTRG.81401, the above abnormal changes in indicators for pyroptosis and inflammation were improved. Therefore, our study demonstrates that shRNA of lncRNA MSTRG.81401 can alleviate the pain and depression-like behaviors in diabetic rats associated with the comorbidity of DNP and MDD by inhibiting the hippocampal P2X7 receptor-mediated pyroptosis pathway and pro-inflammatory responses. This suggests that the P2X7R/NLRP3/caspase-1 implicated pyroptosis and inflammatory scenario may serve as a potential target for the management of comorbid DNP and MDD in diabetes.
Collapse
Affiliation(s)
- Ting Zhan
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Shanshan Tang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Junpei Du
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Jingshuang Liu
- Joint Program of Nanchang University and Queen Mary University of London, Nanchang University, Nanchang 330006, China;
| | - Bodong Yu
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China;
| | - Yuxin Yang
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yuting Xie
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yanting Qiu
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Guodong Li
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
| | - Yun Gao
- Department of Physiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (T.Z.); (S.T.); (J.D.); (Y.Y.); (Y.X.); (Y.Q.); (G.L.)
- Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang 330006, China
| |
Collapse
|
6
|
Wu A, Zhang J. Neuroinflammation, memory, and depression: new approaches to hippocampal neurogenesis. J Neuroinflammation 2023; 20:283. [PMID: 38012702 PMCID: PMC10683283 DOI: 10.1186/s12974-023-02964-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
As one of most common and severe mental disorders, major depressive disorder (MDD) significantly increases the risks of premature death and other medical conditions for patients. Neuroinflammation is the abnormal immune response in the brain, and its correlation with MDD is receiving increasing attention. Neuroinflammation has been reported to be involved in MDD through distinct neurobiological mechanisms, among which the dysregulation of neurogenesis in the dentate gyrus (DG) of the hippocampus (HPC) is receiving increasing attention. The DG of the hippocampus is one of two niches for neurogenesis in the adult mammalian brain, and neurotrophic factors are fundamental regulators of this neurogenesis process. The reported cell types involved in mediating neuroinflammation include microglia, astrocytes, oligodendrocytes, meningeal leukocytes, and peripheral immune cells which selectively penetrate the blood-brain barrier and infiltrate into inflammatory regions. This review summarizes the functions of the hippocampus affected by neuroinflammation during MDD progression and the corresponding influences on the memory of MDD patients and model animals.
Collapse
Affiliation(s)
- Anbiao Wu
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Jiyan Zhang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
7
|
Krisanova N, Pozdnyakova N, Pastukhov A, Dudarenko M, Shatursky O, Gnatyuk O, Afonina U, Pyrshev K, Dovbeshko G, Yesylevskyy S, Borisova T. Amphiphilic anti-SARS-CoV-2 drug remdesivir incorporates into the lipid bilayer and nerve terminal membranes influencing excitatory and inhibitory neurotransmission. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183945. [PMID: 35461828 PMCID: PMC9023372 DOI: 10.1016/j.bbamem.2022.183945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/05/2022]
Abstract
Remdesivir is a novel antiviral drug, which is active against the SARS-CoV-2 virus. Remdesivir is known to accumulate in the brain but it is not clear whether it influences the neurotransmission. Here we report diverse and pronounced effects of remdesivir on transportation and release of excitatory and inhibitory neurotransmitters in rat cortex nerve terminals (synaptosomes) in vitro. Direct incorporation of remdesivir molecules into the cellular membranes was shown by FTIR spectroscopy, planar phospholipid bilayer membranes and computational techniques. Remdesivir decreases depolarization-induced exocytotic release of L-[14C] glutamate and [3H] GABA, and also [3H] GABA uptake and extracellular level in synaptosomes in a dose-dependent manner. Fluorimetric studies confirmed remdesivir-induced impairment of exocytosis in nerve terminals and revealed a decrease in synaptic vesicle acidification. Our data suggest that remdesivir dosing during antiviral therapy should be precisely controlled to prevent possible neuromodulatory action at the presynaptic level. Further studies of neurotropic and membranotropic effects of remdesivir are necessary.
Collapse
Affiliation(s)
- Natalia Krisanova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Natalia Pozdnyakova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Artem Pastukhov
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Marina Dudarenko
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Oleg Shatursky
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Olena Gnatyuk
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Uliana Afonina
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Kyrylo Pyrshev
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine
| | - Galina Dovbeshko
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine
| | - Semen Yesylevskyy
- The Department of Physics of biological systems, Institute of Physics, NAS of Ukraine, 46 Nauky Ave., Kyiv 03680, Ukraine; Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France
| | - Tatiana Borisova
- The Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Str., Kyiv 01054, Ukraine.
| |
Collapse
|
8
|
Teraoka S, Honda M, Makishima K, Shimizu R, Tsounapi P, Yumioka T, Iwamoto H, Li P, Morizane S, Hikita K, Hisatome I, Takenaka A. Early effects of an adipose-derived stem cell sheet against detrusor underactivity in a rat cryo-injury model. Life Sci 2022; 301:120604. [DOI: 10.1016/j.lfs.2022.120604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/25/2022]
|
9
|
Brégère C, Schwendele B, Radanovic B, Guzman R. Microglia and Stem-Cell Mediated Neuroprotection after Neonatal Hypoxia-Ischemia. Stem Cell Rev Rep 2022; 18:474-522. [PMID: 34382141 PMCID: PMC8930888 DOI: 10.1007/s12015-021-10213-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2021] [Indexed: 12/14/2022]
Abstract
Neonatal hypoxia-ischemia encephalopathy (HIE) refers to a brain injury in term infants that can lead to death or lifelong neurological deficits such as cerebral palsy (CP). The pathogenesis of this disease involves multiple cellular and molecular events, notably a neuroinflammatory response driven partly by microglia, the brain resident macrophages. Treatment options are currently very limited, but stem cell (SC) therapy holds promise, as beneficial outcomes are reported in animal studies and to a lesser degree in human trials. Among putative mechanisms of action, immunomodulation is considered a major contributor to SC associated benefits. The goal of this review is to examine whether microglia is a cellular target of SC-mediated immunomodulation and whether the recruitment of microglia is linked to brain repair. We will first provide an overview on microglial activation in the rodent model of neonatal HI, and highlight its sensitivity to developmental age. Two complementary questions are then addressed: (i) do immune-related treatments impact microglia and provide neuroprotection, (ii) does stem cell treatment modulates microglia? Finally, the immune-related findings in patients enrolled in SC based clinical trials are discussed. Our review points to an impact of SCs on the microglial phenotype, but heterogeneity in experimental designs and methodological limitations hamper our understanding of a potential contribution of microglia to SC associated benefits. Thorough analyses of the microglial phenotype are warranted to better address the relevance of the neuroimmune crosstalk in brain repair and improve or advance the development of SC protocols in humans.
Collapse
Affiliation(s)
- Catherine Brégère
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Bernd Schwendele
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Boris Radanovic
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland
| | - Raphael Guzman
- Department of Biomedicine and Department of Neurosurgery, Faculty of Medicine, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Gonçalves MCB, Andrejew R, Gubert C. The Purinergic System as a Target for the Development of Treatments for Bipolar Disorder. CNS Drugs 2022; 36:787-801. [PMID: 35829960 PMCID: PMC9345801 DOI: 10.1007/s40263-022-00934-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 11/27/2022]
Abstract
The neurobiological and neurochemical mechanisms underlying the pathophysiology of bipolar disorder are complex and not yet fully understood. From circadian disruption to neuroinflammation, many pathways and signaling molecules are important contributors to bipolar disorder development, some specific to a disease subtype or a cycling episode. Pharmacological agents for bipolar disorder have shown only partial efficacy, including mood stabilizers and antipsychotics. The purinergic hypothesis for bipolar disorder emerges in this scenario as a promising target for further research and drug development, given its role in neurotransmission and neuroinflammation that results in behavioral and mood regulation. Here, we review the basic concepts of purinergic signaling in the central nervous system and its contribution to bipolar disorder pathophysiology. Allopurinol and novel P2X7 receptor antagonists are promising candidates for treating bipolar disorder. We further explore currently available pharmacotherapies and the emerging new purinergic targets for drug development in bipolar disorder.
Collapse
Affiliation(s)
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, University of Melbourne, 30 Royal Parade, Parkville, VIC, 3032, Australia.
| |
Collapse
|
11
|
Wen C, Xie L, Hu C. Roles of mesenchymal stem cells and exosomes in interstitial cystitis/bladder pain syndrome. J Cell Mol Med 2021; 26:624-635. [PMID: 34953040 PMCID: PMC8817120 DOI: 10.1111/jcmm.17132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/13/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is characterized by several symptoms of higher sensitivity of the lower urinary tract, such as bladder pain/discomfort, urgency, urinary frequency, pelvic pain and nocturia. Although the pathophysiology of IC/BPS is not fully understood, the hypothesis suggests that mast cell activation, glycosaminoglycan (GAG) layer defects, urothelium permeability disruption, inflammation, autoimmune disorder and infection are potential mechanisms. Mesenchymal stem cells (MSCs) have been proven to protect against tissue injury in IC/BPS by migrating into bladders, differentiating into key bladder cells, inhibiting mast cell accumulation and cellular apoptosis, inhibiting inflammation and oxidative stress, alleviating collagen fibre accumulation and enhancing tissue regeneration in bladder tissues. In addition, MSCs can protect against tissue injury in IC/BPS by secreting various soluble factors, including exosomes and other soluble factors, with antiapoptotic, anti-inflammatory, angiogenic and immunomodulatory properties in a cell-to-cell independent manner. In this review, we comprehensively summarized the current potential pathophysiological mechanisms and standard treatments of IC/BPS, and we discussed the potential mechanisms and therapeutic effects of MSCs and MSC-derived exosomes in alleviating tissue injury in IC/BPS models.
Collapse
Affiliation(s)
- Chao Wen
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Liping Xie
- Department of Urology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chenxia Hu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Infectious Diseases, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Garrosa-Jiménez J, Sánchez Carro Y, Ovejero-Benito MC, Del Sastre E, García AG, López MG, López-García P, Cano-Abad MF. Intracellular calcium and inflammatory markers, mediated by purinergic stimulation, are differentially regulated in monocytes of patients with major depressive disorder. Neurosci Lett 2021; 765:136275. [PMID: 34606909 DOI: 10.1016/j.neulet.2021.136275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/06/2021] [Accepted: 09/25/2021] [Indexed: 11/24/2022]
Abstract
The P2X7 receptor (P2X7R) is a ligand-gated ion channel that is being recognized as a major player in neuropsychiatric disorders such as Major Depressive Disorder (MDD). P2X7R activation is triggered by high extracellular ATP concentrations, leading to channel opening and inducing an increase in cytosolic calcium concentration ([Ca2+]c), that activates the inflammatory pathway. Those receptors are expressed not only in CNS cells but also in peripheral blood cells, where they are activated in response to inflammatory molecules such as bacterial lipopolysaccharide (LPS). LPS induced-tissue damage promotes an elevation of extracellular ATP, triggering the NRLP3-inflammasome assembly and activation that, sequentially, induces caspase-1 cleavage and IL-1β processing and secretion. In this context, we attempt to understand the role of P2X7R in [Ca2+]c homeostasis regulation, inflammasome expression and its pharmacological modulation in MDD. For this purpose, monocytes were isolated from peripheral blood of MDD patients and [Ca2+]c was monitored with the intracellular probe Fura-2. Our results point out to P2X7R as the responsible of the Ca2+ imbalance, as well as TNF-α-dependent activation of caspase-1 in MDD patients. In addition, P2X7R blockade with its specific antagonist, JNJ-47965567, reduces the Ca2+ entry upon Bz-ATP exposure. Altogether, our results point that MDD patients have both, Ca2+ homeostasis alteration and an inflammatory status, which promote an independent-inflammasome activation of caspase-1. Therefore, we propose the pharmacological modulation of P2X7R as a therapeutic approach against MDD symptoms.
Collapse
Affiliation(s)
- Javier Garrosa-Jiménez
- Instituto Teófilo Hernando de I+D del Medicamento, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, (IIS-IP)., Madrid, Spain
| | - Yolanda Sánchez Carro
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain; Department of Psychiatry, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María C Ovejero-Benito
- Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, (IIS-IP)., Madrid, Spain; Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Eric Del Sastre
- Instituto Teófilo Hernando de I+D del Medicamento, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio G García
- Instituto Teófilo Hernando de I+D del Medicamento, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando de I+D del Medicamento, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, (IIS-IP)., Madrid, Spain
| | - Pilar López-García
- Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, (IIS-IP)., Madrid, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Carlos III Health Institute, Spain
| | - María F Cano-Abad
- Instituto Teófilo Hernando de I+D del Medicamento, Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, (IIS-IP)., Madrid, Spain.
| |
Collapse
|
13
|
Jones GH, Vecera CM, Pinjari OF, Machado-Vieira R. Inflammatory signaling mechanisms in bipolar disorder. J Biomed Sci 2021; 28:45. [PMID: 34112182 PMCID: PMC8194019 DOI: 10.1186/s12929-021-00742-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Bipolar disorder is a decidedly heterogeneous and multifactorial disease, with a high individual and societal burden. While not all patients display overt markers of elevated inflammation, significant evidence suggests that aberrant immune signaling contributes to all stages of the disease, and likely explains the elevated rates of comorbid inflammatory illnesses seen in this population. While individual systems have been intensely studied and targeted, a relative paucity of attention has been given to the interconnecting role of inflammatory signals therein. This review presents an updated overview of some of the most prominent pathophysiologic mechanisms in bipolar disorder, from mitochondrial, endoplasmic reticular, and calcium homeostasis, to purinergic, kynurenic, and hormonal/neurotransmitter signaling, showing inflammation to act as a powerful nexus between these systems. Several areas with a high degree of mechanistic convergence within this paradigm are highlighted to present promising future targets for therapeutic development and screening.
Collapse
Affiliation(s)
- Gregory H Jones
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA.
| | - Courtney M Vecera
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| | - Omar F Pinjari
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, Houston, TX, 77054, USA
| |
Collapse
|
14
|
Solini A, Rossi C, Santini E, Giuntini M, Raggi F, Parolini F, Biancalana E, Del Prete E, Bonuccelli U, Ceravolo R. P2X7 receptor/NLRP3 inflammasome complex and α-synuclein in peripheral blood mononuclear cells: a prospective study in neo-diagnosed, treatment-naïve Parkinson's disease. Eur J Neurol 2021; 28:2648-2656. [PMID: 33991356 DOI: 10.1111/ene.14918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 01/20/2023]
Abstract
BACKGROUND AND PURPOSE Neuroinflammation and probably systemic inflammation, with abnormal α-synuclein deposition, participate in the development of Parkinson's disease (PD). The P2X7 receptor/NLRP3 inflammasome complex is upregulated in the brain of PD patients. By a prospective approach, the degree of systemic activation of such complex, and its regulatory mechanisms, were explored in treatment-naïve PD individuals. METHODS The expression and functional activity of the inflammasome were measured in peripheral blood mononuclear cells of 25 newly diagnosed PD patients and 25 controls at baseline and after 12 months of pharmacological treatment, exploring the intracellular signalling involved and its epigenetic regulation. RESULTS De novo PD patients were characterized by a systemic hyper-expression of the P2X7R/NLRP3 inflammasome platform, probably able to modulate lymphomonocyte α-synuclein, whose brain deposits represent the main pathogenetic factor of PD. A reduced c-Jun N-terminal kinase (JNK) phosphorylation might be the intracellular signalling mediating this effect. miR-7 and miR-30, implied in the pathogenesis of PD and in the post-transcriptional control of α-synuclein and NLRP3 expression, were also increased in PD. After 1 year of usual anti-Parkinson treatments, such inflammatory platform was significantly reduced. CONCLUSIONS Mononuclear cells of newly diagnosed PD subjects display a hyper-expression of the P2X7R/NLRP3 inflammasome platform that seems to modulate cellular α-synuclein content and is reduced after PD treatment; an impaired JNK phosphorylation might be the intracellular signalling mediating this effect, undergoing an epigenetic regulation by miR-7 and miR-30.
Collapse
Affiliation(s)
- Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Chiara Rossi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | | | - Martina Giuntini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Raggi
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| | - Federico Parolini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Edoardo Biancalana
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ubaldo Bonuccelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
15
|
Oliveira-Giacomelli Á, Petiz LL, Andrejew R, Turrini N, Silva JB, Sack U, Ulrich H. Role of P2X7 Receptors in Immune Responses During Neurodegeneration. Front Cell Neurosci 2021; 15:662935. [PMID: 34122013 PMCID: PMC8187565 DOI: 10.3389/fncel.2021.662935] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson's and Alzheimer's disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases.
Collapse
Affiliation(s)
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Terravecchia C, Mostile G, Rascunà C, Arabia G, Barone P, Marconi R, Morgante L, Quattrone A, Nicoletti A, Zappia M. Does an association between cigarette smoking and Parkinson's Disease-related psychosis exist? Insights from a large non-demented cohort. J Neurol Sci 2021; 427:117509. [PMID: 34082149 DOI: 10.1016/j.jns.2021.117509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Parkinson's Disease-related Psychosis (PDP) encompasses a spectrum of symptoms ranging from "minor" hallucinations to formed hallucinations and delusions. Notably, cognitive impairment has been recognized as the strongest risk factor for PDP. Several evidences suggest a possible role of cigarette smoking in both cognition and psychotic syndromes. OBJECTIVES To evaluate the possible independent association between cigarette smoking and PDP in a large cohort of non-demented PD patients. METHODS A cohort of non-demented PD patients was selected from the FRAGAMP study population. All participants underwent a standardised structured questionnaire to assess demographic, clinical and environmental exposure data. Clinical features were assessed using UPDRS, HY stage, AIMS, MMSE and Hamilton Rating Scale for Depression. Presence of psychotic symptoms was assessed using UPDRS-I.2 score. Diagnosis of PDP was made according to NINDS/NIMH criteria. RESULTS Four hundred eighty-five non-demented PD patients were enrolled [292 men (60.2%); mean age ± SD 65.6 ± 9.8]. Among them, 28 (5.8%) had PDP. Multivariate analysis, adjusting by HY stage, MMSE and LED, shown an independent association between PDP and "nightmares-abnormal movements during sleep" and current smoking [adjOR 7.39 (95%CI 1.45-37.69; P-value 0.016)]. CONCLUSIONS Our findings provide interesting insights about the possible role of current smoking in facilitating the occurrence of psychotic symptoms in PD.
Collapse
Affiliation(s)
- Claudio Terravecchia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Giovanni Mostile
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy; Oasi Research Institute-IRCCS, Troina, Italy
| | - Cristina Rascunà
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gennarina Arabia
- Institute of Neurology, University "Magna Graecia", Catanzaro, Italy
| | - Paolo Barone
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | | | | | - Andrea Quattrone
- Institute of Neurology, University "Magna Graecia", Catanzaro, Italy
| | - Alessandra Nicoletti
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Mario Zappia
- Department of Medical and Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy.
| |
Collapse
|
17
|
Jimenez-Duran G, Triantafilou M. Metabolic regulators of enigmatic inflammasomes in autoimmune diseases and crosstalk with innate immune receptors. Immunology 2021; 163:348-362. [PMID: 33682108 PMCID: PMC8274167 DOI: 10.1111/imm.13326] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/17/2022] Open
Abstract
Nucleotide‐binding domain and leucine‐rich repeat receptor (NLR)‐mediated inflammasome activation is important in host response to microbes, danger‐associated molecular patterns (DAMPs) and metabolic disease. Some NLRs have been shown to interact with distinct cell metabolic pathways and cause negative regulation, tumorigenesis and autoimmune disorders, interacting with multiple innate immune receptors to modulate disease. NLR activation is therefore crucial in host response and in the regulation of metabolic pathways that can trigger a wide range of immunometabolic diseases or syndromes. However, the exact mode by which some of the less well‐studied NLR inflammasomes are activated, interact with other metabolites and immune receptors, and the role they play in the progression of metabolic diseases is still not fully elucidated. In this study, we review up‐to‐date evidence regarding NLR function in metabolic pathways and the interplay with other immune receptors involved in GPCR signalling, gut microbiota and the complement system, in order to gain a better understanding of its link to disease processes.
Collapse
Affiliation(s)
- Gisela Jimenez-Duran
- Immunology Network, GlaxoSmithKline, Stevenage, UK.,Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| | - Martha Triantafilou
- Immunology Network, GlaxoSmithKline, Stevenage, UK.,Institute of Infection and Immunity, School of Medicine, University Hospital of Wales, Cardiff University, Cardiff, UK
| |
Collapse
|
18
|
Saber S, Youssef ME, Sharaf H, Amin NA, El-Shedody R, Aboutouk FH, El-Galeel YA, El-Hefnawy A, Shabaka D, Khalifa A, Saleh RA, Osama D, El-Zoghby G, Gobba NA. BBG enhances OLT1177-induced NLRP3 inflammasome inactivation by targeting P2X7R/NLRP3 and MyD88/NF-κB signaling in DSS-induced colitis in rats. Life Sci 2021; 270:119123. [PMID: 33548287 DOI: 10.1016/j.lfs.2021.119123] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Chronic ulceration of the colon is associated with the activation of TLR4/NF-κB and P2X7R/NLRP3 signaling pathways. We investigated the effect of individual or combined administration of BBG, a P2X7R blocker, and OLT1177, a selective NLRP3 inhibitor, in the dextran sodium sulfate-induced ulcerative colitis (UC) rat model. The ulcerative rats were treated orally with brilliant blue G (BBG) (50 mg/kg/day) or OLT1177 (200 mg/kg/day) or a combination of both. Myd88 and NF-κB levels were measured by ELISA, qRT-PCR, and immunohistochemical staining. Cytokines known to be associated with TLR4/NF-κB or P2X7R/NLRP3 signaling were measured by ELISA. P2X7R and NLRP3 expression were measured by ELISA and qRT-PCR. The administration of BBG or OLT1177 ameliorated the toxic effects of DSS on the colon as they restored normal colonic macroscopic and microscopic morphology. BBG administration, but not OLT1177, reduced the expression of Myd88, NF-κB, IL-6, and TNF-α in addition to lowering P2X7R and oxidative stress levels. Individual BBG or OLT1177 administration decreased NLRP3 inflammasome recruitment and subsequent activation of caspase-1, IL-1β, and IL-18. However, the combined administration of OLT1177 with BBG potentiated its inhibitory effect on the NLRP3, which was reflected by the additional suppressive effect on caspase-1, IL-1β, IL-18 levels. In conclusion, BBG/OLT1177 exhibited complementary effects and effectively ameliorated UC. This novel approach provides a basis for the clinical application of this combination for the treatment of IBDs and might also be promising for the pharmacological intervention of other NLRP3 inflammasome-dependent inflammatory conditions.
Collapse
Affiliation(s)
- Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Hossam Sharaf
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Noha A Amin
- Department of Haematology, Theodor Bilharz Research Institute, Egypt
| | - Ruwyda El-Shedody
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Farah H Aboutouk
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Yumna Abd El-Galeel
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Amr El-Hefnawy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Dina Shabaka
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Arwa Khalifa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Renad A Saleh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Donya Osama
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ghada El-Zoghby
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Naglaa A Gobba
- Department of Pharmacology and Toxicology, College of Pharmacy, Misr University for Science and Technology, Egypt
| |
Collapse
|
19
|
Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry 2021; 26:1044-1059. [PMID: 33328588 PMCID: PMC7738776 DOI: 10.1038/s41380-020-00965-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/04/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Scientists and health professionals are exhaustively trying to contain the coronavirus disease 2019 (COVID-19) pandemic by elucidating viral invasion mechanisms, possible drugs to prevent viral infection/replication, and health cares to minimize individual exposure. Although neurological symptoms are being reported worldwide, neural acute and long-term consequences of SARS-CoV-2 are still unknown. COVID-19 complications are associated with exacerbated immunoinflammatory responses to SARS-CoV-2 invasion. In this scenario, pro-inflammatory factors are intensely released into the bloodstream, causing the so-called "cytokine storm". Both pro-inflammatory factors and viruses may cross the blood-brain barrier and enter the central nervous system, activating neuroinflammatory responses accompanied by hemorrhagic lesions and neuronal impairment, which are largely described processes in psychiatric disorders and neurodegenerative diseases. Therefore, SARS-CoV-2 infection could trigger and/or worse brain diseases. Moreover, patients with central nervous system disorders associated to neuroimmune activation (e.g. depression, Parkinson's and Alzheimer's disease) may present increased susceptibility to SARS-CoV-2 infection and/or achieve severe conditions. Elevated levels of extracellular ATP induced by SARS-CoV-2 infection may trigger hyperactivation of P2X7 receptors leading to NLRP3 inflammasome stimulation as a key mediator of neuroinvasion and consequent neuroinflammatory processes, as observed in psychiatric disorders and neurodegenerative diseases. In this context, P2X7 receptor antagonism could be a promising strategy to prevent or treat neurological complications in COVID-19 patients.
Collapse
|
20
|
Klegeris A. Regulation of neuroimmune processes by damage- and resolution-associated molecular patterns. Neural Regen Res 2021; 16:423-429. [PMID: 32985460 PMCID: PMC7996015 DOI: 10.4103/1673-5374.293134] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Sterile inflammatory processes are essential for the maintenance of central nervous system homeostasis, but they also contribute to various neurological disorders, including neurotrauma, stroke, and demyelinating or neurodegenerative diseases. Immune mechanisms in the central nervous system and periphery are regulated by a diverse group of endogenous proteins, which can be broadly divided into the pro-inflammatory damage-associated molecular patterns (DAMPs) and anti-inflammatory resolution-associated molecular patterns (RAMPs), even though there is notable overlap between the DAMP- and RAMP-like activities for some of these molecules. Both groups of molecular patterns were initially described in peripheral immune processes and pathologies; however, it is now evident that at least some, if not all, of these immunomodulators also regulate neuroimmune processes and contribute to neuroinflammation in diverse central nervous system disorders. The review of recent literature demonstrates that studies on DAMPs and RAMPs of the central nervous system still lag behind the much broader research effort focused on their peripheral counterparts. Nevertheless, this review also reveals that over the last five years, significant advances have been made in our understanding of the neuroimmune functions of several well-established DAMPs, including high-mobility group box 1 protein and interleukin 33. Novel neuroimmune functions have been demonstrated for other DAMPs that previously were considered almost exclusively as peripheral immune regulators; they include mitochondrial transcription factor A and cytochrome C. RAMPs of the central nervous system are an emerging area of neuroimmunology with very high translational potential since some of these molecules have already been used in preclinical and clinical studies as candidate therapeutic agents for inflammatory conditions, such as multiple sclerosis and rheumatoid arthritis. The therapeutic potential of DAMP antagonists and neutralizing antibodies in central nervous system neuroinflammatory diseases is also supported by several of the identified studies. It can be concluded that further studies of DAMPs and RAMPs of the central nervous system will continue to be an important and productive field of neuroimmunology.
Collapse
Affiliation(s)
- Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna, BC, Canada
| |
Collapse
|
21
|
Abstract
Stem cells are capable of self-renewal and differentiation into a range of cell types and promote the release of chemokines and progenitor cells necessary for tissue regeneration. Mesenchymal stem cells are multipotent progenitor cells with enhanced proliferation and differentiation capabilities and less tumorigenicity than conventional adult stem cells; these cells are also easier to acquire. Bladder dysfunction is often chronic in nature with limited treatment modalities due to its undetermined pathophysiology. Most treatments focus on symptom alleviation rather than pathognomonic changes repair. The potential of stem cell therapy for bladder dysfunction has been reported in preclinical models for stress urinary incontinence, overactive bladder, detrusor underactivity, and interstitial cystitis/bladder pain syndrome. Despite these findings, however, stem cell therapy is not yet available for clinical use. Only one pilot study on detrusor underactivity and a handful of clinical trials on stress urinary incontinence have reported the effects of stem cell treatment. This limitation may be due to stem cell function loss following ex vivo expansion, poor in vivo engraftment or survival after transplantation, or a lack of understanding of the precise mechanisms of action underlying therapeutic outcomes and in vivo behavior of stem cells administered to target organs. Efficacy comparisons with existing treatment modalities are also needed for the successful clinical application of stem cell therapies. This review describes the current status of stem cell research on treating bladder dysfunction and suggests future directions to facilitate clinical applications of this promising treatment modality, particularly for bladder dysfunction.
Collapse
|
22
|
Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V. Neuroinflammation and depression: A review. Eur J Neurosci 2020; 53:151-171. [DOI: 10.1111/ejn.14720] [Citation(s) in RCA: 225] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 02/20/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
| | - Pascal Barone
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Samuel Leman
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Thomas Desmidt
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Bruno Brizard
- UMR 1253 iBrain Université de Tours Inserm Tours France
| | - Wissam El Hage
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| | | | | | - Vincent Camus
- UMR 1253 iBrain Université de Tours Inserm Tours France
- CHRU de Tours Tours France
| |
Collapse
|
23
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|