1
|
Han Z, Wang K, Ding S, Zhang M. Cross-talk of inflammation and cellular senescence: a new insight into the occurrence and progression of osteoarthritis. Bone Res 2024; 12:69. [PMID: 39627227 PMCID: PMC11615234 DOI: 10.1038/s41413-024-00375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 12/06/2024] Open
Abstract
Osteoarthritis (OA) poses a significant challenge in orthopedics. Inflammatory pathways are regarded as central mechanisms in the onset and progression of OA. Growing evidence suggests that senescence acts as a mediator in inflammation-induced OA. Given the lack of effective treatments for OA, there is an urgent need for a clearer understanding of its pathogenesis. In this review, we systematically summarize the cross-talk between cellular senescence and inflammation in OA. We begin by focusing on the mechanisms and hallmarks of cellular senescence, summarizing evidence that supports the relationship between cellular senescence and inflammation. We then discuss the mechanisms of interaction between cellular senescence and inflammation, including senescence-associated secretory phenotypes (SASP) and the effects of pro- and anti-inflammatory interventions on cellular senescence. Additionally, we focus on various types of cellular senescence in OA, including senescence in cartilage, subchondral bone, synovium, infrapatellar fat pad, stem cells, and immune cells, elucidating their mechanisms and impacts on OA. Finally, we highlight the potential of therapies targeting senescent cells in OA as a strategy for promoting cartilage regeneration.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Ketao Wang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Shenglong Ding
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China
| | - Mingzhu Zhang
- Department of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, 100730, Beijing, PR China.
| |
Collapse
|
2
|
Zupan J, Stražar K. Synovium-Derived and Bone-Derived Mesenchymal Stem/Stromal Cells from Early OA Patients Show Comparable In Vitro Properties to Those of Non-OA Patients. Cells 2024; 13:1238. [PMID: 39120270 PMCID: PMC11311703 DOI: 10.3390/cells13151238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/10/2024] Open
Abstract
Degenerative disorders like osteoarthritis (OA) might impair the ability of tissue-resident mesenchymal stem/stromal cells (MSCs) for tissue regeneration. As primary cells with MSC-like properties are exploited for patient-derived stem cell therapies, a detailed evaluation of their in vitro properties is needed. Here, we aimed to compare synovium-derived and bone-derived MSCs in early hip OA with those of patients without OA (non-OA). Tissues from three synovial sites of the hip (paralabral synovium, cotyloid fossa, inner surface of peripheral capsule) were collected along with peripheral trabecular bone from 16 patients undergoing hip arthroscopy (8 early OA and 8 non-OA patients). Primary cells isolated from tissues were compared using detailed in vitro analyses. Gene expression profiling was performed for the skeletal stem cell markers podoplanin (PDPN), CD73, CD164 and CD146 as well as for immune-related molecules to assess their immunomodulatory potential. Synovium-derived and bone-derived MSCs from early OA patients showed comparable clonogenicity, cumulative population doublings, osteogenic, adipogenic and chondrogenic potential, and immunophenotype to those of non-OA patients. High PDPN/low CD146 profile (reminiscent of skeletal stem cells) was identified mainly for non-OA MSCs, while low PDPN/high CD146 mainly defined early OA MSCs. These data suggest that MSCs from early OA patients are not affected by degenerative changes in the hip. Moreover, the synovium represents an alternative source of MSCs for patient-derived stem cell therapies, which is comparable to bone. The expression profile reminiscent of skeletal stem cells suggests the combination of low PDPN and high CD146 as potential biomarkers in early OA.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia;
| | - Klemen Stražar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloska 9, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Plečko M, Kovačić N, Grčević D, Šućur A, Vukasović Barišić A, Duvančić T, Bohaček I, Delimar D. Distinctiveness of Femoral and Acetabular Mesenchymal Stem and Progenitor Populations in Patients with Primary and Secondary Hip Osteoarthritis Due to Developmental Dysplasia. Int J Mol Sci 2024; 25:5173. [PMID: 38791213 PMCID: PMC11121609 DOI: 10.3390/ijms25105173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Primary hip osteoarthritis (pOA) develops without an apparent underlying reason, whereas secondary osteoarthritis arises due to a known cause, such as developmental dysplasia of the hips (DDH-OA). DDH-OA patients undergo total hip arthroplasty at a much younger age than pOA patients (50.58 vs. 65 years in this study). Recently, mesenchymal stem and progenitor cells (MSPCs) have been investigated for the treatment of osteoarthritis due to their immunomodulatory and regenerative potential. This study identified cells in subchondral bone expressing common MSPC markers (CD10, CD73, CD140b, CD146, CD164, CD271, GD2, PDPN) in vivo and compared the proportions of these populations in pOA vs. DDH-OA, further correlating them with clinical, demographic, and morphological characteristics. The differences in subchondral morphology and proportions of non-hematopoietic cells expressing MSPC markers were noted depending on OA type and skeletal location. Bone sclerosis was more prominent in the pOA acetabulum (Ac) in comparison to the DDH-OA Ac and in the pOA Ac compared to the pOA femoral head (Fh). Immunophenotyping indicated diagnosis-specific differences, such as a higher proportion of CD164+ cells and their subsets in DDH-OA, while pOA contained a significantly higher proportion of CD10+ and GD2+ cells and subsets, with CD271+ being marginally higher. Location-specific differences showed that CD271+ cells were more abundant in the Fh compared to the Ac in DDH-OA patients. Furthermore, immunohistochemical characterization of stromal bone-adjacent cells expressing MSPC markers (CD10, CD164, CD271, GD2) in the Ac and Fh compartments was performed. This research proved that immunophenotype profiles and morphological changes are both location- and disease-specific. Furthermore, it provided potentially effective targets for therapeutic strategies. Future research should analyze the differentiation potential of subsets identified in this study. After proper characterization, they can be selectively targeted, thus enhancing personalized medicine approaches in joint disease management.
Collapse
Affiliation(s)
- Mihovil Plečko
- Department of Orthopaedic Surgery, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.P.)
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Anatomy, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Danka Grčević
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Alan Šućur
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department of Physiology and Immunology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Tea Duvančić
- Department of Innovative Diagnostics, Srebrnjak Children’s Hospital, 10000 Zagreb, Croatia;
| | - Ivan Bohaček
- Department of Orthopaedic Surgery, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.P.)
- Department of Orthopaedic Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Domagoj Delimar
- Department of Orthopaedic Surgery, University Hospital Center Zagreb, 10000 Zagreb, Croatia; (M.P.)
- Department of Orthopaedic Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Malavašič P, Polajžer S, Lovšin N. Anaphase-Promoting Complex Subunit 1 Associates with Bone Mineral Density in Human Osteoporotic Bone. Int J Mol Sci 2023; 24:12895. [PMID: 37629076 PMCID: PMC10454667 DOI: 10.3390/ijms241612895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Genome-wide association studies (GWAS) are one of the most common approaches to identify genetic loci that are associated with bone mineral density (BMD). Such novel genetic loci represent new potential targets for the prevention and treatment of fragility fractures. GWAS have identified hundreds of associations with BMD; however, only a few have been functionally evaluated. A locus significantly associated with femoral neck BMD at the genome-wide level is intronic SNP rs17040773 located in the intronic region of the anaphase-promoting complex subunit 1 (ANAPC1) gene (p = 1.5 × 10-9). Here, we functionally evaluate the role of ANAPC1 in bone remodelling by examining the expression of ANAPC1 in human bone and muscle tissues and during the osteogenic differentiation of human primary mesenchymal stem cells (MSCs). The expression of ANAPC1 was significantly decreased 2.3-fold in bone tissues and 6.2-fold in muscle tissue from osteoporotic patients as compared to the osteoarthritic and control tissues. Next, we show that the expression of ANAPC1 changes during the osteogenic differentiation process of human MSCs. Moreover, the silencing of ANAPC1 in human osteosarcoma (HOS) cells reduced RUNX2 expression, suggesting that ANAPC1 affects osteogenic differentiation through RUNX2. Altogether, our results indicate that ANAPC1 plays a role in bone physiology and in the development of osteoporosis.
Collapse
Affiliation(s)
- Petra Malavašič
- General Hospital Novo Mesto, Šmihelska Cesta 1, 8000 Novo Mesto, Slovenia;
| | - Sara Polajžer
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| | - Nika Lovšin
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
5
|
Konteles V, Papathanasiou I, Tzetis M, Goussetis E, Trachana V, Mourmoura E, Balis C, Malizos K, Tsezou A. Integration of Transcriptome and MicroRNA Profile Analysis of iMSCs Defines Their Rejuvenated State and Conveys Them into a Novel Resource for Cell Therapy in Osteoarthritis. Cells 2023; 12:1756. [PMID: 37443790 PMCID: PMC10340510 DOI: 10.3390/cells12131756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Although MSCs grant pronounced potential for cell therapies, several factors, such as their heterogeneity restrict their use. To overcome these limitations, iMSCs (MSCs derived from induced pluripotent stem cells (iPSCs) have attracted attention. Here, we analyzed the transcriptome of MSCs, iPSCs and iMSCs derived from healthy individuals and osteoarthritis (OA) patients and explored miRNA-mRNA interactions during these transitions. We performed RNA-seq and gene expression comparisons and Protein-Protein-Interaction analysis followed by GO enrichment and KEGG pathway analyses. MicroRNAs' (miRNA) expression profile using miRarrays and differentially expressed miRNA's impact on regulating iMSCs gene expression was also explored. Our analyses revealed that iMSCs derivation from iPSCs favors the expression of genes conferring high proliferation, differentiation, and migration properties, all of which contribute to a rejuvenated state of iMSCs compared to primary MSCs. Additionally, our exploration of the involvement of miRNAs in this rejuvenated iMSCs transcriptome concluded in twenty-six miRNAs that, as our analysis showed, are implicated in pluripotency. Notably, the identified here interactions between hsa-let7b/i, hsa-miR-221/222-3p, hsa-miR-302c, hsa-miR-181a, hsa-miR-331 with target genes HMGA2, IGF2BP3, STARD4, and APOL6 could prove to be the necessary tools that will convey iMSCs into the ideal mean for cell therapy in osteoarthritis.
Collapse
Affiliation(s)
- Vasileios Konteles
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Ioanna Papathanasiou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Maria Tzetis
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evgenios Goussetis
- Stem Cell Transplant Unit, Aghia Sophia Children’s Hospital, 11527 Athens, Greece;
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| | - Evanthia Mourmoura
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Charalampos Balis
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
| | - Konstantinos Malizos
- Department of Orthopaedics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| | - Aspasia Tsezou
- Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece; (V.K.); (I.P.)
- Department of Biology, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece;
| |
Collapse
|
6
|
Gerami MH, Khorram R, Rasoolzadegan S, Mardpour S, Nakhaei P, Hashemi S, Al-Naqeeb BZT, Aminian A, Samimi S. Emerging role of mesenchymal stem/stromal cells (MSCs) and MSCs-derived exosomes in bone- and joint-associated musculoskeletal disorders: a new frontier. Eur J Med Res 2023; 28:86. [PMID: 36803566 PMCID: PMC9939872 DOI: 10.1186/s40001-023-01034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are membranous vesicles with a 30 to 150 nm diameter secreted by mesenchymal stem/stromal cells (MSCs) and other cells, such as immune cells and cancer cells. Exosomes convey proteins, bioactive lipids, and genetic components to recipient cells, such as microRNAs (miRNAs). Consequently, they have been implicated in regulating intercellular communication mediators under physiological and pathological circumstances. Exosomes therapy as a cell-free approach bypasses many concerns regarding the therapeutic application of stem/stromal cells, including undesirable proliferation, heterogeneity, and immunogenic effects. Indeed, exosomes have become a promising strategy to treat human diseases, particularly bone- and joint-associated musculoskeletal disorders, because of their characteristics, such as potentiated stability in circulation, biocompatibility, low immunogenicity, and toxicity. In this light, a diversity of studies have indicated that inhibiting inflammation, inducing angiogenesis, provoking osteoblast and chondrocyte proliferation and migration, and negative regulation of matrix-degrading enzymes result in bone and cartilage recovery upon administration of MSCs-derived exosomes. Notwithstanding, insufficient quantity of isolated exosomes, lack of reliable potency test, and exosomes heterogeneity hurdle their application in clinics. Herein, we will deliver an outline respecting the advantages of MSCs-derived exosomes-based therapy in common bone- and joint-associated musculoskeletal disorders. Moreover, we will have a glimpse the underlying mechanism behind the MSCs-elicited therapeutic merits in these conditions.
Collapse
Affiliation(s)
- Mohammad Hadi Gerami
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Khorram
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Rasoolzadegan
- grid.411600.2Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Mardpour
- grid.411705.60000 0001 0166 0922Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Nakhaei
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Hashemi
- grid.411036.10000 0001 1498 685XObstetrician, Gynaecology & Infertility Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Aminian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahar Samimi
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Alsaleh G, Richter FC, Simon AK. Age-related mechanisms in the context of rheumatic disease. Nat Rev Rheumatol 2022; 18:694-710. [PMID: 36329172 DOI: 10.1038/s41584-022-00863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Ageing is characterized by a progressive loss of cellular function that leads to a decline in tissue homeostasis, increased vulnerability and adverse health outcomes. Important advances in ageing research have now identified a set of nine candidate hallmarks that are generally considered to contribute to the ageing process and that together determine the ageing phenotype, which is the clinical manifestation of age-related dysfunction in chronic diseases. Although most rheumatic diseases are not yet considered to be age related, available evidence increasingly emphasizes the prevalence of ageing hallmarks in these chronic diseases. On the basis of the current evidence relating to the molecular and cellular ageing pathways involved in rheumatic diseases, we propose that these diseases share a number of features that are observed in ageing, and that they can therefore be considered to be diseases of premature or accelerated ageing. Although more data are needed to clarify whether accelerated ageing drives the development of rheumatic diseases or whether it results from the chronic inflammatory environment, central components of age-related pathways are currently being targeted in clinical trials and may provide a new avenue of therapeutic intervention for patients with rheumatic diseases.
Collapse
Affiliation(s)
- Ghada Alsaleh
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK.
- Botnar Research Centre, NDORMS, University of Oxford, Oxford, UK.
| | - Felix C Richter
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| | - Anna K Simon
- The Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Jasenc L, Stražar K, Mihelič A, Mihalič R, Trebše R, Haring G, Jeras M, Zupan J. In Vitro Characterization of the Human Skeletal Stem Cell-like Properties of Primary Bone-Derived Mesenchymal Stem/Stromal Cells in Patients with Late and Early Hip Osteoarthritis. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060899. [PMID: 35743928 PMCID: PMC9228448 DOI: 10.3390/life12060899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Human skeletal stem cells (hSSCs) were recently identified as podoplanin (PDPN)/CD73/CD164-positive and CD146-negative cells that decline with age, and play a role in the pathogenesis of osteoarthritis (OA). The aim of this study was to identify the hSSC-like properties of bone-derived mesenchymal stem/stromal cells (MSCs) of patients with late and early OA. Methods: First, we performed gene expression profiling for the hSSC markers in 32 patients with late and early OA, and donors without OA. Having identified the low expression of hSSC markers in late OA patients, we further performed trilineage differentiation and immunophenotyping for hSSC makers in the selected subsets from each donor group. Results: Our results show no differences in osteogenesis, chondrogenesis, and adipogenesis between the MSCs from the three groups. However, the immunophenotyping shows lower CD164 in MSCs from early OA patients in comparison with late and no OA subjects (p = 0.002 and p = 0.017). Conclusions: Our study shows that the in vitro hSSC-like properties of bone-derived MSCs are similar in patients with early and late OA, and in donors without OA. However, the lower percentage of CD164-positive MSCs in early OA patients indicates the potential of CD164 as a marker of the onset of OA.
Collapse
Affiliation(s)
- Lara Jasenc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia;
| | - Klemen Stražar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, Zaloska 9, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana Vrazov trg 2, 1000 Ljubljana, Slovenia;
| | - Anže Mihelič
- Valdoltra Orthopaedic Hospital, Jadranska 31, 6280 Ankaran, Slovenia; (A.M.); (R.M.)
| | - Rene Mihalič
- Valdoltra Orthopaedic Hospital, Jadranska 31, 6280 Ankaran, Slovenia; (A.M.); (R.M.)
| | - Rihard Trebše
- Faculty of Medicine, University of Ljubljana Vrazov trg 2, 1000 Ljubljana, Slovenia;
- Valdoltra Orthopaedic Hospital, Jadranska 31, 6280 Ankaran, Slovenia; (A.M.); (R.M.)
| | - Gregor Haring
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana., Korytkova 2, 1000 Ljubljana, Slovenia;
| | - Matjaž Jeras
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia;
- Celica, Biomedical Center, d.o.o., Tehnoloski Park 24, 1000 Ljubljana, Slovenia
- Correspondence: (M.J.); (J.Z.)
| | - Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, Askerceva 7, 1000 Ljubljana, Slovenia;
- Correspondence: (M.J.); (J.Z.)
| |
Collapse
|
9
|
Haring G, Zupan J. Knee and Peri-Knee Tissues of Post Mortem Donors Are Strategic Sources of Mesenchymal Stem/Stromal Cells for Regenerative Procedures. Int J Mol Sci 2022; 23:ijms23063170. [PMID: 35328593 PMCID: PMC8956054 DOI: 10.3390/ijms23063170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022] Open
Abstract
Tissues of post mortem donors represent valuable alternative sources for the isolation of primary cells with mesenchymal stem/stromal cell (MSC)-like properties. However, the properties of primary cells derived from different tissues and at different post mortem times are poorly recognized. Here, we aim to identify the optimal tissue source between three knee and peri-knee tissues for the isolation of primary cells with MSC-like properties, and to define the influence of the time post mortem on the properties of these cells. We harvested tissues from subchondral bone marrow, synovium and periosteum from 32 donors at various post mortem times. Primary cells were evaluated using detailed in vitro analyses, including colony formation, trilineage differentiation, immunophenotyping and skeletal stem cell marker-gene expression profiling. These data show that the primary cells with MSC-like properties isolated from these three tissues show no differences in their properties, except for higher expression of CD146 in bone-marrow cells. The success rate of the primary cell isolation is dependent on the post mortem time. However, synovium and periosteum cells isolated more than 48 h post mortem show improved osteogenic and chondrogenic potential. This study suggests that knee and peri-knee tissues from donors even 3 days post mortem are strategic sources of MSCs for regenerative procedures.
Collapse
Affiliation(s)
- Gregor Haring
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-4769626
| |
Collapse
|
10
|
Kulus M, Sibiak R, Stefańska K, Zdun M, Wieczorkiewicz M, Piotrowska-Kempisty H, Jaśkowski JM, Bukowska D, Ratajczak K, Zabel M, Mozdziak P, Kempisty B. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells 2021; 10:cells10123278. [PMID: 34943786 PMCID: PMC8699543 DOI: 10.3390/cells10123278] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are currently one of the most extensively researched fields due to their promising opportunity for use in regenerative medicine. There are many sources of MSCs, of which cells of perinatal origin appear to be an invaluable pool. Compared to embryonic stem cells, they are devoid of ethical conflicts because they are derived from tissues surrounding the fetus and can be safely recovered from medical waste after delivery. Additionally, perinatal MSCs exhibit better self-renewal and differentiation properties than those derived from adult tissues. It is important to consider the anatomy of perinatal tissues and the general description of MSCs, including their isolation, differentiation, and characterization of different types of perinatal MSCs from both animals and humans (placenta, umbilical cord, amniotic fluid). Ultimately, signaling pathways are essential to consider regarding the clinical applications of MSCs. It is important to consider the origin of these cells, referring to the anatomical structure of the organs of origin, when describing the general and specific characteristics of the different types of MSCs as well as the pathways involved in differentiation.
Collapse
Affiliation(s)
- Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Rafał Sibiak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Division of Reproduction, Department of Obstetrics, Gynecology, and Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Katarzyna Stefańska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
| | - Maciej Zdun
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Maria Wieczorkiewicz
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
| | - Hanna Piotrowska-Kempisty
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.Z.); (M.W.); (H.P.-K.)
- Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Jędrzej M. Jaśkowski
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (J.M.J.); (D.B.)
| | - Kornel Ratajczak
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Gora, 65-046 Zielona Gora, Poland;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland; (M.K.); (K.R.)
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (R.S.); (K.S.)
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA;
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Correspondence:
| |
Collapse
|
11
|
Yue D, Du L, Zhang B, Wu H, Yang Q, Wang M, Pan J. Time-dependently Appeared Microenvironmental Changes and Mechanism after Cartilage or Joint Damage and the Influences on Cartilage Regeneration. Organogenesis 2021; 17:85-99. [PMID: 34806543 DOI: 10.1080/15476278.2021.1991199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cartilage and joint damage easily degenerates cartilage and turns into osteoarthritis (OA), which seriously affects human life and work, and has no cure currently. The temporal and spatial changes of multiple microenvironments upon the damage of cartilage and joint are noticed, including the emergences of inflammation, bone remodeling, blood vessels, and nerves, as well as alterations of extracellular and pericellular matrix, oxygen tension, biomechanics, underneath articular cartilage tissues, and pH value. This review summarizes the existing literatures on microenvironmental changes, mechanisms, and their negative effects on cartilage regeneration following cartilage and joint damage. We conclude that time-dependently rebuilding the multiple normal microenvironments of damaged cartilage is the key for cartilage regeneration after systematic studies for the timing and correlations of various microenvironment changes.
Collapse
Affiliation(s)
- Danyang Yue
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Lin Du
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Bingbing Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Huan Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Qiong Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | - Min Wang
- Orthopedic Department, Xinqiao Hospital, Army Medical University, Chongqing, PR China
| | - Jun Pan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| |
Collapse
|
12
|
Xie J, Wang Y, Lu L, Liu L, Yu X, Pei F. Cellular senescence in knee osteoarthritis: molecular mechanisms and therapeutic implications. Ageing Res Rev 2021; 70:101413. [PMID: 34298194 DOI: 10.1016/j.arr.2021.101413] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 02/08/2023]
Abstract
Cellular senescence is the inability of cells to proliferate, which has both beneficial and detrimental effects on tissue development and homeostasis. Chronic accumulation of senescent cells is associated with age-related disease, including osteoarthritis, a common joint disease responsible for joint pain and disability in older adults. The pathology of this disease includes loss of cartilage, synovium inflammation, and subchondral bone remodeling. Senescent cells are present in the cartilage of people with advanced osteoarthritis, but the link between cellular senescence and this disease is unclear. In this review, we summarize current evidence for the role of cellular senescence of different cell types in the onset and progression of osteoarthritis. We focus on the underlying mechanisms of senescence in chondrocytes, which maintain the cartilage in joints, and review the role of the Forkhead family of transcription factors, which are involved in cartilage maintenance and osteoarthritis. Finally, we discuss the potential therapeutic value and implications of targeting senescent cells using senolytic agents or immune therapies, targeting the senescence-associated secretory phenotype of these cells using senomorphic agents, and renewing the plasticity of stem cells and chondrocytes. Our review highlights current gaps in understanding of the mechanism of senescence that may, when addressed, provided new options for modifying and treating disease in osteoarthritis.
Collapse
|
13
|
Zupan J, Strazar K, Kocijan R, Nau T, Grillari J, Marolt Presen D. Age-related alterations and senescence of mesenchymal stromal cells: Implications for regenerative treatments of bones and joints. Mech Ageing Dev 2021; 198:111539. [PMID: 34242668 DOI: 10.1016/j.mad.2021.111539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
The most common clinical manifestations of age-related musculoskeletal degeneration are osteoarthritis and osteoporosis, and these represent an enormous burden on modern society. Mesenchymal stromal cells (MSCs) have pivotal roles in musculoskeletal tissue development. In adult organisms, MSCs retain their ability to regenerate tissues following bone fractures, articular cartilage injuries, and other traumatic injuries of connective tissue. However, their remarkable regenerative ability appears to be impaired through aging, and in particular in age-related diseases of bones and joints. Here, we review age-related alterations of MSCs in musculoskeletal tissues, and address the underlying mechanisms of aging and senescence of MSCs. Furthermore, we focus on the properties of MSCs in osteoarthritis and osteoporosis, and how their changes contribute to onset and progression of these disorders. Finally, we consider current treatments that exploit the enormous potential of MSCs for tissue regeneration, as well as for innovative cell-free extracellular-vesicle-based and anti-aging treatment approaches.
Collapse
Affiliation(s)
- Janja Zupan
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Klemen Strazar
- Department of Orthopaedic Surgery, University Medical Centre Ljubljana, 1000, Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland Kocijan
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria; Medical Faculty of Bone Diseases, Sigmund Freud University Vienna, 1020, Vienna, Austria
| | - Thomas Nau
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Building 14, Mohamed Bin Rashid University of Medicine and Health Sciences Dubai, Dubai Healthcare City, Dubai, United Arab Emirates
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria; Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, 1180, Vienna, Austria
| | - Darja Marolt Presen
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the AUVA Trauma Research Centre, 1200, Vienna, Austria; Austrian Cluster for Tissue Regeneration, 1200, Vienna, Austria.
| |
Collapse
|
14
|
Xie J, Lu L, Yu X. [Research progress of cellular senescence in the pathogenesis of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2021; 35:519-526. [PMID: 33855840 DOI: 10.7507/1002-1892.202011065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the pathological effects of cellular senescence in the occurrence and development of osteoarthritis (OA) and potential therapeutic targets. Methods The role of chondrocyte senescence, synovial cell senescence, mesenchymal stem cells senescence in OA, and the biological mechanism and progress of chondrocyte senescence were summarized by consulting relevant domestic and abroad literature. Results The existing evidence has basically made clear that chondrocyte senescence, mesenchymal stem cells senescence, and cartilage repair abnormalities, and the occurrence and development of OA have a certain causal relationship, and the role of the senescence of synovial cells, especially synovial macrophages in OA is still unclear. Transcription factors and epigenetics are the main mechanisms that regulate the upstream pathways of cellular senescence. Signal communication between cells can promote the appearance of senescent phenotypes in healthy cells. Targeted elimination of senescent cells and promotion of mesenchymal stem cells rejuvenation can effectively delay the progress of OA. Conclusion Cellular senescence is an important biological phenomenon and potential therapeutic target in the occurrence and development of OA. In-depth study of its biological mechanism is helpful to the early prevention and treatment of OA.
Collapse
Affiliation(s)
- Jinwei Xie
- Department of Orthopaedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China.,Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| |
Collapse
|
15
|
Fernández-Francos S, Eiro N, Costa LA, Escudero-Cernuda S, Fernández-Sánchez ML, Vizoso FJ. Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. Int J Mol Sci 2021; 22:ijms22073576. [PMID: 33808241 PMCID: PMC8036553 DOI: 10.3390/ijms22073576] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Around 40% of the population will suffer at some point in their life a disease involving tissue loss or an inflammatory or autoimmune process that cannot be satisfactorily controlled with current therapies. An alternative for these processes is represented by stem cells and, especially, mesenchymal stem cells (MSC). Numerous preclinical studies have shown MSC to have therapeutic effects in different clinical conditions, probably due to their mesodermal origin. Thereby, MSC appear to play a central role in the control of a galaxy of intercellular signals of anti-inflammatory, regenerative, angiogenic, anti-fibrotic, anti-oxidative stress effects of anti-apoptotic, anti-tumor, or anti-microbial type. This concept forces us to return to the origin of natural physiological processes as a starting point to understand the evolution of MSC therapy in the field of regenerative medicine. These biological effects, demonstrated in countless preclinical studies, justify their first clinical applications, and draw a horizon of new therapeutic strategies. However, several limitations of MSC as cell therapy are recognized, such as safety issues, handling difficulties for therapeutic purposes, and high economic cost. For these reasons, there is an ongoing tendency to consider the use of MSC-derived secretome products as a therapeutic tool, since they reproduce the effects of their parent cells. However, it will be necessary to resolve key aspects, such as the choice of the ideal type of MSC according to their origin for each therapeutic indication and the implementation of new standardized production strategies. Therefore, stem cell science based on an intelligently designed production of MSC and or their derivative products will be able to advance towards an innovative and more personalized medical biotechnology.
Collapse
Affiliation(s)
| | - Noemi Eiro
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| | - Luis A. Costa
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
| | - Sara Escudero-Cernuda
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - María Luisa Fernández-Sánchez
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain; (S.E.-C.); (M.L.F.-S.)
| | - Francisco J. Vizoso
- Research Unit, Fundación Hospital de Jove, 33290 Gijón, Spain; (S.F.-F.); (L.A.C.)
- Correspondence: (N.E.); (F.J.V.); Tel.: +34-985320050 (ext. 84216)
| |
Collapse
|
16
|
Najar M, Fahmi H. Of Mesenchymal Stem/Stromal Cells and Osteoarthritis: Time to Merge the Latest Breakthroughs. Stem Cell Rev Rep 2020; 16:1016-1018. [DOI: 10.1007/s12015-020-10001-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|