1
|
Guo B, Huang X, Chen Y, Broxmeyer HE. Ex Vivo Expansion and Homing of Human Cord Blood Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:85-104. [PMID: 38228960 DOI: 10.1007/978-981-99-7471-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs. In this chapter, we will document the major advances regarding human HSC ex vivo expansion and homing and will also discuss the possibility of clinical translation of such laboratory work.
Collapse
Affiliation(s)
- Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Adebayo AK, Nakshatri H. Modeling Preclinical Cancer Studies under Physioxia to Enhance Clinical Translation. Cancer Res 2022; 82:4313-4321. [PMID: 36169928 PMCID: PMC9722631 DOI: 10.1158/0008-5472.can-22-2311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Oxygen (O2) plays a key role in cellular homeostasis. O2 levels are tightly regulated in vivo such that each tissue receives an optimal amount to maintain physiologic status. Physiologic O2 levels in various organs range between 2% and 9% in vivo, with the highest levels of 9% in the kidneys and the lowest of 0.5% in parts of the brain. This physiologic range of O2 tensions is disrupted in pathologic conditions such as cancer, where it can reach as low as 0.5%. Regardless of the state, O2 tension in vivo is maintained at significantly lower levels than ambient O2, which is approximately 21%. Yet, routine in vitro cellular manipulations are carried out in ambient air, regardless of whether or not they are eventually transferred to hypoxic conditions for subsequent studies. Even brief exposure of hematopoietic stem cells to ambient air can cause detrimental effects through a mechanism termed extraphysiologic oxygen shock/stress (EPHOSS), leading to reduced engraftment capabilities. Here, we provide an overview of the effects of ambient air exposure on stem and non-stem cell subtypes, with a focus on recent findings that reveal the impact of EPHOSS on cancer cells.
Collapse
Affiliation(s)
- Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
3
|
Aljoufi A, Zhang C, Ropa J, Chang W, Palam LR, Cooper S, Ramdas B, Capitano ML, Broxmeyer HE, Kapur R. Physioxia-induced downregulation of Tet2 in hematopoietic stem cells contributes to enhanced self-renewal. Blood 2022; 140:1263-1277. [PMID: 35772013 PMCID: PMC9479026 DOI: 10.1182/blood.2022015499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) manifest impaired recovery and self-renewal with a concomitant increase in differentiation when exposed to ambient air as opposed to physioxia. Mechanism(s) behind this distinction are poorly understood but have the potential to improve stem cell transplantation. Single-cell RNA sequencing of HSCs in physioxia revealed upregulation of HSC self-renewal genes and downregulation of genes involved in inflammatory pathways and HSC differentiation. HSCs under physioxia also exhibited downregulation of the epigenetic modifier Tet2. Tet2 is α-ketoglutarate, iron- and oxygen-dependent dioxygenase that converts 5-methylcytosine to 5-hydroxymethylcytosine, thereby promoting active transcription. We evaluated whether loss of Tet2 affects the number and function of HSCs and hematopoietic progenitor cells (HPCs) under physioxia and ambient air. In contrast to wild-type HSCs (WT HSCs), a complete nonresponsiveness of Tet2-/- HSCs and HPCs to changes in oxygen tension was observed. Unlike WT HSCs, Tet2-/- HSCs and HPCs exhibited similar numbers and function in either physioxia or ambient air. The lack of response to changes in oxygen tension in Tet2-/- HSCs was associated with similar changes in self-renewal and quiescence genes among WT HSC-physioxia, Tet2-/- HSC-physioxia and Tet2-/- HSC-air. We define a novel molecular program involving Tet2 in regulating HSCs under physioxia.
Collapse
Affiliation(s)
| | - Chi Zhang
- Department of Medical and Molecular Genetics, and
| | - James Ropa
- Department of Microbiology and Immunology
| | - Wennan Chang
- Department of Medical and Molecular Genetics, and
| | - Lakshmi Reddy Palam
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | | | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | | | | | - Reuben Kapur
- Department of Microbiology and Immunology
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
4
|
Wang X, Cooper S, Broxmeyer HE, Kapur R. Nuclear translocation of TFE3 under hypoxia enhances the engraftment of human hematopoietic stem cells. Leukemia 2022; 36:2144-2148. [PMID: 35732828 PMCID: PMC9343248 DOI: 10.1038/s41375-022-01628-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xuepeng Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Reuben Kapur
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
5
|
Jakubison BL, Sarkar T, Gudmundsson KO, Singh S, Sun L, Morris HM, Klarmann KD, Keller JR. ID2 and HIF-1α collaborate to protect quiescent hematopoietic stem cells from activation, differentiation, and exhaustion. J Clin Invest 2022; 132:152599. [PMID: 35775482 PMCID: PMC9246389 DOI: 10.1172/jci152599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/26/2022] [Indexed: 11/17/2022] Open
Abstract
Defining mechanism(s) that maintain tissue stem quiescence is important for improving tissue regeneration, cell therapies, aging, and cancer. We report here that genetic ablation of Id2 in adult hematopoietic stem cells (HSCs) promotes increased HSC activation and differentiation, which results in HSC exhaustion and bone marrow failure over time. Id2Δ/Δ HSCs showed increased cycling, ROS production, mitochondrial activation, ATP production, and DNA damage compared with Id2+/+ HSCs, supporting the conclusion that Id2Δ/Δ HSCs are less quiescent. Mechanistically, HIF-1α expression was decreased in Id2Δ/Δ HSCs, and stabilization of HIF-1α in Id2Δ/Δ HSCs restored HSC quiescence and rescued HSC exhaustion. Inhibitor of DNA binding 2 (ID2) promoted HIF-1α expression by binding to the von Hippel-Lindau (VHL) protein and interfering with proteasomal degradation of HIF-1α. HIF-1α promoted Id2 expression and enforced a positive feedback loop between ID2 and HIF-1α to maintain HSC quiescence. Thus, sustained ID2 expression could protect HSCs during stress and improve HSC expansion for gene editing and cell therapies.
Collapse
Affiliation(s)
- Brad L Jakubison
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Tanmoy Sarkar
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kristbjorn O Gudmundsson
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Shweta Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Lei Sun
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Holly M Morris
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| | - Kimberly D Klarmann
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan R Keller
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA.,Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI) - Frederick, NIH, Frederick, Maryland, USA
| |
Collapse
|
6
|
CaMKK2 Knockout Bone Marrow Cells Collected/Processed in Low Oxygen (Physioxia) Suggests CaMKK2 as a Hematopoietic Stem to Progenitor Differentiation Fate Determinant. Stem Cell Rev Rep 2022; 18:2513-2521. [PMID: 35262902 PMCID: PMC10072181 DOI: 10.1007/s12015-021-10306-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 10/18/2022]
Abstract
Little is known about a regulatory role of CaMKK2 for hematopoietic stem (HSC) and progenitor (HPC) cell function. To assess this, we used Camkk2-/- and wild type (WT) control mouse bone marrow (BM) cells. BM cells were collected/processed and compared under hypoxia (3% oxygen; physioxia) vs. ambient air (~21% oxygen). Subjecting cells collected to ambient air, even for a few minutes, causes a stress that we termed Extra Physiological Shock/Stress (EPHOSS) that causes differentiation of HSCs and HPCs. We consider physioxia collection/processing a more relevant way to assess HSC/HPC numbers and function, as the cells remain in an oxygen tension closer physiologic conditions. Camkk2-/- cells collected/processed at 3% oxygen had positive and negative effects respectively on HSCs (by engraftment using competitive transplantation with congenic donor and competitor cells and lethally irradiated congenic recipient mice), and HPCs (by colony forming assays of CFU-GM, BFU-E, and CFU-GEMM) compared to WT cells processed in ambient air. Thus, with cells collected/processed under physioxia, and therefore never exposed and naïve to ambient air conditions, CaMKK2 not only appears to act as an HSC to HPC differentiation fate determinant, but as we found for other intracellular mediators, the Camkk-/- mouse BM cells were relatively resistant to effects of EPHOSS. This information is of potential use for modulation of WT BM HSCs and HPCs for future clinical advantage.
Collapse
|
7
|
Patterson AM, Zhang S, Liu L, Li H, Singh P, Liu Y, Farag SS, Pelus LM. Meloxicam with Filgrastim may Reduce Oxidative Stress in Hematopoietic Progenitor Cells during Mobilization of Autologous Peripheral Blood Stem Cells in Patients with Multiple Myeloma. Stem Cell Rev Rep 2021; 17:2124-2138. [PMID: 34510361 DOI: 10.1007/s12015-021-10259-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Autologous stem cell transplantation (ASCT) is a potentially curative therapy but requires collection of sufficient blood stem cells (PBSC). Up to 40 % of patients with multiple myeloma (MM) fail to collect an optimum number of PBSC using filgrastim only and often require costly plerixafor rescue. The nonsteroidal anti-inflammatory drug meloxicam mobilizes PBSC in mice, nonhuman primates and normal volunteers, and has the potential to attenuate mobilization-induced oxidative stress on stem cells. In a single-center study, we evaluated whether a meloxicam regimen prior to filgrastim increases collection and/or homeostasis of CD34+ cells in MM patients undergoing ASCT. Mobilization was not significantly different with meloxicam in this study; a median of 2.4 × 106 CD34+ cells/kg were collected in the first apheresis and 9.2 × 106 CD34+ cells/kg were collected overall for patients mobilized with meloxicam-filgrastim, versus 4.1 × 106 in first apheresis and 7.2 × 106/kg overall for patients mobilized with filgrastim alone. CXCR4 expression was reduced on CD34+ cells and a higher CD4+/CD8+ T-cell ratio was observed after mobilization with meloxicam-filgrastim. All patients treated with meloxicam-filgrastim underwent ASCT, with neutrophil and platelet engraftment similar to filgrastim alone. RNA sequencing of purified CD34+ cells from 22 MM patients mobilized with meloxicam-filgrastim and 10 patients mobilized with filgrastim only identified > 4,800 differentially expressed genes (FDR < 0.05). Enrichment analysis indicated significant attenuation of oxidative phosphorylation and translational activity, possibly mediated by SIRT1, suggesting meloxicam may counteract oxidative stress during PBSC collection. Our results indicate that meloxicam was a safe, low-cost supplement to filgrastim mobilization, which appeared to mitigate HSPC oxidative stress, and may represent a simple means to lessen stem cell exhaustion and enhance graft quality.
Collapse
Affiliation(s)
- Andrea M Patterson
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Shuhong Zhang
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA
| | - Liqiong Liu
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Hongge Li
- Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Pratibha Singh
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 46202, Indianapolis, IN, USA.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Sherif S Farag
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA.
| | - Louis M Pelus
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, 980 West Walnut St, Indianapolis, IN, 46202, USA. .,Department of Microbiology & Immunology, Indiana University School of Medicine, 950 West Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Capitano ML, Mohamad SF, Cooper S, Guo B, Huang X, Gunawan AM, Sampson C, Ropa J, Srour EF, Orschell CM, Broxmeyer HE. Mitigating oxygen stress enhances aged mouse hematopoietic stem cell numbers and function. J Clin Invest 2021; 131:140177. [PMID: 33393491 DOI: 10.1172/jci140177] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/24/2020] [Indexed: 12/20/2022] Open
Abstract
Bone marrow (BM) hematopoietic stem cells (HSCs) become dysfunctional during aging (i.e., they are increased in number but have an overall reduction in long-term repopulation potential and increased myeloid differentiation) compared with young HSCs, suggesting limited use of old donor BM cells for hematopoietic cell transplantation (HCT). BM cells reside in an in vivo hypoxic environment yet are evaluated after collection and processing in ambient air. We detected an increase in the number of both young and aged mouse BM HSCs collected and processed in 3% O2 compared with the number of young BM HSCs collected and processed in ambient air (~21% O2). Aged BM collected and processed under hypoxic conditions demonstrated enhanced engraftment capability during competitive transplantation analysis and contained more functional HSCs as determined by limiting dilution analysis. Importantly, the myeloid-to-lymphoid differentiation ratio of aged BM collected in 3% O2 was similar to that detected in young BM collected in ambient air or hypoxic conditions, consistent with the increased number of common lymphoid progenitors following collection under hypoxia. Enhanced functional activity and differentiation of old BM collected and processed in hypoxia correlated with reduced "stress" associated with ambient air BM collection and suggests that aged BM may be better and more efficiently used for HCT if collected and processed under hypoxia so that it is never exposed to ambient air O2.
Collapse
Affiliation(s)
- Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Safa F Mohamad
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Scott Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Bin Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xinxin Huang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Zhongshan-Xuhui Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Andrea M Gunawan
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carol Sampson
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Edward F Srour
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Broxmeyer HE. All in for nuclear PFKP-induced CXCR4 metastasis: a T cell acute lymphoblastic leukemia prognostic marker. J Clin Invest 2021; 131:e151295. [PMID: 34396983 DOI: 10.1172/jci151295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Phosphofructokinase 1 (PFK1) is expressed in T cell acute lymphoblastic leukemia (T-ALL), where its upregulation is linked with cancer progression. While PFK1 functions in the glycolysis pathway within the cytoplasm, it is also present in the nucleus where it regulates gene transcription. In this issue of the JCI, Xueliang Gao, Shenghui Qin, et al. focus their mechanism-based investigation on the nucleocytoplasmic shuttling aspect of the PFK1 platelet isoform, PFKP. Functional nuclear export and localization sequences stimulated CXC chemokine receptor type 4 (CXCR4) expression to promote T-ALL invasion that involved cyclin D3/CDK6, c-Myc, and importin-9. Since the presence of nuclear PFKP is associated with poor survival in T-ALL, nuclear PFKP-induced CXCR4 expression might serve as a prognostic marker for T-ALL. More promising, though, are the mechanistic insights suggesting that approaches to dampening metastatic migration may have application to benefit patients with T-ALL.
Collapse
|
10
|
Broxmeyer HE, Yoder KK, Wu YC, Hutchins GD, Cooper SH, Farag SS. The Brain: Is it a Next Frontier to Better Understand the Regulation and Control of Hematopoiesis for Future Modulation and Treatment? Stem Cell Rev Rep 2021; 17:1083-1090. [PMID: 34255283 PMCID: PMC10784999 DOI: 10.1007/s12015-021-10203-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2021] [Indexed: 12/29/2022]
Abstract
We wish to suggest the possibility there is a link between the brain and hematopoiesis in the bone marrow and that in the future it may be possible to use such information for better understanding of the regulation of hematopoiesis, and for efficacious treatment of hematopoietic disorders.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2 Bldg, Room 302, Indianapolis, IN, 46202-5181, USA.
| | - Karmen K Yoder
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gary D Hutchins
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Scott H Cooper
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2 Bldg, Room 302, Indianapolis, IN, 46202-5181, USA
| | - Sherif S Farag
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
11
|
Ropa J, Trinh T, Aljoufi A, Broxmeyer HE. Consequences of coronavirus infections for primitive and mature hematopoietic cells: new insights and why it matters. Curr Opin Hematol 2021; 28:231-242. [PMID: 33656463 PMCID: PMC8269959 DOI: 10.1097/moh.0000000000000645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW In recent history there have been three outbreaks of betacoronavirus infections in humans, with the most recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2; causing Coronavirus disease 2019 [COVID-19]) outbreak leading to over two million deaths, with a rapidly rising death toll. Much remains unknown about host cells and tissues affected by coronavirus infections, including the hematopoietic system. Here, we discuss the recent findings examining effects that coronavirus infection or exposure has on hematopoietic cells and the clinical implications for these effects. RECENT FINDINGS Recent studies have centered on SARS-CoV-2, demonstrating that hematopoietic stem and progenitor cells and mature immune cells may be susceptible to infection and are impacted functionally by exposure to SARS-CoV-2 Spike protein. These findings have important implications regarding hematologic complications arising from COVID-19 and other coronavirus-induced disease, which we discuss here. SUMMARY Infection with coronaviruses sometimes leads to hematologic complications in patients, and these hematologic complications are associated with poorer prognosis. These hematologic complications may be caused by coronavirus direct infection or impact on primitive hematopoietic cells or mature immune cells, by indirect effects on these cells, or by a combination thereof. It is important to understand how hematologic complications arise in order to seek new treatments to improve patient outcomes.
Collapse
Affiliation(s)
- James Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hal E. Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
12
|
Broxmeyer HE, Capitano ML, Cooper S, Potchanant ES, Clapp DW. Numbers of long-term hematopoietic stem cells from bone marrow of fanca and fancc knockout mice can be greatly enhanced by their collection and processing in physioxia conditions. Blood Cells Mol Dis 2021; 86:102492. [PMID: 32896825 PMCID: PMC7686233 DOI: 10.1016/j.bcmd.2020.102492] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/12/2022]
Abstract
Fanconi anemia (FA) is associated with bone marrow failure. Bone marrow (BM) from patients with FA and fanca-/- and fancc-/- mice are deficient in hematopoietic stem (HSCs) and progenitor cells (HPCs). Decreased HSCs/HPCs compromise their use in human and mouse hematopoietic cell transplantation (HCT) and gene therapy to correct genetic defects causing FA. We reported increased collection of HSCs from mouse bone marrow and mobilized peripheral blood, and human cord blood of normal donors after collection/processing in low (3%) oxygen (physioxia). We assessed comparative contents of long-term (LT)-HSCs from BM of fanca-/- and fancc-/- when collected/processed at 3% O2, in order to negate effects of extra physiological shock stress (EPHOSS) induced by collection/processing in ambient air. Collection/processing of BM from fanca-/- and fancc-/- mice in physioxia demonstrated a ≥3-fold increase in LT-HSCs compared to that in ambient air. This was associated with decreased phenotypic multipotential progenitor cells and functional granulocyte macrophage, erythroid, and multi-potential progenitors, results similar to that for BM from normal donor mice. Increased collection of HSCs could have clinical applicability for gene therapy and HCT.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Departments of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Maegan L Capitano
- Departments of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Scott Cooper
- Departments of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - D Wade Clapp
- Departments of Microbiology and Pediatrics Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
13
|
Broxmeyer HE, Liu Y, Kapur R, Orschell CM, Aljoufi A, Ropa JP, Trinh T, Burns S, Capitano ML. Fate of Hematopoiesis During Aging. What Do We Really Know, and What are its Implications? Stem Cell Rev Rep 2020; 16:1020-1048. [PMID: 33145673 PMCID: PMC7609374 DOI: 10.1007/s12015-020-10065-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
There is an ongoing shift in demographics such that older persons will outnumber young persons in the coming years, and with it age-associated tissue attrition and increased diseases and disorders. There has been increased information on the association of the aging process with dysregulation of hematopoietic stem (HSC) and progenitor (HPC) cells, and hematopoiesis. This review provides an extensive up-to date summary on the literature of aged hematopoiesis and HSCs placed in context of potential artifacts of the collection and processing procedure, that may not be totally representative of the status of HSCs in their in vivo bone marrow microenvironment, and what the implications of this are for understanding aged hematopoiesis. This review covers a number of interactive areas, many of which have not been adequately explored. There are still many unknowns and mechanistic insights to be elucidated to better understand effects of aging on the hematopoietic system, efforts that will take multidisciplinary approaches, and that could lead to means to ameliorate at least some of the dysregulation of HSCs and HPCs associated with the aging process. Graphical Abstract.
Collapse
Affiliation(s)
- Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| | - Yan Liu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Reuben Kapur
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christie M Orschell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arafat Aljoufi
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - James P Ropa
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Thao Trinh
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA
| | - Sarah Burns
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University School of Medicine, 950 West Walnut Street, R2-302, Indianapolis, IN, 46202-5181, USA.
| |
Collapse
|