1
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
2
|
Aouabdi S, Aboalola D, Zakari S, Alwafi S, Nedjadi T, Alsiary R. Protective potential of mesenchymal stem cells against COVID-19 during pregnancy. Future Sci OA 2024; 10:FSO924. [PMID: 38836262 PMCID: PMC11149780 DOI: 10.2144/fsoa-2023-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 06/06/2024] Open
Abstract
SARS-CoV-2 causes COVID-19. COVID-19 has led to severe clinical illnesses and an unprecedented death toll. The virus induces immune inflammatory responses specifically cytokine storm in lungs. Several published reports indicated that pregnant females are less likely to develop severe symptoms compared with non-pregnant. Putative protective role of maternal blood circulating fetal mesenchymal stem cells (MSCs) has emerged and have been put forward as an explanation to alleviated symptoms. MSCs with immune-modulatory, anti-inflammatory and anti-viral roles, hold great potential for the treatment of COVID-19. MSCs could be an alternative to treat infections resulting from the SARS-CoV-2 and potential future outbreaks. This review focuses on the MSCs putative protective roles against COVID-19 in pregnant females.
Collapse
Affiliation(s)
- Sihem Aouabdi
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Doaa Aboalola
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Samer Zakari
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Suliman Alwafi
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Taoufik Nedjadi
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| | - Rawiah Alsiary
- King Abdullah International Medical Research Center, Jeddah, 21423, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, 21423, Saudi Arabia
| |
Collapse
|
3
|
MSC-Exosomes Carrying miRNA - Could they Enhance Tocilizumab Activity in Neuropathology of COVID-19? Stem Cell Rev Rep 2023; 19:279-283. [PMID: 35794511 PMCID: PMC9261118 DOI: 10.1007/s12015-022-10409-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 01/29/2023]
|
4
|
Demchenko A, Lavrov A, Smirnikhina S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res 2022; 390:317-333. [PMID: 36178558 PMCID: PMC9522545 DOI: 10.1007/s00441-022-03686-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/08/2022] [Indexed: 01/19/2023]
Abstract
Lung diseases occupy a leading position in human morbidity and are the third leading cause of death. Often the chronic forms of these diseases do not respond to therapy, so that lung transplantation is the only treatment option. The development of cellular and biotechnologies offers a new solution-the use of lung organoids for transplantation in such patients. Here, we review types of lung organoids, methods of their production and characterization, and experimental works on transplantation in vivo. These results show the promise of work in this direction. Despite the current problems associated with a low degree of cell engraftment, immune response, and insufficient differentiation, we are confident that organoid transplantation will find it is clinical application.
Collapse
Affiliation(s)
- Anna Demchenko
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| | - Alexander Lavrov
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| | - Svetlana Smirnikhina
- Research Centre for Medical Genetics, Laboratory of Genome Editing, Moscow, 115522 Russia
| |
Collapse
|
5
|
Razi S, Molavi Z, Mirmotalebisohi SA, Niknam Z, Sameni M, Niazi V, Adibi A, Yazdani M, Ranjbar MM, Zali H. Mesenchymal Stem Cells in the Treatment of New Coronavirus Pandemic: A Novel Promising Therapeutic Approach. Adv Pharm Bull 2022; 12:206-216. [PMID: 35620342 PMCID: PMC9106958 DOI: 10.34172/apb.2022.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/12/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022] Open
Abstract
After severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) outbreaks, coronavirus disease 2019 (COVID-19) is the third coronavirus epidemic that soon turned into a pandemic. This virus causes acute respiratory syndrome in infected people. The mortality rate of SARS-CoV-2 infection will probably rise unless efficient treatments or vaccines are developed. The global funding and medical communities have started performing more than five hundred clinical examinations on a broad spectrum of repurposed drugs to acquire effective treatments. Besides, other novel treatment approaches have also recently emerged, including cellular host-directed therapies. They counteract the unwanted responses of the host immune system that led to the severe pathogenesis of SARS-CoV-2. This brief review focuses on mesenchymal stem cell (MSC) principles in treating the COVID-19. The US clinical trials database and the world health organization database for clinical trials have reported 82 clinical trials (altogether) exploring the effects of MSCs in COVID-19 treatment. MSCs also had better be tried for treating other pathogens worldwide. MSC treatment may have the potential to end the high mortality rate of COVID-19. Besides, it also limits the long-term inability of survivors.
Collapse
Affiliation(s)
- Sara Razi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zahra Molavi
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Seyed Amir Mirmotalebisohi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Marzieh Sameni
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirjafar Adibi
- Departments of Orthopedics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Yazdani
- Institute of Biochemistry and Biophysics, Tehran University, Tehran, Iran
| | - Mohammad Mehdi Ranjbar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Mesenchymal Stem Cells Versus Covid-19. Can They Win the Battle? SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2021-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells with numerous features potentially useful in various pathologies. It has been shown that MSCs have regenerative potential due to modulation of immune system response, inflammation diminishing, trans differentiation into various types of cells, proangiogenetic and anti fibrotic influence. Besides all of these traits, MSCs posses anti viral capacity and have been further employed in clinical trails since last year. Here, we revised immunomodulatory, biological and antiviral traits of MSCs, but also pathogenesis of Covid-19 and it’s impact on immune system. Conspicuously, there is a growing number of studies examining effect of MSCs in patients suffering from Covid-19 pneumonia and ARDS. Since MSCs are in theory capable of healing lung injury and inflammation, here we discuss hypothesis, pros and cons of MSCs treatment in Covid-19 patients. Finally, we debate if MSCs based therapy can be promising tool for Covid-19 lung pathologies.
Collapse
|
7
|
Singh B, Mal G, Verma V, Tiwari R, Khan MI, Mohapatra RK, Mitra S, Alyami SA, Emran TB, Dhama K, Moni MA. Stem cell therapies and benefaction of somatic cell nuclear transfer cloning in COVID-19 era. Stem Cell Res Ther 2021; 12:283. [PMID: 33980321 PMCID: PMC8114669 DOI: 10.1186/s13287-021-02334-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The global health emergency of COVID-19 has necessitated the development of multiple therapeutic modalities including vaccinations, antivirals, anti-inflammatory, and cytoimmunotherapies, etc. COVID-19 patients suffer from damage to various organs and vascular structures, so they present multiple health crises. Mesenchymal stem cells (MSCs) are of interest to treat acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 infection. MAIN BODY Stem cell-based therapies have been verified for prospective benefits in copious preclinical and clinical studies. MSCs confer potential benefits to develop various cell types and organoids for studying virus-human interaction, drug testing, regenerative medicine, and immunomodulatory effects in COVID-19 patients. Apart from paving the ways to augment stem cell research and therapies, somatic cell nuclear transfer (SCNT) holds unique ability for a wide range of health applications such as patient-specific or isogenic cells for regenerative medicine and breeding transgenic animals for biomedical applications. Being a potent cell genome-reprogramming tool, the SCNT has increased prominence of recombinant therapeutics and cellular medicine in the current era of COVID-19. As SCNT is used to generate patient-specific stem cells, it avoids dependence on embryos to obtain stem cells. CONCLUSIONS The nuclear transfer cloning, being an ideal tool to generate cloned embryos, and the embryonic stem cells will boost drug testing and cellular medicine in COVID-19.
Collapse
Affiliation(s)
- Birbal Singh
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute Regional Station, Palampur, Himachal Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, 281001, India
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Salem A Alyami
- Department of Mathematics and Statistics, Imam Mohammad Ibn Saud Islamic University, Riyadh, 11432, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India.
| | - Mohammad Ali Moni
- WHO Collaborating Centre on eHealth, UNSW Digital Health, Faculty of Medicine, School of Public Health and Community Medicine, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
8
|
Fröhlich E. Therapeutic Potential of Mesenchymal Stem Cells and Their Products in Lung Diseases-Intravenous Administration versus Inhalation. Pharmaceutics 2021; 13:232. [PMID: 33562240 PMCID: PMC7915745 DOI: 10.3390/pharmaceutics13020232] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of respiratory diseases. Due to the lack of efficient treatments for acute respiratory distress syndrome caused by infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the action of MSCs has also been studied. This review describes mode of action and use of MSCs and MSC-derived products in the treatment of lung diseases including the respective advantages and limitations of the products. Further, issues related to standardized production are addressed. Administration by inhalation of MSCs, compared to intravenous injection, could decrease cell damage by shear stress, eliminate the barrier to reach target cells in the alveoli, prevent thrombus formation in the pulmonary vasculature and retention in filter for extracorporeal membrane oxygenation. There is more feasible to deliver extracellular vesicles than MSCs with inhalers, offering the advantage of non-invasive and repeated administration by the patient. Major obstacles for comparison of results are heterogeneity of the products, differences in the treatment protocols and small study cohorts.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr 24, 8010 Graz, Austria; ; Tel.: +43-316-385-73011
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
9
|
Schultz IC, Bertoni APS, Wink MR. Mesenchymal Stem Cell-Derived Extracellular Vesicles Carrying miRNA as a Potential Multi Target Therapy to COVID-19: an In Silico Analysis. Stem Cell Rev Rep 2021; 17:341-356. [PMID: 33511519 PMCID: PMC7842178 DOI: 10.1007/s12015-021-10122-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 01/08/2023]
Abstract
In the end of 2019 COVID-19 emerged as a new threat worldwide and this disease present impaired immune system, exacerbated production of inflammatory cytokines, and coagulation disturbs. Mesenchymal stem cell (MSC) derived extracellular vesicles (EVs) have emerged as a therapeutic option due to its intrinsic properties to alleviate inflammatory responses, capable to promote the restoring of injured tissue. EVs contain heterogeneous cargo, including active microRNAs, small noncoding sequences involved in post-transcriptional gene repression or degradation and can attach in multiple targets. This study investigated whether the MSC-EVs miRNA cargo has the capacity to modulate the exacerbated cytokines, cell death and coagulation disturbs present in severe COVID-19. Through bioinformatics analysis, four datasets of miRNA, using different stem cell tissue sources (bone marrow, umbilical cord and adipose tissue), and one dataset of mRNA (bone marrow) were analyzed. 58 miRNAs overlap in the four miRNA datasets analyzed. Sequentially, those miRNAs present in at least two datasets, were analyzed using miRWalk for the 3’UTR binding target mRNA. The result predicted 258 miRNAs for exacerbated cytokines and chemokines, 266 miRNAs for cell death genes and 148 miRNAs for coagulation cascades. Some miRNAs may simultaneously attenuate inflammatory agents, inhibit cell death genes and key factors of coagulation cascade, consequently preventing tissue damage and coagulation disturbs. Therefore, the MSC-derived EVs due to their heterogeneous cargo are a potential multitarget approach able to improve the survival rates of severe COVID-19 patients.
Collapse
Affiliation(s)
- Iago Carvalho Schultz
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Ana Paula Santin Bertoni
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil
| | - Márcia Rosângela Wink
- Laboratório de Biologia Celular, Departamento de Ciências Básicas da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
10
|
Abstract
A potential ability of stem cells (SCs) is to regenerate and repair tissues in the human body by providing great prospects for therapeutic applications in the field of medicine. Currently, SC therapy is used in various conditions like diabetes, neurodegenerative disorders, etc. but faces some limitations like patient biocompatibility and chances of cross-infection. SCs are further modulated with nanoconjugates to overcome such challenges and will offer an advantage in the treatment of COVID-19. This pandemic requires design and development of proper treatment to save the life of human beings. Advancements in SC-based nanoconjugated therapy will open new avenues and create a significant impact in the development of futuristic nanomedicine. It may also emerge as a potential therapy for the management of infection in patients suffering from SARS-CoV-2 and related diseases such as pneumonia and virus-induced lung injuries. Mechanisms of stem cell-based nanoconjugates for inhibition of replication of corona virus. ![]()
Collapse
|