1
|
Wang Y, Zhou Y, Li K. The role of lncRNA in the differentiation of adipose-derived stem cells: from functions to mechanism. J Mol Med (Berl) 2024:10.1007/s00109-024-02507-8. [PMID: 39708157 DOI: 10.1007/s00109-024-02507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Adipose-derived stem cells (ADSCs) have become one of the best seed cells widely studied and concerned in tissue engineering because of their rich sources and excellent multi-directional differentiation ability, which are expected to play a practical application role in tissue defect, osteoporosis, plastic surgery, and other fields. However, the differentiation direction of ADSCs is regulated by complex factors. Long non-coding RNAs (lncRNAs) are RNA molecules longer than 500 nucleotides that do not encode proteins and can act as signaling RNAs in response to intracellular and extracellular stimuli. Recently, accumulating evidence has revealed that lncRNAs could regulate the cell cycle and differentiation direction of ADSCs through various mechanisms, including histone modification, binding to RNA-binding proteins, and regulating the expression of miRNAs. Therefore, enriching and elucidating its mechanism of action as well as targeting lncRNAs to regulate ADSCs differentiation have potential prospects in tissue regeneration applications such as bone, blood vessels, and adipose. In this review, we summarize the role and mechanism of lncRNAs and its complexes in the multi-directional differentiation of ADSCs and discuss some potential approaches that can exert therapeutic effects on tissue defects by modulating the expression level of lncRNAs in ADSCs. Our work might provide some new research directions for the clinical applications of tissue engineering.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Yuxi Zhou
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Central South University, Changsha, 410000, China
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China
| | - Kun Li
- Department of Oral & Maxillofacial Surgery, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Central South University, Changsha, 410000, China.
- Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Song Y, Gao H, Pan Y, Gu Y, Sun W, Wang Y, Liu J. ALKBH5 Regulates Osteogenic Differentiation via the lncRNA/mRNA Complex. J Dent Res 2024; 103:1119-1129. [PMID: 39311450 DOI: 10.1177/00220345241266775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Human adipose-derived stem cells (hASCs) are commonly used in bone tissue regeneration. The N6-methyladenosine (m6A) modification has emerged as a novel regulatory mechanism for gene expression, playing a critical role in osteogenic differentiation of stem cells. However, the precise role and mechanism of alkylation repair homolog 5 (ALKBH5) in hASC osteogenesis remain incompletely elucidated and warrant further investigation. Herein, we employed methylated RNA immunoprecipitation sequencing, RNA sequencing, and weighted gene coexpression network analysis to identify a key long noncoding RNA (lncRNA) in hASCs: lncRNA AK311120. Functional experiments demonstrated that lnc-AK311120 promoted the osteogenic differentiation of hASCs, while a mutation at the m6A central site A of lnc-AK311120 was found to decrease the level of m6A modification. The osteogenic effect of ALKBH5 was confirmed both in vitro and in vivo using a mandibular defect model in nude mice. Subsequent investigations revealed that knockdown of ALKBH5 resulted in a significant increase in the m6A modification level of lnc-AK311120, accompanied by a downregulation in the expression level of lnc-AK311120. Additional rescue experiments demonstrated that overexpression of lnc-AK311120 could restore the phenotype after ALKBH5 knockdown. We observed that AK311120 interacted with the RNA-binding proteins DExH-Box helicase 9 (DHX9) and YTH domain containing 2 (YTHDC2) to form a ternary complex, while mitogen-activated protein kinase kinase 7 (MAP2K7) served as the shared downstream target gene of DHX9 and YTHDC2. Knockdown of AK311120 led to a reduction in the binding affinity between DHX9/YTHDC2 and the target gene MAP2K7. Furthermore, ALKBH5 facilitated the translation of MAP2K7 and activated the downstream JNK signaling pathway through the AK311120-DHX9-YTHDC2 complex, without affecting its messenger RNA level. Collectively, we have investigated the regulatory effect and mechanism of ALKBH5-mediated demethylation of lncRNA in hASC osteogenesis for the first time, offering a promising approach for bone tissue engineering.
Collapse
Affiliation(s)
- Y Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Pan
- The First People's Hospital of Longquanyi District, West China Longquan Hospital Sichuan University, Chengdu, Sichuan, China
| | - Y Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - W Sun
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - J Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Luo B, Jiang Q. Effect of RNA-binding proteins on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Cell Biochem 2024; 479:383-392. [PMID: 37072640 DOI: 10.1007/s11010-023-04742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Tissue regeneration mediated by mesenchymal stem cells (MSCs) is an ideal way to repair bone defects. RNA-binding proteins (RBPs) can affect cell function through post-transcriptional regulation. Exploring the role of RBPs in the process of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is helpful to find a key method to promote the osteogenic efficiency of BMSCs. By reviewing the literature, we obtained a differentially expressed mRNA dataset during the osteogenic differentiation of BMSCs and a human RBP dataset. A total of 82 differentially expressed RBPs in the osteogenic differentiation of BMSCs were screened by intersection of the two datasets. Functional analysis showed that the differentially expressed RBPs were mainly involved in RNA transcription, translation and degradation through the formation of spliceosomes and ribonucleoprotein complexes. The top 15 RBPs determined by degree score were FBL, NOP58, DDX10, RPL9, SNRPD3, NCL, IFIH1, RPL18A, NAT10, EXOSC5, ALYREF, PA2G4, EIF5B, SNRPD1 and EIF6. The results of this study demonstrate that the expression of many RBPs changed during osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Bin Luo
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
4
|
Chen X, Qin Y, Wang X, Lei H, Zhang X, Luo H, Guo C, Sun W, Fang S, Qin W, Jin Z. METTL3-Mediated m6A Modification Regulates the Osteogenic Differentiation through LncRNA CUTALP in Periodontal Mesenchymal Stem Cells of Periodontitis Patients. Stem Cells Int 2024; 2024:3361794. [PMID: 38283119 PMCID: PMC10817817 DOI: 10.1155/2024/3361794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/29/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
Objective Periodontitis is a chronic inflammatory disease that causes loss of periodontal support tissue. Our objective was to investigate the mechanism by which METTL3-mediated N6-methyladenosine modification regulates the osteogenic differentiation through lncRNA in periodontal mesenchymal stem cells in patients with periodontitis (pPDLSCs). Material and Methods. We carried out a series of experiments, including methylated RNA immunoprecipitation-PCR, quantitative real-time polymerase chain reaction, and western blotting. The expressions of alkaline phosphatase (ALP), Runx2, Col1, Runx2 protein level, ALP staining, and Alizarin red staining were used to demonstrate the degree of osteogenic differentiation. Results We found that METTL3 was the most significantly differentially expressed methylation-related enzyme in pPDLSCs and promoted osteogenic differentiation of pPDLSCs. METTL3 regulated the stability and expression of lncRNA CUTALP, while lncRNA CUTALP promoted osteogenic differentiation of pPDLSCs by inhibiting miR-30b-3p. At different time points of osteogenic differentiation, lncRNA CUTALP expression was positively correlated with Runx2, while miR-30b-3p showed the opposite pattern. The attenuated osteogenic differentiation induced by METTL3 knockdown was recovered by lncRNA CUTALP overexpression. The attenuated osteogenic differentiation induced by lncRNA CUTALP knockdown could be reversed by the miR-30b-3p inhibitor. Conclusions In summary, METTL3/lncRNA CUTALP/miR-30b-3p/Runx2 is a regulatory network in the osteogenic differentiation of pPDLSCs.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Yuan Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Xian Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 730070, China
| | - Xiaochen Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Houzhuo Luo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Changgang Guo
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Weifu Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Shishu Fang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
5
|
Gu Y, Song Y, Pan Y, Liu J. The essential roles of m 6A modification in osteogenesis and common bone diseases. Genes Dis 2024; 11:335-345. [PMID: 37588215 PMCID: PMC10425797 DOI: 10.1016/j.gendis.2023.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/30/2023] [Indexed: 03/30/2023] Open
Abstract
N6-methyladenosine (m6A) is the most prevalent modification in the eukaryotic transcriptome and has a wide range of functions in coding and noncoding RNAs. It affects the fate of the modified RNA, including its stability, splicing, and translation, and plays an important role in post-transcriptional regulation. Bones play a key role in supporting and protecting muscles and other organs, facilitating the movement of the organism, ensuring blood production, etc. Bone diseases such as osteoarthritis, osteoporosis, and bone tumors are serious public health problems. The processes of bone development and osteogenic differentiation require the precise regulation of gene expression through epigenetic mechanisms including histone, DNA, and RNA modifications. As a reversible dynamic epigenetic mark, m6A modifications affect nearly every important biological process, cellular component, and molecular function, including skeletal development and homeostasis. In recent years, studies have shown that m6A modification is involved in osteogenesis and bone-related diseases. In this review, we summarized the proteins involved in RNA m6A modification and the latest progress in elucidating the regulatory role of m6A modification in bone formation and stem cell directional differentiation. We also discussed the pathological roles and potential molecular mechanisms of m6A modification in bone-related diseases like osteoporosis and osteosarcoma and suggested potential areas for new strategies that could be used to prevent or treat bone defects and bone diseases.
Collapse
Affiliation(s)
- Yuxi Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yidan Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yihua Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
6
|
Zheng J, Lu Y, Lin Y, Si S, Guo B, Zhao X, Cui L. Epitranscriptomic modifications in mesenchymal stem cell differentiation: advances, mechanistic insights, and beyond. Cell Death Differ 2024; 31:9-27. [PMID: 37985811 PMCID: PMC10782030 DOI: 10.1038/s41418-023-01238-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/24/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
RNA modifications, known as the "epitranscriptome", represent a key layer of regulation that influences a wide array of biological processes in mesenchymal stem cells (MSCs). These modifications, catalyzed by specific enzymes, often termed "writers", "readers", and "erasers", can dynamically alter the MSCs' transcriptomic landscape, thereby modulating cell differentiation, proliferation, and responses to environmental cues. These enzymes include members of the classes METTL, IGF2BP, WTAP, YTHD, FTO, NAT, and others. Many of these RNA-modifying agents are active during MSC lineage differentiation. This review provides a comprehensive overview of the current understanding of different RNA modifications in MSCs, their roles in regulating stem cell behavior, and their implications in MSC-based therapies. It delves into how RNA modifications impact MSC biology, the functional significance of individual modifications, and the complex interplay among these modifications. We further discuss how these intricate regulatory mechanisms contribute to the functional diversity of MSCs, and how they might be harnessed for therapeutic applications. The review also highlights current challenges and potential future directions in the study of RNA modifications in MSCs, emphasizing the need for innovative tools to precisely map these modifications and decipher their context-specific effects. Collectively, this work paves the way for a deeper understanding of the role of the epitranscriptome in MSC biology, potentially advancing therapeutic strategies in regenerative medicine and MSC-based therapies.
Collapse
Affiliation(s)
- Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Ye Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Yunfan Lin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Shanshan Si
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Bing Guo
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Xinyuan Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
| | - Li Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, Guangdong, China.
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, 90095, CA, USA.
| |
Collapse
|
7
|
Wang Y, Li P, Wang C, Bao S, Wang S, Zhang G, Zou X, Wu J, Guan Y, Ji M, Guan H. Lens epithelium cell ferroptosis mediated by m 6A-lncRNA and GPX4 expression in lens tissue of age-related cataract. BMC Ophthalmol 2023; 23:514. [PMID: 38110879 PMCID: PMC10726616 DOI: 10.1186/s12886-023-03205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 11/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND In the present study, we explored the role of N6-methyladenosine (m6A) modification of long non-coding RNAs (lncRNAs) and its association with ferroptosis in lens epithelium cells (LECs) of age-related cataract (ARC). METHODS Through m6A RNA immunoprecipitation sequencing (m6A-RIP-seq) and RNA sequencing (RNA-seq), we identified m6A mediated and differentially expressed lncRNAs (dme-lncRNAs) in ARC patients. Based on bioinformatics analysis, we selected critical dme-lncRNAs and pathways associated with ARC formation to reveal their potential molecular mechanisms. The downregulation of glutathione peroxidase 4 (GPX4), a key component of ferroptosis, was confirmed by real-time RT-PCR (RT-qPCR) and Western blotting in age-related cortical cataract (ARCC) samples. Transmission electron microscopy was used to assess the change in mitochondrial in LECs. RESULTS The analysis revealed a total of 11,193 m6A peaks within lncRNAs, among which 7043 were enriched and 4150 were depleted. Among those, lncRNA ENST00000586817(upstream of the GPX4 gene) was not only significantly upregulated in the LECs of ARCC but also potentially augmented the expression of GPX4 through a cis mechanism. The expression of m6A-modified lncRNA (ENST00000586817) was correlated with that of GPX4 and was downregulated in ARC patients. The TEM results indicated significant mitochondrial changes in ARCC samples. GPX4 downregulation enhanced LEC ferroptosis and decreased viability via RSL3 in SRA01/04 cells. CONCLUSIONS Our results provide insight into the potential function of m6A-modified lncRNAs. M6A-modified lncRNA ENST00000586817 might regulate the expression of GPX4 by a cis mechanism and be implicated in ferroptosis in ARCs.
Collapse
Affiliation(s)
- Yong Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
- Nantong University, Nantong, Jiangsu, China
- The Second Affiliated Hospital of Nantong University and First People's Hospital of Nantong City, Nantong, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
- Nantong University, Nantong, Jiangsu, China
| | - Congyu Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Sijie Bao
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Siwen Wang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Xi Zou
- Department of Ophthalmology, The Third People's Hospital of Changzhou, Jiangsu, China
| | - Jian Wu
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Yu Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China
| | - Min Ji
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China.
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, Jiangsu, China.
| |
Collapse
|
8
|
Bian A, Wang C, Zhang H, Yan Y, Zhang L, Cheng W. Diagnostic value and immune infiltration characterization of YTHDF2 as a critical m6A regulator in osteoarthritic synovitis. J Orthop Surg Res 2023; 18:535. [PMID: 37496062 PMCID: PMC10373247 DOI: 10.1186/s13018-023-03933-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/16/2023] [Indexed: 07/28/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) is a universal RNA modification pattern regulated by multiple m6A regulators. In osteoarthritis (OA), m6A regulators influence disease progression by regulating cartilage degradation. However, the function of m6A regulators in synovial tissue remains unclear. In this work, we investigated the biological significance of m6A regulators in osteoarthritic synovitis. METHODS Datasets were acquired from Gene Expression Omnibus. Differential analysis of merged data identified the differentially expressed m6A regulators. Machine learning models were used to evaluate genetic importance. To predict disease risk, a nomogram was constructed based on above m6A regulators. Cluster analysis divided the OA sample into different subgroups. Immune infiltration revealed the immune m6A regulators, which were validated using clinical samples. Eventually, a competing endogenous RNA (ceRNA) network was constructed. RESULTS We acquired five differentially expressed m6A regulators and a random forest model. The nomogram accurately predicted disease risk. We identified 122 differentially expressed genes between two m6A subgroups. The analysis of immune infiltration showed that YTHDF2 was an immune-related m6A regulator closely related with macrophages. In clinical samples, the protein and mRNA contents of YTHDF2 were consistent with the results of bioinformatic analysis. The ceRNA network based on YTHDF2 revealed 75 lncRNA nodes and 19 miRNA nodes. CONCLUSION YTHDF2 has a high diagnostic value in the synovitis of OA and significantly influences the immune status of patients. Hence, YTHDF2, a critical m6A regulator, may provide a biomarker for diagnosis and immune therapy of osteoarthritic synovitis.
Collapse
Affiliation(s)
- Ashuai Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Changming Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Haotian Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Yiqun Yan
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China
| | - Linlin Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, Hefei, 230001, Anhui, People's Republic of China.
| | - Wendan Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, People's Republic of China.
| |
Collapse
|
9
|
Yang J, Yang Q, Huang X, Yan Z, Wang P, Gao X, Li J, Gun S. METTL3-Mediated LncRNA EN_42575 m6A Modification Alleviates CPB2 Toxin-Induced Damage in IPEC-J2 Cells. Int J Mol Sci 2023; 24:ijms24065725. [PMID: 36982798 PMCID: PMC10054829 DOI: 10.3390/ijms24065725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) modified by n6-methyladenosine (m6A) have been implicated in the development and progression of several diseases. However, the mechanism responsible for the role of m6A-modified lncRNAs in Clostridium perfringens type C piglet diarrhea has remained largely unknown. We previously developed an in vitro model of CPB2 toxin-induced piglet diarrhea in IPEC-J2 cells. In addition, we previously performed RNA immunoprecipitation sequencing (MeRIP-seq), which demonstrated lncRNA EN_42575 as one of the most regulated m6A-modified lncRNAs in CPB2 toxin-exposed IPEC-J2 cells. In this study, we used MeRIP-qPCR, FISH, EdU, and RNA pull-down assays to determine the function of lncRNA EN_42575 in CPB2 toxin-exposed IPEC-J2 cells. LncRNA EN_42575 was significantly downregulated at different time points in CPB2 toxin-treated cells. Functionally, lncRNA EN_42575 overexpression reduced cytotoxicity, promoted cell proliferation, and inhibited apoptosis and oxidative damage, whereas the knockdown of lncRNA EN_42575 reversed these results. Furthermore, the dual-luciferase analysis revealed that METTL3 regulated lncRNA EN_42575 expression in an m6A-dependent manner. In conclusion, METTL3-mediated lncRNA EN_42575 exerted a regulatory effect on IPEC-J2 cells exposed to CPB2 toxins. These findings offer novel perspectives to further investigate the function of m6A-modified lncRNAs in piglet diarrhea.
Collapse
Affiliation(s)
- Jiaojiao Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiaoli Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoyu Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengfei Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaoli Gao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jie Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China
- Correspondence:
| |
Collapse
|
10
|
Huang J, Guo C, Wang Y, Zhou Y. Role of N6-adenosine-methyltransferase subunits METTL3 and METTL14 in the biological properties of periodontal ligament cells. Tissue Cell 2023; 82:102081. [PMID: 37018927 DOI: 10.1016/j.tice.2023.102081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
The N6-methyladenosine (m6A) modification has been proven to be involved in various physiological and pathological processes. The m6A is catalyzed by methyltransferase complex, which mainly consist of methyltransferase (METTL) 3 and 14 heterodimer. The present study aimed to investigate the role of METTL 3 and 14 in biological properties of periodontal ligament cells (PDLCs) via RNA-sequencing and specific cell assays. Firstly, the expressions of METTL3 and METTL14 were observed in PDLCs. Then, RNA-sequencing showed that cell properties were influenced after METTL3 or METTL14 was knocked down via short hairpin RNA (shRNA). In sh-METTL3 or METTL14 PDLCs, cell counting kit 8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays showed a down-regulated proliferation, transwell system indicated suppressed migration. Lastly, alkaline phosphatase (ALP) and alizarin red staining (ARS) staining, quantitative polymerase chain reaction (qPCR) and western blot demonstrated the inhibited osteogenic potentials. It could be concluded that METTL3 and METTL14 play indispensable roles in the regenerative potential of PDLCs.
Collapse
|
11
|
Li Q, Yang L, Zhang F, Liu J, Jiang M, Chen Y, Ren C. m6A methyltransferase METTL3 inhibits endometriosis by regulating alternative splicing of MIR17HG. Reproduction 2023; 165:197-208. [PMID: 36445237 DOI: 10.1530/rep-22-0102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
In brief Inflammation and abnormal immune response are the key processes in the development of endometriosis (EMs), and m6A modification can regulate the inflammatory response. This study reveals that METTL3-mediated N6-methyladenosine (m6A) modification plays an important role in EMs. Abstract m6A modification is largely involved in the development of different diseases. This study intended to investigate the implication of m6A methylation transferase methyltransferase like 3 (METTL3) in EMs. EMs- and m6A-related mRNAs and long non-coding RNAs were identified through bioinformatics analysis. Next, EM mouse models established by endometrial autotransplantation and mouse endometrial stromal cell (mESC) were prepared and treated with oe-METTL3 or sh-MIR17HG for pinpointing the in vitro and in vivo effects of METTL3 on EMs in relation to MIR17HG through the determination of mESC biological processes as well as estradiol (E2) and related lipoprotein levels. We demonstrated that METTL3 and MIR17HG were downregulated in the EMs mouse model. Overexpression of METTL3 suppressed the proliferation, migration, and invasion of mESCs. In addition, METTL3 enhanced the expression of MIR17HG through m6A modification. Moreover, METTL3 could inhibit the E2 level and alter related lipoprotein levels in EMs mice through the upregulation of MIR17HG. The present study highlighted that the m6A methylation transferase METTL3 prevents EMs progression by upregulating MIR17HG expression.
Collapse
Affiliation(s)
- Qian Li
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Li Yang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Feng Zhang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Jiaxi Liu
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Min Jiang
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Yannan Chen
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| | - Chenchen Ren
- Department of Gynecology, The Third Affiliated Hospital of Zhengzhou University and Henan Province Women and Children's Hospital, Zhengzhou, China
| |
Collapse
|
12
|
Wang Z, Wen S, Zhong M, Yang Z, Xiong W, Zhang K, Yang S, Li H, Guo S. Epigenetics: Novel crucial approach for osteogenesis of mesenchymal stem cells. J Tissue Eng 2023; 14:20417314231175364. [PMID: 37342486 PMCID: PMC10278427 DOI: 10.1177/20417314231175364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Bone has a robust regenerative potential, but its capacity to repair critical-sized bone defects is limited. In recent years, stem cells have attracted significant interest for their potential in tissue engineering. Applying mesenchymal stem cells (MSCs) for enhancing bone regeneration is a promising therapeutic strategy. However, maintaining optimal cell efficacy or viability of MSCs is limited by several factors. Epigenetic modification can cause changes in gene expression levels without changing its sequence, mainly including nucleic acids methylation, histone modification, and non-coding RNAs. This modification is believed to be one of the determinants of MSCs fate and differentiation. Understanding the epigenetic modification of MSCs can improve the activity and function of stem cells. This review summarizes recent advances in the epigenetic mechanisms of MSCs differentiation into osteoblast lineages. We expound that epigenetic modification of MSCs can be harnessed to treat bone defects and promote bone regeneration, providing potential therapeutic targets for bone-related diseases.
Collapse
Affiliation(s)
- Zhaohua Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Si Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Meiqi Zhong
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ziming Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi University School of Medicine, Shihezi, China
| | - Kuo Zhang
- College of Humanities and Social Sciences, Dalian Medical University, Dalian, Liaoning Province, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Huizheng Li
- Department of Otorhinolaryngology & Head and Neck Surgery, Dalian Friendship Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
13
|
METTL3-Mediated lncSNHG7 m 6A Modification in the Osteogenic/Odontogenic Differentiation of Human Dental Stem Cells. J Clin Med 2022; 12:jcm12010113. [PMID: 36614914 PMCID: PMC9821659 DOI: 10.3390/jcm12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Background: Human dental pulp stem cells (hDPSCs) play an important role in endodontic regeneration. N6-methyladenosine (m6A) is the most common RNA modification, and noncoding RNAs have also been demonstrated to have regulatory roles in the expression of m6A regulatory proteins. However, the study on m6A modification in hDPSCs has not yet been conducted. Methods: Single base site PCR (MazF) was used to detect the m6A modification site of lncSNHG7 before and after mineralization of hDPSCs to screen the target m6A modification protein, and bioinformatics analysis was used to analyze the related pathways rich in lncSNHG7. After knockdown and overexpression of lncSNHG7 and METTL3, the osteogenic/odontogenic ability was detected. After METTL3 knockdown, the m6A modification level and its expression of lncSNHG7 were detected by MazF, and their binding was confirmed. Finally, the effects of lncSNHG7 and METTL3 on the Wnt/β-catenin pathway were detected. Results: MazF experiments revealed that lncSNHG7 had a m6A modification before and after mineralization of hDPSCs, and the occurrence site was 2081. METTL3 was most significantly upregulated after mineralization of hDPSCs. Knockdown/ overexpression of lncSNHG7 and METTL3 inhibited/promoted the osteogenic/odontogenic differentiation of hDPSCs. The m6A modification and expression of lncSNHG7 were both regulated by METTL3. Subsequently, lncSNHG7 and METTL3 were found to regulate the Wnt/β-catenin signaling pathway. Conclusion: These results revealed that METTL3 can activate the Wnt/β-catenin signaling pathway by regulating the m6A modification and expression of lncSNHG7 in hDPSCs to enhance the osteogenic/odontogenic differentiation of hDPSCs. Our study provides new insight into stem cell-based tissue engineering.
Collapse
|
14
|
Sun W, Liu J, Zhang X, Zhang X, Gao J, Chen X, Wang X, Qin W, Jin Z. Long Noncoding RNA and mRNA m6A Modification Analyses of Periodontal Ligament Stem Cells from the Periodontitis Microenvironment Exposed to Static Mechanical Strain. Stem Cells Int 2022; 2022:6243004. [PMID: 36483682 PMCID: PMC9726269 DOI: 10.1155/2022/6243004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2023] Open
Abstract
Periodontal ligament stem cells (PDLSCs) play important roles in orthodontic tooth movement (OTM) and can respond to mechanical stress. Our previous study demonstrated that periodontal ligament stem cells derived from periodontitis tissue (pPDLSCs) are more sensitive to static mechanical strain (SMS) than those derived from healthy tissue (hPDLSCs) and reported the long noncoding RNA (lncRNA) expression profiles of pPDLSCs exposed to SMS. An increasing number of lncRNAs have been reported by various studies to be associated with the osteogenic differentiation of mesenchymal stem cells. Many studies have demonstrated that the n6-methyladenosine (m6A) modification exerts important effects on lncRNA and mRNA regulation of cell behaviors. However, the regulatory effects of lncRNA and mRNA m6A modification on PDLSCs have not been studied. Therefore, we performed an m6A microarray assay with pPLDSCs and hPDLSCs exposed to 12% SMS and found that 143 lncRNAs and 739 mRNAs were differentially methylated. These RNAs were thought to be involved in multiple differentiation and inflammatory responses. Moreover, we found that METTL3, an essential protein in the m6A system, was expressed at lower levels in the strain-exposed pPDLSCs than in strain-exposed hPLDSCs, and METTL3 promoted the osteogenic differentiation of pPDLSCs.
Collapse
Affiliation(s)
- Weifu Sun
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jia Liu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xu Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaochen Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jie Gao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xian Wang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Wen Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
15
|
Zhang H, Zhang Q, Yuan Z, Dong J. Non-coding RNAs in ossification of the posterior longitudinal ligament. Front Genet 2022; 13:1069575. [PMID: 36506306 PMCID: PMC9729789 DOI: 10.3389/fgene.2022.1069575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a kind of disease that involves a variety of factors leading to ectopic bone deposition of the spinal ligament. Although the detailed mechanism is not clear, genetic factors play important roles in the development of this disease. Noncoding RNA (ncRNA) refers to an RNA molecule that is not translated into a protein but participates in the regulation of gene expression. Functionally important types of ncRNA associated with OPLL include long noncoding RNA, microRNA, and circular RNA. We listed the differentially expressed ncRNAs in OPLL patients and normal controls to find the ncRNAs most relevant to the pathogenesis of the disease. The potential regulatory networks of ncRNA in OPLL cells were analyzed based on their most abundant signal transduction pathway data. The analysis of the highly connected ncRNAs in the regulatory network suggests that they play an important role in OPLL. These findings provide new directions for the study of OPLL pathogenesis and therapeutic targets. In this paper, we reviewed and analyzed the literature on ncRNAs in OPLL published in recent years, aiming to help doctors better understand and treat this disease.
Collapse
|
16
|
Han J, Kong H, Wang X, Zhang XA. Novel insights into the interaction between N6-methyladenosine methylation and noncoding RNAs in musculoskeletal disorders. Cell Prolif 2022; 55:e13294. [PMID: 35735243 PMCID: PMC9528765 DOI: 10.1111/cpr.13294] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Musculoskeletal disorder (MSD) are a class of inflammatory and degener-ative diseases, but the precise molecular mechanisms are still poorly understood. Noncoding RNA (ncRNA) N6-methyladenosine (m6A) modification plays an essential role in the pathophysiological process of MSD. This review summarized the interaction be-tween m6A RNA methylation and ncRNAs in the molecular regulatory mechanism of MSD. It provides a new perspective for the pathophysiological mechanism and ncRNA m6A targeted therapy of MSD. METHODS A comprehensive search of databases was conducted with musculoskeletal disorders, noncoding RNA, N6-methyladenosine, intervertebral disc degeneration, oste-oporosis, osteosarcoma, osteoarthritis, skeletal muscle, bone, and cartilage as the key-words. Then, summarized all the relevant articles. RESULTS Intervertebral disc degeneration (IDD), osteoporosis (OP), osteosarcoma (OS), and osteoarthritis (OA) are common MSDs that affect muscle, bone, cartilage, and joint, leading to limited movement, pain, and disability. However, the precise pathogenesis remains unclear, and no effective treatment and drug is available at present. Numerous studies confirmed that the mutual regulation between m6A and ncRNAs (i.e., microRNAs, long ncRNAs, and circular RNAs) was found in MSD, m6A modification can regulate ncRNAs, and ncRNAs can also target m6A regulators. ncRNA m6A modification plays an essential role in the pathophysiological process of MSDs by regulating the homeostasis of skeletal muscle, bone, and cartilage. CONCLUSION m6A interacts with ncRNAs to regulate multiple biological processes and plays important roles in IDD, OP, OS, and OA. These studies provide new insights into the pathophysiological mechanism of MSD and targeting m6A-modified ncRNAs may be a promising therapy approach.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Kinesiology, Shenyang Sport University, Shenyang, China.,Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xueqiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| |
Collapse
|
17
|
Wu T, Tang H, Yang J, Yao Z, Bai L, Xie Y, Li Q, Xiao J. METTL3-m 6 A methylase regulates the osteogenic potential of bone marrow mesenchymal stem cells in osteoporotic rats via the Wnt signalling pathway. Cell Prolif 2022; 55:e13234. [PMID: 35470497 PMCID: PMC9136513 DOI: 10.1111/cpr.13234] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES Bone marrow mesenchymal stem cells (BMSCs) hold a high osteogenic differentiation potential, but the mechanisms that control the osteogenic ability of BMSCs from osteoporosis (OP-BMSCs) need further research. The purpose of this experiment is to discuss the osteogenic effect of Mettl3 on OP-BMSCs and explore new therapeutic target that can enhance the bone formation ability of OP-BMSCs. MATERIALS AND METHODS The bilateral ovariectomy (OVX) method was used to establish the SD rat OP model. Dot blots were used to reveal the different methylation levels of BMSCs and OP-BMSCs. Lentiviral-mediated overexpression of Mettl3 was applied in OP-BMSCs. QPCR and WB detected the molecular changes of osteogenic-related factors and Wnt signalling pathway in vitro experiment. The staining of calcium nodules and alkaline phosphatase detected the osteogenic ability of OP-BMSCs. Micro-CT and histological examination evaluated the osteogenesis of Mettl3 in OP rats in vivo. RESULTS The OP rat model was successfully established by OVX. Methylation levels and osteogenic potential of OP-BMSCs were decreased in OP-BMSCs. In vitro experiment, overexpression of Mettl3 could upregulate the osteogenic-related factors and activate the Wnt signalling pathway in OP-BMSCs. However, osteogenesis of OP-BMSCs was weakened by treatment with the canonical Wnt inhibitor Dickkopf-1. Micro-CT showed that the Mettl3(+) group had an increased amount of new bone formation at 8 weeks. Moreover, the results of histological staining were the same as the micro-CT results. CONCLUSIONS Taken together, the methylation levels and osteogenic potential of OP-BMSCs were decreased in OP-BMSCs. In vitro and in vivo studies, overexpression of Mettl3 could partially rescue the decreased bone formation ability of OP-BMSCs by the canonical Wnt signalling pathway. Therefore, Mettl3 may be a key targeted gene for bone generation and therapy of bone defects in OP patients.
Collapse
Affiliation(s)
- Tianli Wu
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Hui Tang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Jianghua Yang
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Medical Technology, Faculty of Associated Medical SciencesChiang Mai UniversityChiang MaiThailand
| | - Zhihao Yao
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Long Bai
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Yuping Xie
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Qing Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| | - Jingang Xiao
- Department of Oral ImplantologyThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
- Department of Oral and Maxillofacial SurgeryThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and RegenerationThe Affiliated Stomatological Hospital of Southwest Medical UniversityLuzhouChina
| |
Collapse
|