1
|
Marsall P, Fandrich M, Griesbaum J, Harries M, Lange B, Ascough S, Dayananda P, Chiu C, Remppis J, Ganzenmueller T, Renk H, Strengert M, Schneiderhan-Marra N, Dulovic A. Development and validation of a respiratory syncytial virus multiplex immunoassay. Infection 2024; 52:597-609. [PMID: 38332255 PMCID: PMC10954859 DOI: 10.1007/s15010-024-02180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Respiratory syncytial virus (RSV) is one of the leading causes of severe respiratory disease in infants and adults. While vaccines and monoclonal therapeutic antibodies either are or will shortly become available, correlates of protection remain unclear. For this purpose, we developed an RSV multiplex immunoassay that analyses antibody titers toward the post-F, Nucleoprotein, and a diverse mix of G proteins. METHODS A bead-based multiplex RSV immunoassay was developed, technically validated to standard FDA bioanalytical guidelines, and clinically validated using samples from human challenge studies. RSV antibody titers were then investigated in children aged under 2 and a population-based cohort. RESULTS Technical and clinical validation showed outstanding performance, while methodological developments enabled identification of the subtype of previous infections through use of the diverse G proteins for approximately 50% of samples. As a proof of concept to show the suitability of the assay in serosurveillance studies, we then evaluated titer decay and age-dependent antibody responses within population cohorts. CONCLUSION Overall, the developed assay shows robust performance, is scalable, provides additional information on infection subtype, and is therefore ideally suited to be used in future population cohort studies.
Collapse
Affiliation(s)
- Patrick Marsall
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Madeleine Fandrich
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Johanna Griesbaum
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Manuela Harries
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Berit Lange
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Centre for Infection Research (DZIF), TI BBD, Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Stephanie Ascough
- Department of Infectious Disease, Imperial College London, London, UK
| | - Pete Dayananda
- Department of Infectious Disease, Imperial College London, London, UK
| | - Christopher Chiu
- Department of Infectious Disease, Imperial College London, London, UK
| | - Jonathan Remppis
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Tina Ganzenmueller
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Hanna Renk
- Department of Pediatric Neurology and Developmental Medicine, University Children's Hospital, Tübingen, Germany
| | - Monika Strengert
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Alex Dulovic
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
| |
Collapse
|
2
|
Ding J, Li J, Zhang Z, Du Y, Liu Y, Wang P, Du H. Network pharmacology combined with metabolomics to explore the mechanism for Lonicerae Japonicae flos against respiratory syncytial virus. BMC Complement Med Ther 2023; 23:449. [PMID: 38087272 PMCID: PMC10714634 DOI: 10.1186/s12906-023-04286-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Respiratory Syncytial Virus (RSV) stands out as a primary contributor to lower respiratory tract infections and hospitalizations, particularly in infants. Lonicerae japonicae flos (LJF), a traditional Chinese medicine renowned for its efficacy against various viral infections, including RSV, has been widely employed. Despite its common use, the precise therapeutic mechanism of LJF against RSV remains elusive. This study aimed to investigate the underlying mechanism of LJF against RSV through network pharmacology and metabolomics. METHODS In this study, based on network pharmacology, potential targets related to LJF and RSV were obtained from PubChem and Swiss Target Prediction. The core targets and pathways were established and verified by enrichment analysis and molecular docking. The anti-RSV efficacy of LJF was determined by in vitro experiments. Additionally, metabolomics analysis was integrated, allowing for the identification of differential metabolites and their correlation with targets following LJF treatment in the context of RSV infection. RESULTS A total of 23 active ingredients and 780 targets were obtained, of which 102 targets were associated with LJF anti-RSV. The construction of the corresponding Protein-Protein Interaction (PPI) network unveiled potential core targets, including STAT3, TNF, and AKT1. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that LJF's anti-RSV effects primarily involve key pathways such as the PI3K-Akt signaling pathway, EGFR tyrosine kinase inhibitor resistance, and FoxO signaling pathway. Molecular docking showed that ZINC03978781, 4,5'-Retro-.beta.,.beta.-Carotene -3,3'-dione, 4',5'-didehydro and 7-epi-Vogeloside had better binding ability. The cellular assay showed that the therapeutic index of LJF against RSV was 4.79. Furthermore, 18 metabolites were screened as potential biomarkers of LJF against RSV, and these metabolites were mainly involved in the pathways of purine metabolism, linoleic acid metabolism, alpha-linolenic acid metabolism, and other related pathways. CONCLUSIONS The intergration of network pharmacology and metabolomics can clarify the active targets and related pathways of LJF against RSV, which could provide a valuable reference for further research and clinical application of LJF.
Collapse
Affiliation(s)
- Jie Ding
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jing Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhe Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yaxuan Du
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 117004, China
| | - Yuhong Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Ping Wang
- Shandong Academy of Chinese Medicine, Jinan, 250014, China.
| | - Haitao Du
- Shandong Academy of Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
3
|
Abu-Raya B, Reicherz F, Michalski C, Viñeta Paramo M, Majdoubi A, Golding L, Granoski M, Stojic A, Marchant DJ, Lavoie PM. Loss of Respiratory Syncytial Virus Antibody Functions During the Peak of the COVID-19 Pandemic Mitigation Measures. J Pediatric Infect Dis Soc 2023; 12:piad099. [PMID: 37948599 DOI: 10.1093/jpids/piad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
Studies have linked respiratory syncytial virus (RSV) antibody-mediated phagocytosis and complement deposition to severe RSV infection in humans. This study shows waning of these antibody functions in women of childbearing age in 2020-2021 during the implementation of COVID-19 mitigation measures, in absence of RSV circulation. These functions could be explored as correlates of protection against severe RSV disease.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frederic Reicherz
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pediatrics, Children's Hospital Datteln, University of Witten/Herdecke, Datteln, Germany
| | - Christina Michalski
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marina Viñeta Paramo
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdelilah Majdoubi
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Liam Golding
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Madison Granoski
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Aleksandra Stojic
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - David J Marchant
- Li Ka Shing Institute of Virology, Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Pascal M Lavoie
- British Columbia Children's Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Abu-Raya B, Viñeta Paramo M, Reicherz F, Lavoie PM. Why has the epidemiology of RSV changed during the COVID-19 pandemic? EClinicalMedicine 2023; 61:102089. [PMID: 37483545 PMCID: PMC10359735 DOI: 10.1016/j.eclinm.2023.102089] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has drastically perturbed the epidemiology of Respiratory Syncytial Virus (RSV) respiratory tract infections in children. The reasons for this are not clear. In this article, we review the current literature and critically discuss the different theories to explain why the epidemiology of RSV has changed during the COVID-19 pandemic. Proposed mechanisms include decreased viral immunity in vulnerable age groups caused by the prolonged lack of RSV circulation early in the pandemic, potential Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2)-induced immune dysregulation, viral interactions between SARS-CoV-2 and RSV, and modifications in health-seeking behaviors as well as heath systems factors. Research in viral genomics and phylogeny, and more robust immunology research is needed to guide RSV prevention and health care resource planning.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Marina Viñeta Paramo
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Frederic Reicherz
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - Pascal Michel Lavoie
- Department of Pediatrics, University of British Columbia, Vancouver, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, Canada
| |
Collapse
|