1
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
2
|
de Assis GG, Hoffman JR. The BDNF Val66Met Polymorphism is a Relevant, But not Determinant, Risk Factor in the Etiology of Neuropsychiatric Disorders - Current Advances in Human Studies: A Systematic Review. Brain Plast 2022; 8:133-142. [PMID: 36721394 PMCID: PMC9837733 DOI: 10.3233/bpl-210132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2022] [Indexed: 02/03/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the brain's most-produced neurotrophin during the lifespan, essentially involved in multiple mechanisms of nervous system development and function. The production/release of BDNF requires multi-stage processing that appears to be regulated at various stages in which the presence of a polymorphism "Val66Met" can exert a critical influence. Aim To synthesize the knowledge on the BDNF Val66Met polymorphism on intracellular processing and function of BDNF. Methods We performed a systematic review and collected all available studies on the post-translation processes of BDNF, regarding the Val66Met polymorphism. Searches were performed up to 21st March 2021. Results Out of 129 eligible papers, 18 studies addressed or had findings relating to BDNF post-translation processes and were included in this review. Discussion Compilation of experimental findings reveals that the Val66Met polymorphism affects BDNF function by slightly altering the processing, distribution, and regulated release of BDNF. Regarding the critical role of pro-BDNF as a pro-apoptotic factor, such alteration might represent a risk for the development of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Laboratory of Endocrinology, Brain Institute, Federal University of Rio Grande do Norte, Brazil
- Gdansk University of Physical Education and Sports, Faculty of Physical Education, Gdansk, Poland
| | - Jay R. Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| |
Collapse
|
3
|
Abstract
The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF concentration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further, we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological conditions.
Collapse
Affiliation(s)
- Tanja Brigadski
- Department of Informatics and Microsystem Technology, University of Applied Sciences Kaiserslautern, D-66482, Zweibrücken, Germany.
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University, D-39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences, Magdeburg, Germany.
| |
Collapse
|
4
|
de Assis GG, Hoffman JR, Gasanov EV. BDNF Val66Met Polymorphism, the Allele-Specific Analysis by qRT-PCR - a Novel Protocol. Int J Med Sci 2020; 17:3058-3064. [PMID: 33173426 PMCID: PMC7646112 DOI: 10.7150/ijms.50643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Alteration in brain-derived neurotrophic factor (BDNF) production is a marker of neuropathological conditions, which has led to the investigation of Val66Met polymorphism occurring in the human BDNF gene (BDNF). Presently, there are no reported methods available for the analysis of Val66Met impact on human BDNF functioning. Purpose: To develop a qRT-PCR protocol for the allele-specific expression evaluation of the Val66Met polymorphism in BDNF. Methods: Using RNA extracted from muscle samples of 9 healthy volunteers (32.9 ± 10.3 y) at rest and following a maximal effort aerobic capacity exercise test, a protocol was developed for the detection of Val66/Met66 allele-specific BDNF expression in Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) - relative to housekeeping genes - and validated by absolute quantification in Droplet Digital Polymerase Chain Reaction (ddPCR). Results: Differences in the relative values of BDNF mRNA were confirmed by ddPCR analysis. HPRT1 and B2M were the most stable genes expressed in muscle tissue among different metabolic conditions, while GAPDH revealed to be metabolic responsive. Conclusion: Our qRT-PCR protocol successfully determines the allele-specific detection and changes in BDNF expression regarding the Val66Met polymorphism.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Gdansk University of Physical Education and Sport, Faculty of Physical Education, Gdansk, Poland.,Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Jay R Hoffman
- Department of Physical Therapy, Ariel University, Ariel, Israel
| | - Eugene V Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Poland
| |
Collapse
|
5
|
Zhang C, Rong H. Genetic Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:19-57. [PMID: 31784956 DOI: 10.1007/978-981-32-9271-0_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) and bipolar disorder (BPD) are both chronic, severe mood disorder with high misdiagnosis rate, leading to substantial health and economic burdens to patients around the world. There is a high misdiagnosis rate of bipolar depression (BD) just based on symptomology in depressed patients whose previous manic or mixed episodes have not been well recognized. Therefore, it is important for psychiatrists to identify these two major psychiatric disorders. Recently, with the accumulation of clinical sample sizes and the advances of methodology and technology, certain progress in the genetics of major depression and bipolar disorder has been made. This article reviews the candidate genes for MDD and BD, genetic variation loci, chromosome structural variation, new technologies, and new methods.
Collapse
Affiliation(s)
- Chen Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Han Rong
- Department of Psychiatry, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Martínez-Levy GA, Rocha L, Rodríguez-Pineda F, Alonso-Vanegas MA, Nani A, Buentello-García RM, Briones-Velasco M, San-Juan D, Cienfuegos J, Cruz-Fuentes CS. Increased Expression of Brain-Derived Neurotrophic Factor Transcripts I and VI, cAMP Response Element Binding, and Glucocorticoid Receptor in the Cortex of Patients with Temporal Lobe Epilepsy. Mol Neurobiol 2017; 55:3698-3708. [PMID: 28527108 DOI: 10.1007/s12035-017-0597-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy.
Collapse
Affiliation(s)
- G A Martínez-Levy
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - L Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, CINVESTAV, Mexico City, Mexico
| | - F Rodríguez-Pineda
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - M A Alonso-Vanegas
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - A Nani
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - R M Buentello-García
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - M Briones-Velasco
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - D San-Juan
- Clinical Research Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - J Cienfuegos
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - C S Cruz-Fuentes
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico.
| |
Collapse
|
7
|
Koppel I, Tuvikene J, Lekk I, Timmusk T. Efficient use of a translation start codon in BDNF exon I. J Neurochem 2015; 134:1015-25. [PMID: 25868795 DOI: 10.1111/jnc.13124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/31/2022]
Abstract
The brain-derived neurotrophic factor (BDNF) gene contains a number of 5' exons alternatively spliced with a common 3' exon. BDNF protein is synthesized from alternative transcripts as a prepro-precursor encoded by the common 3' exon IX, which has a translation start site 21 bp downstream of the splicing site. BDNF mRNAs containing exon I are an exception to this arrangement as the last three nucleotides of this exon constitute an in-frame AUG. Here, we show that this AUG is efficiently used for translation initiation in PC12 cells and cultured cortical neurons. Use of exon I-specific AUG produces higher levels of BDNF protein than use of the common translation start site, resulting from a higher translation rate. No differences in protein degradation, constitutive or regulated secretion were detected between BDNF isoforms with alternative 5' termini. As the BDNF promoter preceding exon I is known to be highly regulated by neuronal activity, our results suggest that the function of this translation start site may be efficient stimulus-dependent synthesis of BDNF protein. The brain-derived neurotrophic factor (BDNF) gene contains multiple untranslated 5' exons alternatively spliced to one common protein-coding 3' exon. However, exon I contains an in-frame ATG in a favorable translation context. Here, we show that use of this ATG is associated with more efficient protein synthesis than the commonly used ATG in exon IX.
Collapse
Affiliation(s)
- Indrek Koppel
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Ingrid Lekk
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Tõnis Timmusk
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
8
|
Lipsky RH, Lin M. Genetic predictors of outcome following traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:23-41. [PMID: 25702208 DOI: 10.1016/b978-0-444-52892-6.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The nature of traumatic brain injury (TBI) has acute and chronic outcomes for those who survive. Over time, the chronic process of injury impacts multiple organ systems that may lead to disease. We discuss possible mechanisms and methodological issues in the context of candidate gene association studies using TBI patient populations. Because study population sizes have been generally limited, we discussed results on genes that have been the focus of independent studies. We also present a justification for testing more speculative candidate genes in recovery from TBI, such as those involved in circadian rhythm, to outline the importance of prioritizing functional variants in genes that may modulate recovery or provide neuroprotection from TBI. Finally, we provide a perspective on how future research will integrate population level genetic findings with the biological basis of disease in order to create a resource of predictive outcome measures for individual patients.
Collapse
Affiliation(s)
- Robert H Lipsky
- Department of Neurosciences, Inova Health System, Falls Church, VA, USA.
| | - Mingkuan Lin
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, USA
| |
Collapse
|
9
|
Lolak S, Suwannarat P, Lipsky RH. Epigenetics of Depression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 128:103-37. [DOI: 10.1016/b978-0-12-800977-2.00005-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Recovering from cocaine: insights from clinical and preclinical investigations. Neurosci Biobehav Rev 2013; 37:2037-46. [PMID: 23628740 DOI: 10.1016/j.neubiorev.2013.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/26/2013] [Accepted: 04/17/2013] [Indexed: 12/12/2022]
Abstract
Cocaine remains one of the most addictive substances of abuse and one of the most difficult to treat. Although increasingly sophisticated experimental and technologic advancements in the last several decades have yielded a large body of clinical and preclinical knowledge on the direct effects of cocaine on the brain, we still have a relatively incomplete understanding of the neurobiological processes that occur when drug use is discontinued. The goal of this manuscript is to review both clinical and preclinical data related to abstinence from cocaine and discuss the complementary conclusions that emerge from these different levels of inquiry. This commentary will address observed alterations in neural function, neural structure, and neurotransmitter system regulation that are present in both animal models of cocaine abstinence and data from recovering clinical populations. Although these different levels of inquiry are often challenging to integrate, emerging data discussed in this commentary suggest that from a structural and functional perspective, the preservation of cortical function that is perhaps the most important biomarker associated with extended abstinence from cocaine.
Collapse
|
11
|
Lipsky RH. Epigenetic mechanisms regulating learning and long-term memory. Int J Dev Neurosci 2012; 31:353-8. [PMID: 23142272 DOI: 10.1016/j.ijdevneu.2012.10.110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/29/2023] Open
Abstract
A balance between rapid, short lived, neuronal responses and prolonged ones fulfill the biochemical and cellular requirements for creating a molecular memory. I provide an overview of epigenetic mechanisms in the brain and discuss their impact on synaptic plasticity, cognitive functions, and discuss a recent example of how they can contribute to neurodegeneration and the cognitive decline associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Robert H Lipsky
- Inova Neuroscience Institute, Department of Neurosciences, Inova Health System, 3289 Woodburn Road, Suite 210B, Annandale, VA 22003, United States.
| |
Collapse
|
12
|
Duncan JR. Current perspectives on the neurobiology of drug addiction: a focus on genetics and factors regulating gene expression. ISRN NEUROLOGY 2012; 2012:972607. [PMID: 23097719 PMCID: PMC3477671 DOI: 10.5402/2012/972607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/06/2012] [Indexed: 12/13/2022]
Abstract
Drug addiction is a chronic, relapsing disorder defined by cyclic patterns of compulsive drug seeking and taking interspersed with episodes of abstinence. While genetic variability may increase the risk of addictive behaviours in an individual, exposure to a drug results in neuroadaptations in interconnected brain circuits which, in susceptible individuals, are believed to underlie the transition to, and maintenance of, an addicted state. These adaptations can occur at the cellular, molecular, or (epi)genetic level and are associated with synaptic plasticity and altered gene expression, the latter being mediated via both factors affecting translation (epigenetics) and transcription (non coding microRNAs) of the DNA or RNA itself. New advances using techniques such as optogenetics have the potential to increase our understanding of the microcircuitry mediating addictive behaviours. However, the processes leading to addiction are complex and multifactorial and thus we face a major contemporary challenge to elucidate the factors implicated in the development and maintenance of an addicted state.
Collapse
Affiliation(s)
- Jhodie R Duncan
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia ; Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
13
|
Kabir ZD, Lourenco F, Byrne ME, Katzman A, Lee F, Rajadhyaksha AM, Kosofsky BE. Brain-derived neurotrophic factor genotype impacts the prenatal cocaine-induced mouse phenotype. Dev Neurosci 2012; 34:184-97. [PMID: 22572518 DOI: 10.1159/000337712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/05/2012] [Indexed: 11/19/2022] Open
Abstract
Prenatal cocaine exposure leads to persistent alterations in the growth factor brain-derived neurotrophic factor (BDNF), particularly in the medial prefrontal cortex (mPFC) and hippocampus, brain regions important in cognitive functioning. BDNF plays an important role in the strengthening of existing synaptic connections as well as in the formation of new contacts during learning. A single nucleotide polymorphism in the BDNF gene (Val66Met), leading to a Met substitution for Val at codon 66 in the prodomain, is common in human populations, with an allele frequency of 20-30% in Caucasians. To study the interaction between prenatal cocaine exposure and BDNF, we have utilized a line of BDNF Val66Met transgenic mice on a Swiss Webster background in which BDNF(Met) is endogenously expressed. Examination of baseline levels of mature BDNF protein in the mPFC of prenatally cocaine-treated wild-type (Val66Val) and Val66Met mice revealed significantly lower levels compared to prenatally saline-treated mice. In contrast, in the hippocampus of prenatally saline- and cocaine-treated adult Val66Met mice, there were significantly lower levels of mature BDNF protein compared to Val66Val mice. In extinction of a conditioned fear, we found that prenatally cocaine-treated Val66Met mice had a deficit in recall of extinction. Examination of mature BDNF protein levels immediately after the test for extinction recall revealed lower levels in the mPFC of prenatally cocaine-treated Val66Met mice compared to saline-treated mice. However, 2 h after the extinction test, there was increased BDNF exons I, IV, and IX mRNA expression in the prelimbic cortex of the mPFC in the prenatally cocaine-treated BDNF Val66Met mice compared to prenatally saline-treated mice. Taken together, our results suggest the possibility that prenatal cocaine-induced constitutive alterations in BDNF mRNA and protein expression in the mPFC differentially poises animals for alterations in behaviorally induced gene activation, which are interactive with BDNF genotype and differentially impact those behaviors. Such findings in our prenatal cocaine mouse model suggest a gene X environment interaction of potential clinical relevance.
Collapse
Affiliation(s)
- Zeeba D Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical College, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Tropea TF, Kabir ZD, Kaur G, Rajadhyaksha AM, Kosofsky BE. Enhanced dopamine D1 and BDNF signaling in the adult dorsal striatum but not nucleus accumbens of prenatal cocaine treated mice. Front Psychiatry 2011; 2:67. [PMID: 22162970 PMCID: PMC3232639 DOI: 10.3389/fpsyt.2011.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 11/12/2011] [Indexed: 01/18/2023] Open
Abstract
Previous work from our group and others utilizing animal models have demonstrated long-lasting structural and functional alterations in the meso-cortico-striatal dopamine pathway following prenatal cocaine (PCOC) treatment. We have shown that PCOC treatment results in augmented D1-induced cyclic AMP (cAMP) and cocaine-induced immediate-early gene expression in the striatum of adult mice. In this study we further examined basal as well as cocaine or D1-induced activation of a set of molecules known to be mediators of neuronal plasticity following psychostimulant treatment, with emphasis in the dorsal striatum (Str) and nucleus accumbens (NAc) of adult mice exposed to cocaine in utero. Basally, in the Str of PCOC treated mice there were significantly higher levels of (1) CREB and Ser133 P-CREB (2) Thr34 P-DARPP-32 and (3) GluA1 and Ser 845 P-GluA1 when compared to prenatal saline (PSAL) treated mice. In the NAc there were significantly higher basal levels of (1) CREB and Ser133 P-CREB, (2) Thr202/Tyr204 P-ERK2, and (3) Ser845 P-GluA1. Following acute administration of cocaine (15 mg/kg, i.p.) or D1 agonist (SKF 82958; 1 mg/kg, i.p.) there were significantly higher levels of Ser133 P-CREB, Thr34 P-DARPP-32, and Thr202/Tyr204 P-ERK2 in the Str that were evident in all animals tested. However, these cocaine-induced increases in phosphorylation were significantly augmented in PCOC mice compared to PSAL mice. In sharp contrast to the observations in the Str, in the NAc, acute administration of cocaine or D1 agonist significantly increased P-CREB and P-ERK2 in PSAL mice, a response that was not evident in PCOC mice. Examination of Ser 845 P-GluA1 revealed that cocaine or D1 agonist significantly increased levels in PSAL mice, but significantly decreased levels in the PCOC mice in both the Str and NAc. We also examined changes in brain-derived neurotrophic factor (BDNF). Our studies revealed significantly higher levels of the BDNF precursor, pro-BDNF, and one of its receptors, TrkB in the Str of PCOC mice compared to PSAL mice. These results suggest a persistent up-regulation of molecules critical to D1 and BDNF signaling in the Str of adult mice exposed to cocaine in utero. These molecular adaptations may underlie components of the behavioral deficits evident in exposed animals and a subset of exposed humans, and may represent a therapeutic target for ameliorating aspects of the PCOC-induced phenotype.
Collapse
Affiliation(s)
- Thomas F. Tropea
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical CollegeNew York, NY, USA
- College of Osteopathic Medicine, University of New EnglandBiddeford, ME, USA
| | - Zeeba D. Kabir
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical CollegeNew York, NY, USA
- Graduate Program in Neurosciences, Weill Cornell Medical CollegeNew York, NY, USA
| | - Gagandeep Kaur
- School of Environmental and Biological Sciences, Rutgers, The State University of New JerseyNew Brunswick, NJ, USA
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical CollegeNew York, NY, USA
- Graduate Program in Neurosciences, Weill Cornell Medical CollegeNew York, NY, USA
| | - Barry E. Kosofsky
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medical CollegeNew York, NY, USA
- Graduate Program in Neurosciences, Weill Cornell Medical CollegeNew York, NY, USA
| |
Collapse
|
15
|
Gonul AS, Kitis O, Eker MC, Eker OD, Ozan E, Coburn K. Association of the brain-derived neurotrophic factor Val66Met polymorphism with hippocampus volumes in drug-free depressed patients. World J Biol Psychiatry 2011; 12:110-8. [PMID: 20726825 DOI: 10.3109/15622975.2010.507786] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Val66Met BDNF gene polymorphism is shown to affect the function of mature BDNF and mature BDNF plays an important role in the hippocampal neurogenesis and neuronal survival. METHODS A relationship of Val66Met BDNF gene polymorphism and hippocampal volumes in 33 MDD patients and 40 healthy controls is investigated. Region of interest analysis was conducted on the images acquired via MRI. RESULTS Depressed patients had smaller left hippocampal volumes compared to healthy controls. The diagnosis of MDD was not significantly related to hippocampal volumes among Met carriers; however, among Val homozygotes depressed patients had significantly smaller left hippocampal volumes compared to controls. Although both right and left hippocampal volumes showed nearly significant correlation with the duration of illness, this correlation reached (negative) significant levels only in the right hippocampal volume of the Val homozygotes. CONCLUSIONS Val homozygote genotype may serve as a vulnerability factor in MDD regarding hippocampal volume loss. This finding can be considered as a supportive evidence for the neurotrophic factor hypothesis of depression.
Collapse
Affiliation(s)
- Ali Saffet Gonul
- Affective Disorders Unit, Department of Psychiatry, Ege University School of Medicine Bornova, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
16
|
Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology 2011; 36:753-62. [PMID: 21150907 PMCID: PMC3055737 DOI: 10.1038/npp.2010.208] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The dopamine receptor D2 (encoded by DRD2) is implicated in susceptibility to mental disorders and cocaine abuse, but mechanisms responsible for this relationship remain uncertain. DRD2 mRNA exists in two main splice isoforms with distinct functions: D2 long (D2L) and D2 short (D2S, lacking exon 6), expressed mainly postsynaptically and presynaptically, respectively. Two intronic single-nucleotide polymorphisms (SNPs rs2283265 (intron 5) and rs1076560 (intron 6)) in high linkage disequilibrium (LD) with each other have been reported to alter D2S/D2L splicing and several behavioral traits in human subjects, such as memory processing. To assess the role of DRD2 variants in cocaine abuse, we measured levels of D2S and D2L mRNA in human brain autopsy tissues (prefrontal cortex and putamen) obtained from cocaine abusers and controls, and genotyped a panel of DRD2 SNPs (119 abusers and 95 controls). Robust effects of rs2283265 and rs1076560 on reducing formation of D2S relative to D2L were confirmed. The minor alleles of rs2283265/rs1076560 were considerably more frequent in Caucasians (18%) compared with African Americans (7%). Also, in Caucasians, rs2283265/rs1076560 minor alleles were significantly overrepresented in cocaine abusers compared with controls (rs2283265: 25 to 9%, respectively; p=0.001; OR=3.4 (1.7-7.1)). Several SNPs previously implicated in diverse clinical association studies are in high LD with rs2283265/rs1076560 and could have served as surrogate markers. Our results confirm the role of rs2283265/rs1076560 in D2 alternative splicing and support a strong role in susceptibility to cocaine abuse.
Collapse
|
17
|
Tanti A, Belzung C. Open questions in current models of antidepressant action. Br J Pharmacol 2010; 159:1187-200. [PMID: 20132212 DOI: 10.1111/j.1476-5381.2009.00585.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Research on depression and antidepressant drugs is necessary, as many patients display poor response to therapy. Different symptomatic and pathophysiological features have been proposed as end points of the depressive phenotype and of the antidepressant action, including anhedonia, depressed mood, alterations in morphology and activity of some brain areas (amygdala, nucleus accumbens, hippocampus, prefrontal cortex and cingulate cortex), modifications in the connectivity between brain structures, changes in neurotransmitters (serotonin, noradrenaline, glutamate and neuropeptides), brain plasticity (neurogenesis, neurotrophins) and abnormal function of the hypothalamic-pituitary adrenal axis. However, few models have been proposed to describe how these end points could induce the depressive phenotype and are involved in the mechanism of action of antidepressants. Here we propose a connectionist-inspired network of depression and antidepressant action, in which the different aetiological factors participating in the release of a depressive episode are represented by input nodes, the different symptomatic as well as pathophysiological end points are represented by an intermediate layer, and the onset of depression or of comorbid disease is represented by the output node. The occurrence of depression and the mechanism of the antidepressant action thus depend upon the weight of the interactions between the different end points, none of them being per se crucial to the onset of a depressive phenotype or to the antidepressant action. This model is heuristic to draw future lines of research concerning new antidepressant therapies, designing new animal models of depression and for a better understanding of the depressive pathology and of its comorbid pathology such as anxiety disorders.
Collapse
Affiliation(s)
- A Tanti
- INSERM U-930, Université François Rabelais Tours, UFR Sciences et Techniques, Parc Grandmont, Tours, France
| | | |
Collapse
|
18
|
Tian F, Hu XZ, Wu X, Jiang H, Pan H, Marini AM, Lipsky RH. Dynamic chromatin remodeling events in hippocampal neurons are associated with NMDA receptor-mediated activation of Bdnf gene promoter 1. J Neurochem 2009; 109:1375-88. [PMID: 19476549 DOI: 10.1111/j.1471-4159.2009.06058.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To determine the epigenetic events associated with NMDA receptor-mediated activation of brain-derived neurotrophic factor gene (Bdnf) promoter 1 by hippocampal neurons in culture, we screened 12 loci across 4.5 kb of genomic DNA 5' of the transcription start site (TSS) of rat Bdnf for specific changes in histone modification and transcription factor binding following NMDA receptor stimulation. Chromatin immunoprecipitation (ChIP) assays showed that NMDA receptor stimulation produced a durable, time-dependent decrease in histone H3 at lysine 9 dimethylation (H3K9me2), within 3 h after NMDA treatment across multiple loci. Concomitant increases in H3K4me2 and H3K9/14 acetylation (H3AcK9/14) were associated with transcriptional activation, but occurred at fewer sites within the promoter. The decrease in H3K9me2 was associated with release of HDAC1, MBD1, MeCP2, and REST from specific locations within promoter 1, although with different kinetics. In addition, occupancy of sites proximal to and distal to the TSS by the transcription factors NF-kappaB, CREB-binding protein (CBP), and cAMP-response element-binding protein were correlated with increased occupancy of RNA polymerase II at two loci proximal to the TSS following NMDA receptor stimulation. These temporal changes in promoter occupancy could occur thousands of base pairs 5' of the TSS, suggesting a mechanism that produces waves of Bdnf transcription.
Collapse
Affiliation(s)
- Feng Tian
- Section on Molecular Genetics, Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|