1
|
Obeng SK, Kulhánek M, Balík J, Černý J, Sedlář O. Manganese: From Soil to Human Health-A Comprehensive Overview of Its Biological and Environmental Significance. Nutrients 2024; 16:3455. [PMID: 39458451 PMCID: PMC11510450 DOI: 10.3390/nu16203455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Manganese is an essential micronutrient that plays a pivotal role in environmental systems, plant physiology, and human health. This review comprehensively examines the manganese cycle in the environment, its absorption and transport mechanisms in plants, and the implications of manganese exposure to human health. Objectives: The objectives of this review are to (i) analyze the environmental cycling of manganese and its bioavailability, (ii) evaluate the role of manganese in plant metabolism and disease resistance, and (iii) assess the impact of manganese toxicity and deficiency on human health. Conclusion: This review highlights that while manganese is crucial for photosynthesis, enzyme activation, and resistance to plant diseases, both its deficiency and toxicity can have severe consequences. In plants, manganese deficiency can lead to impaired growth and reduced crop yields, while toxicity, particularly in acidic soils, can inhibit photosynthesis and stunt development. In humans, manganese is necessary for various physiological processes, but overexposure, especially in occupational settings, can result in neurodegenerative conditions such as manganism. The conclusion emphasizes the importance of managing manganese levels in agriculture and industry to optimize its benefits while minimizing health risks. A multidisciplinary approach is advocated to enhance agricultural productivity and ensure public health safety.
Collapse
Affiliation(s)
| | - Martin Kulhánek
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic; (S.K.O.); (J.B.); (J.Č.); (O.S.)
| | | | | | | |
Collapse
|
2
|
Oliveira-Paula GH, Martins AC, Ferrer B, Tinkov AA, Skalny AV, Aschner M. The impact of manganese on vascular endothelium. Toxicol Res 2024; 40:501-517. [PMID: 39345740 PMCID: PMC11436708 DOI: 10.1007/s43188-024-00260-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/26/2024] [Indexed: 10/01/2024] Open
Abstract
Manganese (Mn) is an essential trace element involved in various physiological processes, but excessive exposure may lead to toxicity. The vascular endothelium, a monolayer of endothelial cells within blood vessels, is a primary target of Mn toxicity. This review provides a comprehensive overview of the impact of Mn on vascular endothelium, focusing on both peripheral and brain endothelial cells. In vitro studies have demonstrated that high concentrations of Mn can induce endothelial cell cytotoxicity, increase permeability, and disrupt cell-cell junctions through mechanisms involving oxidative stress, mitochondrial damage, and activation of signaling pathways, such as Smad2/3-Snail. Conversely, low concentrations of Mn may protect endothelial cells from the deleterious effects of high glucose and advanced glycation end-products. In the central nervous system, Mn can cross the blood-brain barrier (BBB) and accumulate in the brain parenchyma, leading to neurotoxicity. Several transport mechanisms, including ZIP8, ZIP14, and SPCA1, have been identified for Mn uptake by brain endothelial cells. Mn exposure can impair BBB integrity by disrupting tight junctions and increasing permeability. In vivo studies have corroborated these findings, highlighting the importance of endothelial barriers in mediating Mn toxicity in the brain and kidneys. Maintaining optimal Mn homeostasis is crucial for preserving endothelial function, and further research is needed to develop targeted therapeutic strategies to prevent or mitigate the adverse effects of Mn overexposure. Graphical Abstract
Collapse
Affiliation(s)
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Beatriz Ferrer
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Alexey A. Tinkov
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Anatoly V. Skalny
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003 Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435 Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
3
|
Abdel-Rasoul GM, Abu-Salem MES, Salem EAA, Allam HK, Abdel-Monaem AM, Younis FE. Neurological and neurobehavioral effects of welders in Egypt exposed to manganese containing welding fumes. Int Arch Occup Environ Health 2024; 97:711-720. [PMID: 38951217 DOI: 10.1007/s00420-024-02077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/30/2024] [Indexed: 07/03/2024]
Abstract
PURPOSE Welders are more likely to develop neurobehavioral disorders because of their exposure to neurotoxic metals such as manganese. This study aimed to measure the neurobehavioral performance of welders occupationally exposed to manganese at welding enterprises and its relationship with the workplace environment. METHODS It is a comparative cross-sectional study carried out on 130 welders working at 50 welding enterprises in Menoufia governorate, Egypt, compared to 130 non-occupationally exposed controls. RESULTS It was found that the environments of the studied welding enterprises had levels of respirable dust, manganese, and total welding fumes that exceeded internationally permissible limits. In addition, the mean blood manganese levels were significantly higher among welders (4.16 ± 0.61) than the controls (1.72 ± 0.41). Welders had a significantly higher prevalence of neurological manifestations and lower performance of neurobehavioral tests. Lower neurobehavioral performance among welders was significantly correlated with increased work duration and blood levels in some tests. CONCLUSION To lessen the fumes in the breathing zone of workers, it is therefore strongly recommended to regularly wear high-quality personal protective equipment, especially masks, and to ensure proper ventilation.
Collapse
Affiliation(s)
| | | | - Eman Abdel-Azeem Salem
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | - Heba Khodary Allam
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt
| | | | - Faten Ezzelarab Younis
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Egypt.
| |
Collapse
|
4
|
Sarawi WS, Attia HA, Alomar HA, Alhaidar R, Rihan E, Aldurgham N, Ali RA. The protective role of sesame oil against Parkinson's-like disease induced by manganese in rats. Behav Brain Res 2024; 465:114969. [PMID: 38548024 DOI: 10.1016/j.bbr.2024.114969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024]
Abstract
Chronic exposure to manganese (Mn) results in motor dysfunction, biochemical and pathological alterations in the brain. Oxidative stress, inflammation, and dysfunction of dopaminergic and GABAergic systems stimulate activating transcription factor-6 (ATF-6) and protein kinase RNA-like ER kinase (PERK) leading to apoptosis. This study aimed to investigate the protective effect of sesame oil (SO) against Mn-induced neurotoxicity. Rats received 25 mg/kg MnCl2 and were concomitantly treated with 2.5, 5, or 8 ml/kg of SO for 5 weeks. Mn-induced motor dysfunction was indicated by significant decreases in the time taken by rats to fall during the rotarod test and in the number of movements observed during the open field test. Also, Mn resulted in neuronal degeneration as observed by histological staining. The striatal levels of lipid peroxides and reduced glutathione (oxidative stress markers), interleukin-6 and tumor necrosis factor-α (inflammatory markers) were significantly elevated. Mn significantly reduced the levels of dopamine and Bcl-2, while GABA, PERK, ATF-6, Bax, and caspase-3 were increased. Interestingly, all SO doses, especially at 8 ml/kg, significantly improved locomotor activity, biochemical deviations and reduced neuronal degeneration. In conclusion, SO may provide potential therapeutic benefits in enhancing motor performance and promoting neuronal survival in individuals highly exposed to Mn.
Collapse
Affiliation(s)
- Wedad S Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia.
| | - Hala A Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Hatun A Alomar
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rawan Alhaidar
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Esraa Rihan
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nora Aldurgham
- College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Rehab A Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
5
|
Chandravanshi LP, Agrawal P, Darwish HW, Trigun SK. Impairments of Spatial Memory and N-methyl-d-aspartate Receptors and Their Postsynaptic Signaling Molecules in the Hippocampus of Developing Rats Induced by As, Pb, and Mn Mixture Exposure. Brain Sci 2023; 13:1715. [PMID: 38137163 PMCID: PMC10742016 DOI: 10.3390/brainsci13121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Exposure to metal mixtures is recognized as a real-life scenario, needing novel studies that can assess their complex effects on brain development. There is still a significant public health concern associated with chronic low levels of metal exposure. In contrast to other metals, these three metals (As, Pb, and Mn) are commonly found in various environmental and industrial contexts. In addition to additive or synergistic interactions, concurrent exposure to this metal mixture may also have neurotoxic effects that differ from those caused by exposure to single components. The NMDA receptor and several important signaling proteins are involved in learning, memory, and synaptic plasticity in the hippocampus, including CaMKII, postsynaptic density protein-95 (PSD-95), synaptic Ras GTPase activating protein (SynGAP), a negative regulator of Ras-MAPK activity, and CREB. We hypothesized that alterations in the above molecular players may contribute to metal mixture developmental neurotoxicity. Thus, the aim of this study was to investigate the effect of these metals and their mixture at low doses (As 4 mg, Pb 4 mg, and Mn 10 mg/kg bw/p.o) on NMDA receptors and their postsynaptic signaling proteins during developing periods (GD6 to PD59) of the rat brain. Rats exposed to As, Pb, and Mn individually or at the same doses in a triple-metal mixture (MM) showed impairments in learning and memory functions in comparison to the control group rats. Declined protein expressions of NR2A, PSD-95, p- CaMKII, and pCREB were observed in the metal mix-exposed rats, while the expression of SynGAP was found to be enhanced in the hippocampus as compared to the controls on PD60. Thereby, our data suggest that alterations in the NMDA receptor complex and postsynaptic signaling proteins could explain the cognitive dysfunctions caused by metal-mixture-induced developmental neurotoxicity in rats. These outcomes indicate that incessant metal mixture exposure may have detrimental consequences on brain development.
Collapse
Affiliation(s)
- Lalit P. Chandravanshi
- Department of Forensic Science, Sharda University, Greater Noida 201308, India; (L.P.C.); (P.A.)
| | - Prashant Agrawal
- Department of Forensic Science, Sharda University, Greater Noida 201308, India; (L.P.C.); (P.A.)
| | - Hany W. Darwish
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Surendra Kumar Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
6
|
Liu Q, Jenkitkasemwong S, Prami TA, McCabe SM, Zhao N, Hojyo S, Fukada T, Knutson MD. Metal-ion transporter SLC39A8 is required for brain manganese uptake and accumulation. J Biol Chem 2023; 299:105078. [PMID: 37482277 PMCID: PMC10457451 DOI: 10.1016/j.jbc.2023.105078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023] Open
Abstract
Manganese (Mn) is an essential nutrient, but is toxic in excess. Whole-body Mn levels are regulated in part by the metal-ion influx transporter SLC39A8, which plays an essential role in the liver by reclaiming Mn from bile. Physiological roles of SLC39A8 in Mn homeostasis in other tissues, however, remain largely unknown. To screen for extrahepatic requirements for SLC39A8 in tissue Mn homeostasis, we crossed Slc39a8-inducible global-KO (Slc39a8 iKO) mice with Slc39a14 KO mice, which display markedly elevated blood and tissue Mn levels. Tissues were then analyzed by inductively coupled plasma-mass spectrometry to determine levels of Mn. Although Slc39a14 KO; Slc39a8 iKO mice exhibited systemic hypermanganesemia and increased Mn loading in the bone and kidney due to Slc39a14 deficiency, we show Mn loading was markedly decreased in the brains of these animals, suggesting a role for SLC39A8 in brain Mn accumulation. Levels of other divalent metals in the brain were unaffected, indicating a specific effect of SLC39A8 on Mn. In vivo radiotracer studies using 54Mn in Slc39a8 iKO mice revealed that SLC39A8 is required for Mn uptake by the brain, but not most other tissues. Furthermore, decreased 54Mn uptake in the brains of Slc39a8 iKO mice was associated with efficient inactivation of Slc39a8 in isolated brain microvessels but not in isolated choroid plexus, suggesting SLC39A8 mediates brain Mn uptake via the blood-brain barrier. These findings establish SLC39A8 as a candidate therapeutic target for mitigating Mn uptake and accumulation in the brain, the primary organ of Mn toxicity.
Collapse
Affiliation(s)
- Qingli Liu
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Supak Jenkitkasemwong
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Tamanna Afrin Prami
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA
| | - Shannon Morgan McCabe
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Ningning Zhao
- School of Nutritional Sciences and Wellness, The University of Arizona, Tucson, Arizona, USA
| | - Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Toshiyuki Fukada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Mitchell D Knutson
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
7
|
Liu K, Yu D, Xin M, Lü F, Zhang Z, Zhou J, Liu T, Liu X, Song J, Wu H. Exposure to manganese (II) chloride induces developmental toxicity, oxidative stress and inflammatory response in Marine medaka (Oryzias melastigma) embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106622. [PMID: 37392728 DOI: 10.1016/j.aquatox.2023.106622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/18/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Manganese (Mn) is an essential metal for organisms, but high levels can induce serious toxicity. To date, the toxic mechanism of Mn to marine fish is still poorly understood. In the present study, Oryzias melastigma embryos were exposed to different concentrations of MnCl2 (0-152.00 mg/L) to investigate its effect on early development. The results showed that exposure to MnCl2 caused developmental toxicity to embryos, including increased heart rate, delayed hatching time, decreased hatching rate and increased malformation rate. MnCl2 exposure could induce oxidative stress in O. melastigma embryos, as indicated by increased the contents of malondialdehyde (MDA) and the activities of the antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT)). The heart might be an important target organ for MnCl2 because of cardiac malformations and disruption in the expression of cardiac development-related genes (ATPase, epo, fg8g, cox1, cox2, bmp4 and gata4). In addition, the expression levels of stress- (omTERT and p53) and inflammation-related genes (TNFα and il1β) were significantly up-regulated, suggesting that MnCl2 can trigger stress and inflammatory response in O. melastigma embryos. In conclusion, this study demonstrated that MnCl2 exposure can induce developmental toxicity, oxidative stress and inflammatory response in O. melastigma embryos, providing insights into the toxic mechanism of Mn to the early development of marine fish.
Collapse
Affiliation(s)
- Kaikai Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Daode Yu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Meili Xin
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Fang Lü
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Zhipeng Zhang
- Ministry of Transport, Tianjin Research Institute for Water Transport Engineering, Tianjin 300456, China
| | - Jian Zhou
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao 266104, China
| | - Tong Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Xiaohui Liu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China
| | - Jingjing Song
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China.
| | - Haiyi Wu
- Qingdao Key Laboratory of Coastal Ecological Restoration and Security, Marine Science Research Institute of Shandong Province, NO.7 YouYun Road, QingDao 266104, China.
| |
Collapse
|
8
|
Hao L, Qi Y, Wu Y, Xia D. Determination of trace potassium permanganate in tap water by solid phase extraction combined with spectrophotometry. Heliyon 2023; 9:e13587. [PMID: 36851959 PMCID: PMC9958420 DOI: 10.1016/j.heliyon.2023.e13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
A simple solid phase extraction (SPE) coupled with spectrophotometric method was developed for determination of trace permanganate (MnO4 -) in water. Commercial reagent polyamined-6 powder was used as SPE stationary phase to retain MnO4 - which is based on the fact that MnO4 - can be adsorbed on polyamide 6 (PA-6) sorbent as water samples flow through the SPE cartridge. 3,3',5,5'-tetramethylbenzidine (TMB) were used both as eluent solution and chromogenic agent to convert the adsorbed MnO4 - into Mn2+ and generate blue oxidized product with high molar absorptivity. Quantification of MnO4 - could be obtained by spectrophotometric detection of the resulting solution flow out of the SPE cartridge. The extraction and detection variables was optimized to maximize the absorbance of the TMB oxidized product. Under optimized conditions, this method provided linear dynamic ranges of 0.01-1 μmol L-1 for MnO4 - with preconcentration of 100 mL water sample. The limits of detection (3Sb/m) of this method in deionized water were calculated to be 5.1 nM, and the relative standard deviations were determined to be 3.2% (C = 0.1 μmol L-1, n = 5). This method has been applied to the determination of MnO4 - in spiked tap waters and satisfactory recovery was obtained.
Collapse
Affiliation(s)
- Liang Hao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, PR China
| | - Yaxin Qi
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, PR China
| | - Yingchun Wu
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, PR China
| | - Donghui Xia
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi, 723001, PR China
| |
Collapse
|
9
|
Notova SV, Lebedev SV, Marshinskaia OV, Kazakova TV, Ajsuvakova OP. Speciation analysis of manganese against the background of its different content in the blood serum of dairy cows. Biometals 2023; 36:35-48. [PMID: 36282443 DOI: 10.1007/s10534-022-00456-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/28/2022]
Abstract
Studies in the field of microelement speciation in the body of farm animals, in particular dairy cattle, are almost completely absent. The average concentration of Mn in the blood serum of all the studied animals (n = 80) was 2.5 μg/L, which corresponds to normal values. Of the total number of animals, 21% were the cows with the low normal values (serum Mn concentration ≤ 2 µg/L, i.e. less than Q25 of the total sample) and 25% were the animals with the high normal values (serum Mn concentration ≥ 2.72 µg/L, i.e. more than Q75 of the total sample). The data obtained in the course of the study indicate that the change in the Mn level, even in the range of normal values, is accompanied by the redistribution of this element over various protein fractions. The six found Mn blood serum forms are presumably represented by α2-macroglobulin (tetramer, dimer, and monomer), transferrin/albumine, manganese citrates, and "free" metal ions. The analyzed fractions of Mn found in the blood serum of cows had the following hierarchy of concentrations: in the group with low-normal values of Mn ("free" Mn >> tetrameric form of α2-macroglobulin >> transferrin/albumine >> dimeric form of α2-macroglobulin >> monomeric form of α2-macroglobulin >> citrate), in the group with high normal manganese values ("free" Mn >> monomeric form of α2-macroglobulin >> transferring/albumine >> citrate >> tetrameric form of α2-macroglobulin >> dimeric form of α2-macroglobulin). In the group with high normal Mn values relative to the group with low normal values, there was a percentage decrease in the tetrameric fraction of a2-macroglobulin from 17.2 to 4.4%, dimeric fraction of a2-macroglobulin from 6.9 to 2.2%, "free" Mn from 54.3 to 44.4% and an increase in monomeric fraction of a2-macroglobulin from 6.7 to 23.1%, transferrin/albumine from 10.1 to 17.7%, citrate from 4.8 to 8.2%. Our data demonstrate the features of Mn redistribution of dairy cows, which can be used for an extended assessment of the microelement status of animals.
Collapse
Affiliation(s)
- S V Notova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - S V Lebedev
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - O V Marshinskaia
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000.
| | - T V Kazakova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| | - O P Ajsuvakova
- Federal Research Centre for Biological Systems and Agrotechnologies of the Russian Academy of Sciences, St. 9 Yanvarya, 29, Orenburg, Russian Federation, 460000
| |
Collapse
|
10
|
Nivetha N, Srivarshine B, Sowmya B, Rajendiran M, Saravanan P, Rajeshkannan R, Rajasimman M, Pham THT, Shanmugam V, Dragoi EN. A comprehensive review on bio-stimulation and bio-enhancement towards remediation of heavy metals degeneration. CHEMOSPHERE 2023; 312:137099. [PMID: 36372332 DOI: 10.1016/j.chemosphere.2022.137099] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/20/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Pollution of heavy metals is one of the risky contaminations that should be managed for all intents and purposes of general well-being concerns. The bioaccumulation of these heavy metals inside our bodies and pecking orders will influence our people in the future. Bioremediation is a bio-mechanism where residing organic entities use and reuse the squanders that are reused to one more form. This could be accomplished by taking advantage of the property of explicit biomolecules or biomass that is equipped for restricting by concentrating the necessary heavy metal particles. The microorganisms can't obliterate the metal yet can change it into a less harmful substance. In this unique circumstance, this review talks about the sources, poisonousness, impacts, and bioremediation strategies of five heavy metals: lead, mercury, arsenic, chromium, and manganese. The concentrations here are the ordinary strategies for bioremediation such as biosorption methods, the use of microbes, green growth, and organisms, etc. This review demonstrates the toxicity of heavy metal contamination degradation by biotransformation through bacterioremediation and biodegradation through mycoremediation.
Collapse
Affiliation(s)
- N Nivetha
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - B Srivarshine
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - B Sowmya
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | | | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, UCE - BIT Campus, Anna University, Tiruchirappalli, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Tamilnadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Tamilnadu, India
| | - Thi Hong Trang Pham
- Institute for Global Health Innovations, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Natural Science, Duy Tan University, Da Nang, 550000, Viet Nam
| | - VenkatKumar Shanmugam
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| | - Elena-Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Iasi, Bld Mangeron No 73, 700050, Romania
| |
Collapse
|
11
|
Wang L, Lai SM, Li CZ, Yu HP, Venkatesan P, Lai PS. D-Alpha-Tocopheryl Poly(ethylene Glycol 1000) Succinate-Coated Manganese-Zinc Ferrite Nanomaterials for a Dual-Mode Magnetic Resonance Imaging Contrast Agent and Hyperthermia Treatments. Pharmaceutics 2022; 14:1000. [PMID: 35631586 PMCID: PMC9144495 DOI: 10.3390/pharmaceutics14051000] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/18/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Manganese-zinc ferrite (MZF) is known as high-performance magnetic material and has been used in many fields and development. In the biomedical applications, the biocompatible MZF formulation attracted much attention. In this study, water-soluble amphiphilic vitamin E (TPGS, d-alpha-tocopheryl poly(ethylene glycol 1000) succinate) formulated MZF nanoparticles were synthesized to serve as both a magnetic resonance imaging (MRI) contrast agent and a vehicle for creating magnetically induced hyperthermia against cancer. The MZF nanoparticles were synthesized from a metallic acetylacetonate in an organic phase and further modified with TPGS using an emulsion and solvent-evaporation method. The resulting TPGS-modified MZF nanoparticles exhibited a dual-contrast ability, with a longitudinal relaxivity (35.22 s-1 mM Fe-1) and transverse relaxivity (237.94 s-1 mM Fe-1) that were both higher than Resovist®. Furthermore, the TPGS-assisted MZF formulation can be used for hyperthermia treatment to successfully suppress cell viability and tumor growth after applying an alternating current (AC) electromagnetic field at lower amplitude. Thus, the TPGS-assisted MZF theranostics can not only be applied as a potential contrast agent for MRI but also has potential for use in hyperthermia treatments.
Collapse
Affiliation(s)
- Lin Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.-P.Y.)
| | - Syu-Ming Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402204, Taiwan; (S.-M.L.); (C.-Z.L.); (P.V.)
| | - Cun-Zhao Li
- Department of Chemistry, National Chung Hsing University, Taichung 402204, Taiwan; (S.-M.L.); (C.-Z.L.); (P.V.)
| | - Hsiu-Ping Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China; (L.W.); (H.-P.Y.)
| | - Parthiban Venkatesan
- Department of Chemistry, National Chung Hsing University, Taichung 402204, Taiwan; (S.-M.L.); (C.-Z.L.); (P.V.)
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402204, Taiwan; (S.-M.L.); (C.-Z.L.); (P.V.)
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402204, Taiwan
| |
Collapse
|
12
|
Hernández RB, de Souza-Pinto NC, Kleinjans J, van Herwijnen M, Piepers J, Moteshareie H, Burnside D, Golshani A. Manganese-Induced Neurotoxicity through Impairment of Cross-Talk Pathways in Human Neuroblastoma Cell Line SH-SY5Y Differentiated with Retinoic Acid. TOXICS 2021; 9:toxics9120348. [PMID: 34941782 PMCID: PMC8704659 DOI: 10.3390/toxics9120348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 01/29/2023]
Abstract
Manganese (Mn) is an important element; yet acute and/or chronic exposure to this metal has been linked to neurotoxicity and neurodegenerative illnesses such as Parkinson’s disease and others via an unknown mechanism. To better understand it, we exposed a human neuroblastoma cell model (SH-SY5Y) to two Mn chemical species, MnCl2 and Citrate of Mn(II) (0–2000 µM), followed by a cell viability assay, transcriptomics, and bioinformatics. Even though these cells have been chemically and genetically modified, which may limit the significance of our findings, we discovered that by using RA-differentiated cells instead of undifferentiated SH-SY5Y cell line, both chemical species induce a similar toxicity, potentially governed by disruption of protein metabolism, with some differences. The MnCl2 altered amino acid metabolism, which affects RNA metabolism and protein synthesis. Citrate of Mn(II), however, inhibited the E3 ubiquitin ligases–target protein degradation pathway, which can lead to the buildup of damaged/unfolded proteins, consistent with histone modification. Finally, we discovered that Mn(II)-induced cytotoxicity in RA-SH-SY5Y cells shared 84 percent of the pathways involved in neurodegenerative diseases.
Collapse
Affiliation(s)
- Raúl Bonne Hernández
- Laboratory of Bioinorganic and Environmental Toxicology—LABITA, Department of Chemistry, Federal University of São Paulo, Rua Prof. Artur Riedel, 275, Diadema 09972-270, SP, Brazil
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
- Correspondence: ; Tel.: +55-11-3385-4137 (ext. 3522)
| | - Nadja C. de Souza-Pinto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo (USP), Av. Prof. Lineu Prestes, 748, Butantã, São Paulo 05508-900, SP, Brazil;
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Marcel van Herwijnen
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Jolanda Piepers
- Department of Toxicogenomics, Maastricht University, Universiteitssingel 50, Room 4.112 UNS 50, 6229 ER Maastricht, The Netherlands; (J.K.); (M.v.H.); (J.P.)
| | - Houman Moteshareie
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Daniel Burnside
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| | - Ashkan Golshani
- Department of Biology, Carleton University, 209 Nesbitt Biology Building, 1125 Colonel by Drive, Ottawa, ON K1S 5B6, Canada; (H.M.); (D.B.); (A.G.)
| |
Collapse
|
13
|
Michalke B, Berthele A, Venkataramani V. Simultaneous Quantification and Speciation of Trace Metals in Paired Serum and CSF Samples by Size Exclusion Chromatography-Inductively Coupled Plasma-Dynamic Reaction Cell-Mass Spectrometry (SEC-DRC-ICP-MS). Int J Mol Sci 2021; 22:8892. [PMID: 34445607 PMCID: PMC8396360 DOI: 10.3390/ijms22168892] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transition metals play a crucial role in brain metabolism: since they exist in different oxidation states they are involved in ROS generation, but they are also co-factors of enzymes in cellular energy metabolism or oxidative defense. METHODS Paired serum and cerebrospinal fluid (CSF) samples were analyzed for iron, zinc, copper and manganese as well as for speciation using SEC-ICP-DRC-MS. Brain extracts from Mn-exposed rats were additionally analyzed with SEC-ICP-DRC-MS. RESULTS The concentration patterns of transition metal size fractions were correlated between serum and CSF: Total element concentrations were significantly lower in CSF. Fe-ferritin was decreased in CSF whereas a LMW Fe fraction was relatively increased. The 400-600 kDa Zn fraction and the Cu-ceruloplasmin fraction were decreased in CSF, by contrast the 40-80 kDa fraction, containing Cu- and Zn-albumin, relatively increased. For manganese, the α-2-macroglobulin fraction showed significantly lower concentration in CSF, whereas the citrate Mn fraction was enriched. Results from the rat brain extracts supported the findings from human paired serum and CSF samples. CONCLUSIONS Transition metals are strictly controlled at neural barriers (NB) of neurologic healthy patients. High molecular weight species are down-concentrated along NB, however, the Mn-citrate fraction seems to be less controlled, which may be problematic under environmental load.
Collapse
Affiliation(s)
- Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich—German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Achim Berthele
- Department of Neurology, School of Medicine, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany;
| | - Vivek Venkataramani
- Department of Medicine II, Hematology/Oncology, University Hospital Frankfurt, 60590 Frankfurt am Main, Germany;
- Institute of Pathology, University Medical Center Göttingen (UMG), 37075 Göttingen, Germany
| |
Collapse
|
14
|
Abstract
An EPR signal for Mn(III) bound to the metal transport protein transferrin has been detected for the first time. The temperature dependence and simulations of the EPR signal are consistent with the Mn(III) centers being six-coordinate in an elongated tetragonal environment. Thus, the incorporation of Mn(III) within the Tf active site does not vastly alter the coordination number or active site geometry relative to native Fe(III)2-Tf. This parallel mode EPR signal for Mn(III)2-Tf could prove valuable for future studies aimed at determining the physiological relevance of Mn(III)2-Tf.
Collapse
|
15
|
Verheggen ICM, Freeze WM, de Jong JJA, Jansen JFA, Postma AA, van Boxtel MPJ, Verhey FRJ, Backes WH. Application of contrast-enhanced magnetic resonance imaging in the assessment of blood-cerebrospinal fluid barrier integrity. Neurosci Biobehav Rev 2021; 127:171-183. [PMID: 33930471 DOI: 10.1016/j.neubiorev.2021.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
VERHEGGEN, I.C.M., W. Freeze, J. de Jong, J. Jansen, A. Postma, M. van Boxtel, F. Verhey and W. Backes. The application of contrast-enhanced MRI in the assessment of blood-cerebrospinal fluid barrier integrity. Choroid plexus epithelial cells form a barrier that enables active, bidirectional exchange between the blood plasma and cerebrospinal fluid (CSF), known as the blood-CSF barrier (BCSFB). Through its involvement in CSF composition, the BCSFB maintains homeostasis in the central nervous system. While the relation between blood-brain barrier disruption, aging and neurodegeneration is extensively studied using contrast-enhanced MRI, applying this technique to investigate BCSFB disruption in age-related neurodegeneration has received little attention. This review provides an overview of the current status of contrast-enhanced MRI to assess BCSFB permeability. Post-contrast ventricular gadolinium enhancement has been used to indicate BCSFB permeability. Moreover, new techniques highly sensitive to low gadolinium concentrations in the CSF, for instance heavily T2-weighted imaging with cerebrospinal fluid suppression, seem promising. Also, attempts are made at using other contrast agents, such as manganese ions or very small superparamagnetic iron oxide particles, that seem to be cleared from the brain at the choroid plexus. Advancing and applying new developments such as these could progress the assessment of BCSFB integrity.
Collapse
Affiliation(s)
- Inge C M Verheggen
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands.
| | - Whitney M Freeze
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology, Leiden University Medical Center, Leiden, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Joost J A de Jong
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Jacobus F A Jansen
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Alida A Postma
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands
| | - Martin P J van Boxtel
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Frans R J Verhey
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| | - Walter H Backes
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, the Netherlands; School for Cardiovascular Diseases (CARIM), Maastricht University, P.O. Box 616, 6200 MD Maastricht, the Netherlands
| |
Collapse
|
16
|
Adhikari A, Mondal S, Das M, Biswas P, Pal U, Darbar S, Bhattacharya SS, Pal D, Saha‐Dasgupta T, Das AK, Mallick AK, Pal SK. Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model. Adv Healthc Mater 2021; 10:e2001736. [PMID: 33326181 DOI: 10.1002/adhm.202001736] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Indexed: 12/11/2022]
Abstract
The potentiality of nano-enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese-based biocompatible nanoscale material (C-Mn3 O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2 O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C-Mn3 O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non-toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Monojit Das
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Department of Zoology Vidyasagar University Rangamati 721102 India
| | - Pritam Biswas
- Department of Microbiology St. Xavier's College 30, Mother Teresa Sarani Kolkata 700016 India
| | - Uttam Pal
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Soumendra Darbar
- Research & Development Division Dey's Medical Stores (Mfg.) Ltd 62, Bondel Road, Ballygunge Kolkata 700019 India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
| | - Tanusri Saha‐Dasgupta
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Condensed Matter Physics and Material Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Anjan Kumar Das
- Department of Pathology Coochbehar Govt. Medical College and Hospital Silver Jubilee Road Cooch Behar 736101 India
| | - Asim Kumar Mallick
- Department of Pediatric Medicine Nil Ratan Sircar Medical College and Hospital 138, Acharya Jagadish Chandra Bose Road, Sealdah Kolkata 700014 India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| |
Collapse
|
17
|
Manganese Accumulation in the Brain via Various Transporters and Its Neurotoxicity Mechanisms. Molecules 2020; 25:molecules25245880. [PMID: 33322668 PMCID: PMC7763224 DOI: 10.3390/molecules25245880] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/11/2022] Open
Abstract
Manganese (Mn) is an essential trace element, serving as a cofactor for several key enzymes, such as glutamine synthetase, arginase, pyruvate decarboxylase, and mitochondrial superoxide dismutase. However, its chronic overexposure can result in a neurological disorder referred to as manganism, presenting symptoms similar to those inherent to Parkinson’s disease. The pathological symptoms of Mn-induced toxicity are well-known, but the underlying mechanisms of Mn transport to the brain and cellular toxicity leading to Mn’s neurotoxicity are not completely understood. Mn’s levels in the brain are regulated by multiple transporters responsible for its uptake and efflux, and thus, dysregulation of these transporters may result in Mn accumulation in the brain, causing neurotoxicity. Its distribution and subcellular localization in the brain and associated subcellular toxicity mechanisms have also been extensively studied. This review highlights the presently known Mn transporters and their roles in Mn-induced neurotoxicity, as well as subsequent molecular and cellular dysregulation upon its intracellular uptakes, such as oxidative stress, neuroinflammation, disruption of neurotransmission, α-synuclein aggregation, and amyloidogenesis.
Collapse
|
18
|
Edmondson DA, Yeh CL, Hélie S, Dydak U. Whole-brain R1 predicts manganese exposure and biological effects in welders. Arch Toxicol 2020; 94:3409-3420. [PMID: 32875357 DOI: 10.1007/s00204-020-02839-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022]
Abstract
Manganese (Mn) is a neurotoxicant that, due to its paramagnetic property, also functions as a magnetic resonance imaging (MRI) T1 contrast agent. Previous studies in Mn toxicity have shown that Mn accumulates in the brain, which may lead to parkinsonian symptoms. In this article, we trained support vector machines (SVM) using whole-brain R1 (R1 = 1/T1) maps from 57 welders and 32 controls to classify subjects based on their air Mn concentration ([Mn]Air), Mn brain accumulation (ExMnBrain), gross motor dysfunction (UPDRS), thalamic GABA concentration (GABAThal), and total years welding. R1 was highly predictive of [Mn]Air above a threshold of 0.20 mg/m3 with an accuracy of 88.8% and recall of 88.9%. R1 was also predictive of subjects with GABAThal having less than or equal to 2.6 mM with an accuracy of 82% and recall of 78.9%. Finally, we used an SVM to predict age as a method of verifying that the results could be attributed to Mn exposure. We found that R1 was predictive of age below 48 years of age with accuracies ranging between 75 and 82% with recall between 94.7% and 76.9% but was not predictive above 48 years of age. Together, this suggests that lower levels of exposure (< 0.20 mg/m3 and < 18 years of welding on the job) do not produce discernable signatures, whereas higher air exposures and subjects with more total years welding produce signatures in the brain that are readily identifiable using SVM.
Collapse
Affiliation(s)
- David A Edmondson
- School of Health Sciences, Purdue University, 550 Stadium Dr., Hampton Hall of Civil Engineering, West Lafayette, IN, 47907, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chien-Lin Yeh
- School of Health Sciences, Purdue University, 550 Stadium Dr., Hampton Hall of Civil Engineering, West Lafayette, IN, 47907, USA.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sébastien Hélie
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, 550 Stadium Dr., Hampton Hall of Civil Engineering, West Lafayette, IN, 47907, USA. .,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
19
|
Kabamba M, Tuakuila J. Toxic metal (Cd, Hg, Mn, Pb) partition in the maternal/foetal unit: A systematic mini - review of recent epidemiological studies. Toxicol Lett 2020; 332:20-26. [PMID: 32569801 DOI: 10.1016/j.toxlet.2020.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 02/02/2023]
Abstract
The aim of this study was to summarise the available information regarding the partition of toxic metal (Cd, Hg, Mn, Pb) levels in the maternal/foetal unit from large epidemiological studies. We performed a systematic search of PubMed/MedLine, EMBASE, and ISI Web of Science for papers on Cd, total Hg, Mn or Pb levels in the maternal/cord blood that were published in English (n > = 200; 2010-2017). Data on year of publication, sample size, location, year of survey, and main results were extracted. We found a total of 35 papers. Most studies included large convenience samples of healthy pregnant women. The maternal/cord blood was properly used as a biomarker of prenatal exposure to toxic metals. The partition of these toxic metal levels in the maternal/foetal unit was metal-specific. Cd median levels (IQR) in cord blood reported worldwide were much lower [∼ 70 % < LOD = ± 0.11 μg/L] than those found in maternal blood [0.23 μg/L (0.15-0.35), ∼ 65 % > LOD]. Considering that Cd was under LOD in 70 % of the cord blood, Cd cord:maternal ratio as well as Cd cord proportion were not provided. Total Hg median levels (IQR) in cord blood [0.75 μg/L (0.40-1.19), ∼30 % < LOD = ±0.35 μg/L] were usually higher than in maternal blood [0.55 μg/L (0.40-0.85), ∼ 10 % < LOD = ±0.15 μg/L]. Hg cord:maternal ratio was 1.34 (1.00-1.91), and infants born would have Hg cord:(cord + maternal) proportion ranged from 0.50 to 0.63. Mn was the only metal that was detected in 100 % in both maternal (LOD : ±0.50 μg/L) and cord (LOD = ±0.2 μg/L) blood. Mn median levels (IQR) in cord blood [32.96 μg/L (26.90-40.10)] were 2 times higher than in maternal blood [14.01 μg/L (11.50-17.58)]. Mn cord:maternal ratio was 2.35 (1.09-3.80), and infants born would have Mn proportion ranged from 0.52 to 0.79. Pb median levels (IQR) in cord blood [5.79 μg/L (4.34-8.38), ∼ 5% < LOD : ±2.07 μg/L] were usually equal to or lower than those reported in maternal blood [8.07 μg/L (5.79-10.76), ∼ 1% < LOD = ±1.03 μg/L]. Pb cord:maternal ratio was 0.71 (0.59-0.96), and infants born would have Pb proportion ranged from 0.37 to 0.49. Globally, the results indicate that total Hg and Mn levels were lower in maternal blood but higher in cord blood. However, much greater variability was seen with Cd and Pb. At delivery, total Hg and Pb levels in maternal blood were strong predictors of cord blood levels. Our findings empty that understanding the partition, levels and correlations of toxic metals in the maternal/cord blood may help to elucidate the adverse effects of these metals on foetuses and neonates.
Collapse
Affiliation(s)
- M Kabamba
- Faculty of Sciences, University of Kinshasa, Democratic Republic of Congo
| | - J Tuakuila
- Faculty of Sciences, University of Kinshasa, Democratic Republic of Congo; Faculty of Health Sciences, University of Sherbrooke, Quebec, Canada.
| |
Collapse
|
20
|
Brandt M, Cardinale J, Rausch I, Mindt TL. Manganese in PET imaging: Opportunities and challenges. J Labelled Comp Radiopharm 2020; 62:541-551. [PMID: 31115089 PMCID: PMC6771670 DOI: 10.1002/jlcr.3754] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 12/22/2022]
Abstract
Several radionuclides of the transition metal manganese are known and accessible. Three of them, 51Mn, 52mMn, and 52gMn, are positron emitters that are potentially interesting for positron emission tomography (PET) applications and, thus, have caught the interest of the radiochemical/radiopharmaceutical and nuclear medicine communities. This mini‐review provides an overview of the production routes and physical properties of these radionuclides. For medical imaging, the focus is on the longer‐living 52gMn and its application for the radiolabelling of molecules and other entities exhibiting long biological half‐lives, the imaging of manganese‐dependent biological processes, and the development of bimodal PET/magnetic resonance imaging (MRI) probes in combination with paramagnetic natMn as a contrast agent.
Collapse
Affiliation(s)
- Marie Brandt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Jens Cardinale
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Ivo Rausch
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Thomas L Mindt
- Ludwig Boltzmann Institute Applied Diagnostics, General Hospital of Vienna, Vienna, Austria.,Department of Biomedical Imaging and Image Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.,Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Ochs AT, Shields JD, Rice GW, Unger MA. Acute and long-term manganese exposure and subsequent accumulation in relation to idiopathic blindness in the American lobster, Homarus americanus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 219:105379. [PMID: 31838305 DOI: 10.1016/j.aquatox.2019.105379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/19/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
Manganese (Mn) is a hypoxic reactive metal commonly found in marine sediments. Under hypoxic conditions the metal becomes fully reduced to Mn2+ and is biologically available to the benthic community for uptake. Mn is also a potent neurotoxin and it may play a role in the etiology of idiopathic blindness that has been observed in American lobsters. An acute exposure study was designed to expose American lobster, Homarus americanus, to 0, 20, 80, 150, and 300 mg L-1 (ppm) for 96 hs to explore disparities in Mn accumulation among several tissues: optic nerve, brain, hepatopancreas, muscle, hemolymph, gill, and exoskeleton. These concentrations were based on realistic pore-water concentrations (20 mg L-1), high sediment concentrations (80 mg L-1), and unrealistically high concentrations to determine lethality (150 and 300 mg L-1). A positive correlation between Mn accumulation and exposure concentration was observed in all tissues examined. In the internal tissues, manganese concentrations showed a high affinity towards brain, optic nerve, and hemolymph. In the exoskeleton and gills, Mn concentrations were also high, possibly because of internal uptake as well as external adsorption. Concentrations of Mn in tissues from the acute exposure study followed the accumulation pattern: hemolymph > gill > exoskeleton > optic nerve > brain > hepatopancreas = muscle. A long-term exposure study lasting seven weeks was designed to investigate the potential link between high Mn exposure and idiopathic blindness, a condition that affects an estimated 50 % of the adult American lobster population off Southern New England (SNE), USA. A comparison of these exposure studies showed evidence of time-dependent Mn accumulation in brain, muscle, exoskeleton, and gill tissue. Although the relationship between Mn exposure and blindness was not apparent, there was a modest trend in the development of blindness (Chi-square, p = 0.102) in animals exposed to a high concentration (150 mg L-1) of the metal. With no mortalities occurring in the acute study and only one mortality in the long-term study, it is highly unlikely that Mn is acutely toxic to American lobsters at environmentally relevant concentrations. Its potential role in idiopathic blindness remains to be determined.
Collapse
Affiliation(s)
- Addison T Ochs
- Virginia Institute of Marine Science, The College of William and Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| | - Jeffrey D Shields
- Virginia Institute of Marine Science, The College of William and Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA.
| | - Gary W Rice
- Chemistry Department, The College of William and Mary, Williamsburg, VA, 23187, USA
| | - Michael A Unger
- Virginia Institute of Marine Science, The College of William and Mary, P.O. Box 1346, Gloucester Point, VA, 23062, USA
| |
Collapse
|
22
|
Rocha DP, Foster CW, Munoz RAA, Buller GA, Keefe EM, Banks CE. Trace manganese detection via differential pulse cathodic stripping voltammetry using disposable electrodes: additively manufactured nanographite electrochemical sensing platforms. Analyst 2020; 145:3424-3430. [DOI: 10.1039/d0an00018c] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Additive manufacturing is a promising technology for the rapid and economical fabrication of portable electroanalytical devices.
Collapse
Affiliation(s)
- Diego P. Rocha
- Faculty of Science and Engineering
- Manchester Metropolitan University
- Manchester
- UK
- Institute of Chemistry
| | | | | | - Gary A. Buller
- Faculty of Science and Engineering
- Manchester Metropolitan University
- Manchester
- UK
| | - Edmund M. Keefe
- Faculty of Science and Engineering
- Manchester Metropolitan University
- Manchester
- UK
| | - Craig E. Banks
- Faculty of Science and Engineering
- Manchester Metropolitan University
- Manchester
- UK
| |
Collapse
|
23
|
Anderson FL, Coffey MM, Berwin BL, Havrda MC. Inflammasomes: An Emerging Mechanism Translating Environmental Toxicant Exposure Into Neuroinflammation in Parkinson's Disease. Toxicol Sci 2019; 166:3-15. [PMID: 30203060 DOI: 10.1093/toxsci/kfy219] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Evidence indicates that complex gene-environment interactions underlie the incidence and progression of Parkinson's disease (PD). Neuroinflammation is a well-characterized feature of PD widely believed to exacerbate the neurodegenerative process. Environmental toxicants associated with PD, such as pesticides and heavy metals, can cause cellular damage and stress potentially triggering an inflammatory response. Toxicant exposure can cause stress and damage to cells by impairing mitochondrial function, deregulating lysosomal function, and enhancing the spread of misfolded proteins. These stress-associated mechanisms produce sterile triggers such as reactive oxygen species (ROS) along with a variety of proteinaceous insults that are well documented in PD. These associations provide a compelling rationale for analysis of sterile inflammatory mechanisms that may link environmental exposure to neuroinflammation and PD progression. Intracellular inflammasomes are cytosolic assemblies of proteins that contain pattern recognition receptors, and a growing body of evidence implicates the association between inflammasome activation and neurodegenerative disease. Characterization of how inflammasomes may function in PD is a high priority because the majority of PD cases are sporadic, supporting the widely held belief that environmental exposure is a major factor in disease initiation and progression. Inflammasomes may represent a common mechanism that helps to explain the strong association between exposure and PD by mechanistically linking environmental toxicant-driven cellular stress with neuroinflammation and ultimately cell death.
Collapse
Affiliation(s)
| | | | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756
| | | |
Collapse
|
24
|
Schofield K. An Important Need to Monitor from an Early Age the Neurotoxins in the Blood or by an Equivalent Biomarker. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183425. [PMID: 31527390 PMCID: PMC6766009 DOI: 10.3390/ijerph16183425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
An overwhelming amount of evidence now suggests that some people are becoming overloaded with neurotoxins. This is mainly from changes in their living environment and style, coupled with the fact that all people are different and display a broad distribution of genetic susceptibilities. It is important for individuals to know where they lie concerning their ability to either reject or retain toxins. Everyone is contaminated with a certain baseline of toxins that are alien to the body, namely aluminum, arsenic, lead, and mercury. Major societal changes have modified their intake, such as vaccines in enhanced inoculation procedures and the addition of sushi into diets, coupled with the ever-present lead, arsenic, and traces of manganese. It is now apparent that no single toxin is responsible for the current neurological epidemics, but rather a collaborative interaction with possible synergistic components. Selenium, although also a neurotoxin if in an excessive amount, is always present and is generally more present than other toxins. It performs as the body’s natural chelator. However, it is possible that the formation rates of active selenium proteins may become overburdened by other toxins. Every person is different and it now appears imperative that the medical profession establish an individual’s neurotoxicity baseline. Moreover, young women should certainly establish their baselines long before pregnancy in order to identify possible risk factors.
Collapse
Affiliation(s)
- Keith Schofield
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106-5121, USA.
| |
Collapse
|
25
|
Christophoridis C, Kosma A, Evgenakis E, Bourliva A, Fytianos K. Determination of heavy metals and health risk assessment of cheese products consumed in Greece. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.103238] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
26
|
Yang Y, Ma S, Wei F, Liang G, Yang X, Huang Y, Wang J, Zou Y. Pivotal role of cAMP-PKA-CREB signaling pathway in manganese-induced neurotoxicity in PC12 cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:1052-1062. [PMID: 31161640 DOI: 10.1002/tox.22776] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Manganese (Mn) plays a critical role in individual growth and development, yet excessive exposure can result in neurotoxicity, especially cognitive impairment. Neuronal apoptosis is considered as one of the mechanisms of Mn-induced neurotoxicity. Recent evidence suggests that cAMP-PKA-CREB signaling regulates apoptosis and is associated with cognitive function. However, whether this pathway participates in Mn-induced neurotoxicity is not completely understood. To fill this gap, in vitro cultures of PC12 cells were exposed to 0, 400, 500, and 600 μmol/L Mn for 24 hours, respectively. Another group of cells were pretreated with 10.0 μmol/L rolipram (a phosphodiesterase-4 [PDE4] inhibitor) for 1 hour followed by 500 μmol/L Mn exposure for 24 hours. Flow cytometry, immunofluorescence staining, enzyme-linked immunosorbent assay, and Western blot analysis were used to detect the apoptosis rate, protein levels of PDE4, cAMP signaling, and apoptosis-associated proteins, respectively. We found that Mn exposure significantly inhibited cAMP signaling and protein expression of Bcl-2, while increasing apoptosis rate, protein levels of PDE4, Bax, activated caspase-3, and activated caspase-8 in PC12 cells. Pretreatment of rolipram ameliorated Mn-induced deficits in cAMP signaling and apoptosis. These findings demonstrate that cAMP-PKA-CREB signaling pathway-induced apoptosis is involved in Mn-induced neurotoxicity.
Collapse
Affiliation(s)
- Yiping Yang
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| | - Shuyan Ma
- Department of Toxicology, Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, China
| | - Fu Wei
- Center for Reproductive Medicine and Genetics, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Guiqiang Liang
- Department of Preventive Medicine, School of Public Health and Management, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yuman Huang
- Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Jian Wang
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control of Highly Prevalent Diseases, Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Alimba CG, Laide AW. Genotoxic and cytotoxic assessment of individual and composite mixture of cadmium, lead and manganese in Clarias gariepinus (Burchell 1822) using micronucleus assay. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
28
|
Sudarshana DM, Nair G, Dwyer JT, Dewey B, Steele SU, Suto DJ, Wu T, Berkowitz BA, Koretsky AP, Cortese ICM, Reich DS. Manganese-Enhanced MRI of the Brain in Healthy Volunteers. AJNR Am J Neuroradiol 2019; 40:1309-1316. [PMID: 31371354 DOI: 10.3174/ajnr.a6152] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE The manganese ion is used as an intracellular MR imaging contrast agent to study neuronal function in animal models, but it remains unclear whether manganese-enhanced MR imaging can be similarly useful in humans. Using mangafodipir (Teslascan, a chelated manganese-based contrast agent that is FDA-approved), we evaluated the dynamics of manganese enhancement of the brain and glandular structures in the rostral head and neck in healthy volunteers. MATERIALS AND METHODS We administered mangafodipir intravenously at a rate of 1 mL/minute for a total dose of 5 μmol/kg body weight. Nine healthy adult volunteers (6 men/3 women; median age, 43 years) completed baseline history and physical examination, 3T MR imaging, and blood work. MR imaging also followed mangafodipir administration at various time points from immediate to 7 days, with delayed scans at 1-3 months. RESULTS The choroid plexus and anterior pituitary gland enhanced within 10 minutes of infusion, with enhancement persisting up to 7 and 30 days, respectively. Exocrine (parotid, submandibular, sublingual, and lacrimal) glands also enhanced avidly as early as 1 hour postadministration, generally resolving by 1 month; 3 volunteers had residual exocrine gland enhancement, which resolved by 2 months in 1 and by 3 months in the other 2. Mangafodipir did not affect clinical parameters, laboratory values, or T1-weighted signal in the basal ganglia. CONCLUSIONS Manganese ions released from mangafodipir successfully enable noninvasive visualization of intra- and extracranial structures that lie outside the blood-brain barrier without adverse clinical effects, setting the stage for future neuroradiologic investigation in disease.
Collapse
Affiliation(s)
- D M Sudarshana
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland.,Cleveland Clinic Lerner College of Medicine of Case Western Reserve University (D.M.S.), Cleveland, Ohio
| | - G Nair
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| | - J T Dwyer
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| | - B Dewey
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| | - S U Steele
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| | - D J Suto
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| | - T Wu
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| | - B A Berkowitz
- Department of Ophthalmology (B.A.B.), Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan
| | - A P Koretsky
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| | - I C M Cortese
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| | - D S Reich
- From the National Institute of Neurological Disorders and Stroke (D.M.S., G.N., J.T.D., B.D., S.U.S., D.J.S., T.W., A.P.K., I.C.M.C., D.S.R.), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
29
|
Evgenakis E, Christophoridis C, Fytianos K. Method optimization for heavy metal determination in milk powder: application to milk samples from Greece. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26766-26779. [PMID: 28875392 DOI: 10.1007/s11356-017-9863-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
The scope of this study was the development, optimization and validation of an analytical method for the determination of selected heavy metals and trace elements (As, Hg, Se, Cd, Cu, Pb, Mn, Fe, Ni, Zn, Cr) in milk powder, using microwave-assisted digestion. A statistical experimental design approach using central composite design (CCD) was carried out, to investigate the effects of three independent pretreatment variables (final digestion temperature (°C), HNO3 concentration (in % w/v), microwave hold time) on the heavy metal recovery of spiked undigested milk powder sample and to calculate the variable factor values which produce the optimum recovery. CCD results revealed that the optimum digestion conditions, with respect to maximum recovery were as follows: temperature 190 °C, HNO3 56.8% w/v, and digestion time of 8.47 min. The method was fully validated. Recoveries for all metals ranged between 92 and 108% while intra-day repeatability was below 6.59% (rsd). A certified reference material (ERM BD 150) that included 8 out of the total 11 heavy metals of the present study (Hg, Se, Cd, Cu, Pb, Mn, Ni, and Zn) was used to test the accuracy of the method where acceptable recovery values ranging between 96 and 107% were obtained. High heavy metal recoveries, short digestion time, and low acid consumption were the advantages of the pretreatment method. The analytical process was successfully applied for the determination of heavy metals in different milk samples from the Greek market. Heavy metal concentrations for Ni, Cr, Pb, Cd, Se, Mn, and Cu measured in this study reached 307, 102, 8.01, 5.96, 60.2, 519, and 438 μg/kg wet weight (ww), respectively. Zn and Fe were found at concentrations ranging 3.21-8.39 and 0.170-10.1 mg/kg ww, respectively. Risk assessment based on the WHO tolerable daily intake levels and the calculated target hazard quotients revealed that the consumption of the selected milk samples is considered safe.
Collapse
Affiliation(s)
- Emmanouil Evgenakis
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Christophoros Christophoridis
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Konstantinos Fytianos
- Environmental Pollution Control Laboratory, Chemistry Department, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
30
|
An Y, Zhang X, Wang X, Chen Z, Wu X. Nano@lignocellulose intercalated montmorillonite as adsorbent for effective Mn(II) removal from aqueous solution. Sci Rep 2018; 8:10863. [PMID: 30022147 PMCID: PMC6052037 DOI: 10.1038/s41598-018-29210-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/06/2018] [Indexed: 11/09/2022] Open
Abstract
This paper describes the preparation of nano@lignocellulose (nano@LC) and a nano@lignocellulose/montmorillonite (nano@LC/MT) nanocomposite, as well as the capacity of the nano@LC/MT for adsorbing manganese ions from aqueous solution. The structure of nano@LC and nano@LC/MT was characterised by Fourier-transform infrared spectroscopy, X-ray diffraction, Scanning electron microscopy, and Transmission electron microscopy, which revealed that the diffraction peak of montmorillonite almost disappeared, infrared bands of the functional groups shifted, and morphology of the material changed after the formation of the composite. The optimum conditions for the adsorption of Mn(II) on the nano@LC/MT nanocomposite were investigated in detail by changing the initial Mn(II) concentration, pH, adsorption temperature, and time. The results revealed that the adsorption capacity of the nano@LC/MT nanocomposite for Mn(II) reached 628.0503 mg/g at a Mn(II) initial concentration of 900 mg/L, solution pH 5.8, adsorption temperature 55 °C, and adsorption time 160 min. Adsorption kinetics experiments revealed good agreement between the experimental data and the pseudo-second order kinetic model. The experimental data was satisfactorily fitted to the Langmuir isotherm. Adsorption-desorption results showed that nano@LC/MT exhibited excellent reusability. The adsorption mechanism was investigated through FT-IR and EDX spectroscopic analyses. The results suggested that nano@LC/MT have great potential in removing Mn(II) from water.
Collapse
Affiliation(s)
- Yuhong An
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Xiaotao Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
- College of Science, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot, 010018, P.R. China.
| | - Zhangjing Chen
- Department of Sustainable Biomaterials Virginia Tech University, Blacksburg, VA, 24061, USA
| | - Xiangwen Wu
- College student village officials of Xieji village Xieji town Shanxian Country Shandong province, Heze, 274300, P.R. China
| |
Collapse
|
31
|
|
32
|
Ma RE, Ward EJ, Yeh CL, Snyder S, Long Z, Gokalp Yavuz F, Zauber SE, Dydak U. Thalamic GABA levels and occupational manganese neurotoxicity: Association with exposure levels and brain MRI. Neurotoxicology 2018; 64:30-42. [PMID: 28873337 PMCID: PMC5891096 DOI: 10.1016/j.neuro.2017.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Excessive occupational exposure to Manganese (Mn) has been associated with clinical symptoms resembling idiopathic Parkinson's disease (IPD), impairing cognitive and motor functions. Several studies point towards an involvement of the brain neurotransmitter system in Mn intoxication, which is hypothesized to be disturbed prior to onset of symptoms. Edited Magnetic Resonance Spectroscopy (MRS) offers the unique possibility to measure γ-amminobutyric acid (GABA) and other neurometabolites in vivo non-invasively in workers exposed to Mn. In addition, the property of Mn as Magnetic Resonance Imaging (MRI) contrast agent may be used to study Mn deposition in the human brain. In this study, using MRI, MRS, personal air sampling at the working place, work history questionnaires, and neurological assessment (UPDRS-III), the effects of chronic Mn exposure on the thalamic GABAergic system was studied in a group of welders (N=39) with exposure to Mn fumes in a typical occupational setting. Two subgroups of welders with different exposure levels (Low: N=26; mean air Mn=0.13±0.1mg/m3; High: N=13; mean air Mn=0.23±0.18mg/m3), as well as unexposed control workers (N=22, mean air Mn=0.002±0.001mg/m3) were recruited. The group of welders with higher exposure showed a significant increase of thalamic GABA levels by 45% (p<0.01, F(1,33)=9.55), as well as significantly worse performance in general motor function (p<0.01, F(1,33)=11.35). However, welders with lower exposure did not differ from the controls in GABA levels or motor performance. Further, in welders the thalamic GABA levels were best predicted by past-12-months exposure levels and were influenced by the Mn deposition in the substantia nigra and globus pallidus. Importantly, both thalamic GABA levels and motor function displayed a non-linear pattern of response to Mn exposure, suggesting a threshold effect.
Collapse
Affiliation(s)
- Ruoyun E Ma
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric J Ward
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Chien-Lin Yeh
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sandy Snyder
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Speech, Language and Hearing Sciences, Purdue University, West Lafayette, IN, USA
| | - Zaiyang Long
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Fulya Gokalp Yavuz
- Department of Statistics, Purdue University, IN, USA; Yildiz Technical University, Istanbul, Turkey
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Speech, Language and Hearing Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
33
|
Tuzuki BLL, Delunardo FAC, Ribeiro LN, Melo CPD, Gomes LC, Chippari-Gomes AR. Effects of manganese on fat snook Centropomus parallelus (Carangaria: Centropomidae) exposed to different temperatures. NEOTROPICAL ICHTHYOLOGY 2017. [DOI: 10.1590/1982-0224-20170054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT This study evaluates the effects of exposure to manganese (Mn2+) for 96 hours at two different temperatures (24 and 27°C) on juveniles of Centropomus parallelus through the activities of glutathione S-transferase (GST) and catalase (CAT), micronuclei test (MN) and comet assay. The GST activity did not show any significant difference between the groups exposed to Mn2+ and the respective control groups; in contrast, a major increase in the CAT activity was observed at 27°C in the group exposed to Mn2+ compared to the control group. The genotoxic analyses showed that in all animals exposed to Mn2+, the number of red cells with micronuclei increased significantly compared to the respective control groups. There was also a significant increase in the incidence of DNA damage in the groups exposed to Mn2+. At a temperature of 24ºC, animals exposed to Mn2+ had more DNA damage than those at 27°C. It is likely that the increase in temperature can also induce oxidative stress. Thus, we conclude that manganese is toxic to the fat snook juveniles, causing genotoxic damage, and when associated with an increase in temperature, manganese can also provoke an increase in oxidative stress.
Collapse
|
34
|
Schofield K. The Metal Neurotoxins: An Important Role in Current Human Neural Epidemics? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:E1511. [PMID: 29206191 PMCID: PMC5750929 DOI: 10.3390/ijerph14121511] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022]
Abstract
Many published studies have illustrated that several of the present day neurological epidemics (autism, attention deficit disorder, Alzheimer's) cannot be correlated to any single neurotoxicant. However, the present scientific examination of the numerous global blood monitoring databases for adults that include the concentrations of the neurotoxic elements, aluminum (Al), arsenic (As), lead (Pb), manganese (Mn), mercury (Hg), and selenium (Se) clearly indicate that, when considered in combination, for some, the human body may become easily over-burdened. This can be explained by changes in modern lifestyles. Similar data, solely for pregnant women, have been examined confirming this. All these elements are seen to be present in the human body and at not insignificant magnitudes. Currently suggested minimum risk levels (MRL) for humans are discussed and listed together with averages of the reported distributions, together with their spread and maximum values. One observation is that many distributions for pregnant women are not too dissimilar from those of general populations. Women obviously have their individual baseline of neurotoxin values before pregnancy and any efforts to modify this to any significant degree is not yet clearly apparent. For any element, distribution shapes are reasonably similar showing broad distributions with extended tails with numerous outlier values. There are a certain fraction of people that lie well above the MRL values and may be at risk, especially if genetically susceptible. Additionally, synergistic effects between neurotoxins and with other trace metals are now also being reported. It appears prudent for women of child-bearing age to establish their baseline values well before pregnancy. Those at risk then can be better identified. Adequate instrumental testing now is commercially available for this. In addition, directives are necessary for vaccination programs to use only non-neurotoxic adjuvants, especially for young children and all women of child-bearing ages. Additionally, clearer directives concerning fish consumption must now be reappraised.
Collapse
Affiliation(s)
- Keith Schofield
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106-5121, USA.
| |
Collapse
|
35
|
Abstract
Although an essential nutrient, manganese (Mn) can be toxic at high doses. There is, however, uncertainty regarding the effects of chronic low-level Mn-exposure. This review provides an overview of Mn-related brain and functional changes based on studies of a cohort of asymptomatic welders who had lower Mn-exposure than in most previous work. In welders with low-level Mn-exposure, we found: 1) Mn may accumulate in the brain in a non-linear fashion: MRI R1 (1/T1) signals significantly increased only after a critical level of exposure was reached (e.g., ≥300 welding hours in the past 90days prior to MRI). Moreover, R1 may be a more sensitive marker to capture short-term dynamic changes in Mn accumulation than the pallidal index [T1-weighted intensity ratio of the globus pallidus vs. frontal white matter], a traditional marker for Mn accumulation; 2) Chronic Mn-exposure may lead to microstructural changes as indicated by lower diffusion tensor fractional anisotropy values in the basal ganglia (BG), especially when welding years exceeded more than 30 years; 3) Mn-related subtle motor dysfunctions can be captured sensitively by synergy metrics (indices for movement stability), whereas traditional fine motor tasks failed to detect any significant differences; and 4) Iron (Fe) also may play a role in welding-related neurotoxicity, especially at low-level Mn-exposure, evidenced by higher R2* values (an estimate for brain Fe accumulation) in the BG. Moreover, higher R2* values were associated with lower phonemic fluency performance. These findings may guide future studies and the development of occupation- and public health-related polices involving Mn-exposure.
Collapse
|
36
|
Nielsen BS, Larsen EH, Ladefoged O, Lam HR. Subchronic, Low-Level Intraperitoneal Injections of Manganese (IV) Oxide and Manganese (II) Chloride Affect Rat Brain Neurochemistry. Int J Toxicol 2017; 36:239-251. [PMID: 28460583 DOI: 10.1177/1091581817704378] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Manganese (Mn) is neurotoxic and can induce manganism, a Parkinson-like disease categorized as being a serious central nervous system irreversible neurodegenerative disease. An increased risk of developing symptoms of Parkinson disease has been linked to work-related exposure, for example, for workers in agriculture, horticulture, and people living near areas with frequent use of Mn-containing pesticides. In this study, the focus was placed on neurochemical effects of Mn. Rats were dosed intraperitoneally with 0.9% NaCl (control), 1.22 mg Mn (as MnO2)/kg bodyweight (bw)/day, or 2.5 mg Mn (as MnCl2)/kg bw/day for 7 d/wk for 8 or 12 weeks. This dosing regimen adds relevant new knowledge about Mn neurotoxicity as a consequence of low-dose subchronic Mn dosing. Manganese concentrations increased in the striatum, the rest of the brain, and in plasma, and regional brain neurotransmitter concentrations, including noradrenaline, dopamine (DA), 5-hydroxytrytamine, glutamate, taurine, and γ-amino butyric acid, and the activity of acetylcholinesterase changed. Importantly, a target parameter for Parkinson disease and manganism, the striatal DA concentration, was reduced after 12 weeks of dosing with MnCl2. Plasma prolactin concentration was not significantly affected due to a potentially reduced dopaminergic inhibition of the prolactin release from the anterior hypophysis. No effects on the striatal α-synuclein and synaptophysin protein levels were detected.
Collapse
Affiliation(s)
| | - Erik H Larsen
- 2 Division of Food Production, National Food Institute, Søborg, Denmark
| | - Ole Ladefoged
- 3 Division of Toxicology and Risk Assessment, National Food Institute, Søborg, Denmark
| | - Henrik R Lam
- 1 Environment and Toxicology, DHI, Hørsholm, Denmark
| |
Collapse
|
37
|
Wang TJ, Liu K, Shi X, Ye L, Gu W, Yan CX. Tuning of synthesis conditions by thermal decomposition towards gadolinium-doped manganese carbonate nanoparticles with uniform size and high relaxivity. NEW J CHEM 2017. [DOI: 10.1039/c6nj02739c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A low temperature thermal decomposition method has been developed to synthesize uniform-sized Gd-doped MnCO3 nanoparticles.
Collapse
Affiliation(s)
- Ting-jian Wang
- Department of Neurosurgery
- Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| | - Kang Liu
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Xin Shi
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Ling Ye
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Wei Gu
- School of Chemical Biology and Pharmaceutical Sciences
- Capital Medical University
- Beijing 100069
- P. R. China
| | - Chang-xiang Yan
- Department of Neurosurgery
- Sanbo Brain Hospital
- Capital Medical University
- Beijing 100093
- P. R. China
| |
Collapse
|
38
|
Oladipo OO, Ayo JO, Ambali SF, Mohammed B. Evaluation of hepatorenal impairments in Wistar rats coexposed to low-dose lead, cadmium and manganese: insights into oxidative stress mechanism. Toxicol Mech Methods 2016; 26:674-684. [DOI: 10.1080/15376516.2016.1223242] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Olusola Olalekan Oladipo
- Biochemistry Division, National Veterinary Research Institute, Vom, Nigeria
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | | | | | - Bisalla Mohammed
- Department of Veterinary Pathology, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
39
|
Nduka JK, Onyenezi Amuka JP, Onwuka JC, Udowelle NA, Orisakwe OE. Human health risk assessment of lead, manganese and copper from scrapped car paint dust from automobile workshops in Nigeria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20341-20349. [PMID: 27449017 DOI: 10.1007/s11356-016-7219-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
The economic downturn in Nigeria and Structural Adjustment Programme led to the flooding of Nigerian market with imported used automobiles. Most of these vehicles needed refurbishing and reworking. The present study is a human health risk assessment of metal exposure resulting from reworking of imported used vehicles in Nigeria. Scrap paint dusts from 56 Japanese made cars were collected from 8 different mechanic villages (workshops A-H] in Southeastern Nigeria. Scrap paints were homogenized, mixed, divided into fine particles and digested by standard method. The filtrates were assayed of lead, manganese and copper with atomic absorption spectrophotometry (AAS). Workshop B has the highest concentration of Pb (4.26 ± 0.93). Manganese in workshops A and F were (3.31 ± 0.85) and (3.04 ± 0.47) respectively and were higher than the levels from workshops C, B, D, G and H. Copper in workshop D (7.11 ± 0.21) was significantly greater than the other workshops. The highest hazard quotient (HQ) through ingestion, inhalation and dermal exposures in adults were 9.44E-05 (workshop B), 4.20E-01 (workshop B) and 1.08E-05 (workshop D) respectively. The highest values for HQ through ingestion, inhalation and dermal in children were 8.82E-04, 7.61E-01 and 2.86E-05 all in workshop B respectively. For children, the highest carcinogenic risk levels were 7.05E-08, 6.09E-05 and 2.29E-10 for ingestion, inhalation and dermal exposures respectively. In adults, the carcinogenic risk levels were 7.55E-09, 3.39E-05 and 8.67E-10 for ingestion, inhalation and dermal exposures respectively. Chronic exposure to scrap car paint dusts may be of significant public health importance in Nigeria as this may add to the body burden of some heavy metals.
Collapse
Affiliation(s)
- John Kanayochukwu Nduka
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
- Department of Chemistry, Federal University, Lafia, Nasarawa State, Nigeria
| | - John Paul Onyenezi Amuka
- Environmental Chemistry and Toxicology Research Unit, Pure and Industrial Chemistry Department, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | | | - Nnaemeka Arinze Udowelle
- Toxicology Unit, Department of Experimental Pharmacology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Nigeria
| | - Orish Ebere Orisakwe
- Toxicology Unit, Department of Experimental Pharmacology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Nigeria.
| |
Collapse
|
40
|
Sonet J, Bulteau AL, Chavatte L, García-Barrera T, Gómez-Ariza JL, Callejón-Leblic B, Nischwitz V, Theiner S, Galvez L, Koellensperger G, Keppler BK, Roman M, Barbante C, Neth K, Bornhorst J, Michalke B. Biomedical and Pharmaceutical Applications. Metallomics 2016. [DOI: 10.1002/9783527694907.ch13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jordan Sonet
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Anne-Laure Bulteau
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Laurent Chavatte
- Centre National de Recherche Scientifique (CNRS)/Université de Pau et des Pays de l'Adour (UPPA), Unité Mixte de Recherche (UMR) 5254; Institut Pluridisciplinaire de Recherche sur l'Environnement et les Matériaux (IPREM), Laboratoire de Chimie Analytique Bio-Inorganique et Environnement (LCABIE); Technopôle Hélioparc Pau Pyrénées, 2 Avenue du Président Pierre Angot 64000 Pau France
| | - Tamara García-Barrera
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - José Luis Gómez-Ariza
- University of Huelva, Research Center of Health and Environment (CYSMA); Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Belén Callejón-Leblic
- University of Huelva; Department of Chemistry, Campus El Carmen; Fuerzas Armadas Ave 21007 Huelva Spain
| | - Volker Nischwitz
- Forschungszentrum Jülich; Central Institute for Engineering, Electronics and Analytics; Analytics (ZEA-3), Wilhelm-Johnen-Straße 52428 Jülich Germany
| | - Sarah Theiner
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Luis Galvez
- University of Vienna, Research Platform ‘Translational Cancer Therapy Research’; Waehringer Strasse 42 1090 Vienna Austria
| | - Gunda Koellensperger
- University of Vienna, Department of Analytical Chemistry; Waehringer Strasse 38 1090 Vienna Austria
| | - Bernhard K. Keppler
- University of Vienna; Department of Inorganic Chemistry; Waehringer Strasse 42 1090 Vienna Austria
| | - Marco Roman
- Ca' Foscari University of Venice; Department of Environmental Sciences, Informatics and Statistics (DAIS); Via Torino 155 30172 Venice Italy
| | - Carlo Barbante
- National Research Council; Institute for the Dynamics of Environmental Processes (IDPA-CNR); Via Torino 155 30172 Venice Italy
| | - Katharina Neth
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| | - Julia Bornhorst
- University of Potsdam; Department of Food Chemistry, Institute of Nutritional Science; Arthur-Scheunert-Allee 114-116 14558 Nuthetal Germany
| | - Bernhard Michalke
- Helmholtz Center Munich, German Research Center for Environmental Health GmbH; Research Unit: Analytical BioGeoChemistry; Ingolstädter Landstraße 1 85764 Neuherberg Germany
| |
Collapse
|
41
|
Michalke B. Review about the manganese speciation project related to neurodegeneration: An analytical chemistry approach to increase the knowledge about manganese related parkinsonian symptoms. J Trace Elem Med Biol 2016; 37:50-61. [PMID: 27006066 DOI: 10.1016/j.jtemb.2016.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/03/2016] [Accepted: 03/06/2016] [Indexed: 12/20/2022]
Abstract
Neurodegenerative diseases get a growing relevance for societies. But yet the complex multi-factorial mechanisms of these diseases are not fully understood, although it is well accepted that metal ions may play a crucial role. Manganese (Mn) is a transition metal which has essential biochemical functions but from occupational exposure scenarios it appeared that Mn can cause severe neurological damage. This "two-faces"-nature of manganese initiated us to start a project on Mn-speciation, since different element species are known to exhibit different impacts on health. A summary about the step-wise developments and findings from our working group was presented during the annual conference of the German trace element society in 2015. This paper summarizes now the contribution to this conference. It is intended to provide a complete picture of the so far evolved puzzle from our studies regarding manganese, manganese speciation and metabolomics as well as Mn-related mechanisms of neural damage. Doing so, the results of the single studies are now summarized in a connected way and thus their interrelationships are demonstrated. In short terms, we found that Mn-exposure leads to an increase of low molecular weight Mn compounds, above all Mn-citrate complex, which gets even enriched across neural barriers (NB). At a Mn serum concentration between 1.5 and 1.9μg/L a carrier switch from Mn-transferrin to Mn-citrate was observed. We concluded that the Mn-citrate complex is that important Mn-carrier to NB which can be found also beyond NB in human cerebrospinal fluid (CSF) or brain of exposed rats. In brain of Mn-exposed rats manganese leads to a decreased iron (Fe) concentration, to a shift from Fe(III) to Fe(II) after long term exposure and thus to a shift toward oxidative stress. This was additionally supported by an increase of markers for oxidative stress, inflammation or lipid peroxidation at increased Mn concentration in brain extracts. Furthermore, glutamate and acetylcholineesterase were elevated and many metabolite concentrations were significantly changed.
Collapse
Affiliation(s)
- Bernhard Michalke
- Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
42
|
The choroid plexus in health and in disease: dialogues into and out of the brain. Neurobiol Dis 2016; 107:32-40. [PMID: 27546055 DOI: 10.1016/j.nbd.2016.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 08/17/2016] [Indexed: 12/31/2022] Open
Abstract
This article brings the choroid plexus into the context of health and disease. It is remarkable that the choroid plexus, composed by a monolayer of epithelial cells that lie in a highly vascularized stroma, floating within the brain ventricles, gets so little attention in major physiology and medicine text books and in the scientific literature in general. Consider that it is responsible for producing most of the about 150mL of cerebrospinal fluid that fills the brain ventricles and the subarachnoid space and surrounds the spinal cord in the adult human central nervous system, which is renewed approximately 2-3 times daily. As such, its activity influences brain metabolism and function, which will be addressed. Reflect that it contains an impressive number of receptors and transporters, both in the apical and basolateral sides of the epithelial cells, and as such is a key structure for the communication between the brain and the periphery. This will be highlighted in the context of neonatal jaundice, multiple sclerosis and Alzheimer's disease. Realize that the capillaries that irrigate the choroid plexus stroma do not possess tight junctions and that the blood flow to the choroid plexus is five times higher than that in the brain parenchyma, allowing for a rapid sensing system and delivery of molecules such as nutrients and metals as will be revised. Recognize that certain drugs reach the brain parenchyma solely through the choroid plexus epithelia, which has potential to be manipulated in diseases such as neonatal jaundice and Alzheimer's disease as will be discussed. Without further notice, it must be now clear that understanding the choroid plexus is necessary for comprehending the brain and how the brain is modulated and modulates all other systems, in health and in disease. This review article intends to address current knowledge on the choroid plexus, and to motivate the scientific community to consider it when studying normal brain physiology and diseases of the central nervous system. It will guide the reader through several aspects of the choroid plexus in normal physiology, in diseases characteristic of various periods of life (newborns-kernicterus, young adults-multiple sclerosis and the elder-Alzheimer's disease), and how sex-differences may relate to disease susceptibility.
Collapse
|
43
|
Habib MR, Mohamed AH, Osman GY, Mossalem HS, Sharaf El-Din AT, Croll RP. Biomphalaria alexandrina as a bioindicator of metal toxicity. CHEMOSPHERE 2016; 157:97-106. [PMID: 27209558 DOI: 10.1016/j.chemosphere.2016.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 06/05/2023]
Abstract
Heavy metals are common environmental pollutants to the aquatic ecosystems. Several aquatic species have been used as bioindicators and biomonitoring subjects for heavy metals pollution. In the present study, the effects of cadmium (Cd) and manganese (Mn) on the survival, attachment, locomotion, and feeding behaviours of the gastropod snail Biomphalaria alexandrina were determined. The short-term (96 h) LC50 for Cd and Mn were found to be 0.219 and 154.2 mg/l, respectively. Long-term exposures (16-20 days) to ascending concentrations of Cd (0.01-1 mg/l) and Mn (50-500 mg/l) also caused gradual decreases in the survival rate of B. alexandrina in a dose-dependent manner. Attachment, locomotion and feeding behaviours of snails exposed to lethal and sublethal concentrations of Cd and Mn at acute (96 h) and chronic exposure (24 days) intervals, respectively, were also recorded. Compared to controls, a significant decrease (p ≤ 0.05) was recorded in the different behaviours of exposed snails. These changes in behaviour would potentially impact the snail's ability to survive in the wild. Although Cd caused a more severe decline in snail survivorship than Mn, the behavioural effects of Mn were much more severe than Cd when the metals were roughly matched for lethality. In sum, the present study demonstrates B. alexandrina to be a sensitive bioindicator and model organism to assess heavy metals risk factors for severe toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Mohamed R Habib
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | - Azza H Mohamed
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Gamalat Y Osman
- Zoology Department, Faculty of Science, Menoufia University, Shebin El-Kom, Egypt
| | - Hanan S Mossalem
- Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Roger P Croll
- Department of Physiology and Biophysics, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
44
|
Brunnquell CL, Hernandez R, Graves SA, Smit-Oistad I, Nickles RJ, Cai W, Meyerand ME, Suzuki M. Uptake and retention of manganese contrast agents for PET and MRI in the rodent brain. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:371-380. [PMID: 27396476 DOI: 10.1002/cmmi.1701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/28/2016] [Accepted: 05/18/2016] [Indexed: 01/04/2023]
Abstract
Manganese-enhanced magnetic resonance imaging (MRI) is an established neuroimaging method for signal enhancement, tract tracing, and functional studies in rodents. Along with the increasing availability of combined positron emission tomography (PET) and MRI scanners, the recent development of the positron-emitting isotope 52 Mn has prompted interest in the use of Mn2+ as a dual-modality contrast agent. In this work, we characterized and compared the uptake of systemically delivered Mn2+ and radioactive 52 Mn2+ in the rat brain for MRI and PET, respectively. Additionally, we examined the biodistribution of two formulations of 52 Mn2+ in the rat. In MRI, maximum uptake was observed one day following delivery of the highest MnCl2 dose tested (60 mg/kg), with some brain regions showing delayed maximum enhancement 2-4 days following delivery. In PET, we observed low brain uptake after systemic delivery, with a maximum of approximately 0.2% ID/g. We also studied the effect of final formulation vehicle (saline compared with MnCl2 ) on 52 Mn2+ organ biodistribution and brain uptake. We observed that the addition of bulk Mn2+ carrier to 52 Mn2+ in solution resulted in significantly reduced 52 Mn2+ uptake in the majority of organs, including the brain. These results lay the groundwork for further development of 52 Mn PET or dual Mn-enhanced PET-MR neuroimaging in rodents, and indicate several interesting potential applications of 52 Mn PET in other organs and systems. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Stephen A Graves
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Ivy Smit-Oistad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.,Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | - M Elizabeth Meyerand
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Masatoshi Suzuki
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
45
|
Rusinek CA, Bange A, Warren M, Kang W, Nahan K, Papautsky I, Heineman WR. Bare and Polymer-Coated Indium Tin Oxide as Working Electrodes for Manganese Cathodic Stripping Voltammetry. Anal Chem 2016; 88:4221-8. [PMID: 26980322 PMCID: PMC4889440 DOI: 10.1021/acs.analchem.5b03381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Though an essential metal in the body, manganese (Mn) has a number of health implications when found in excess that are magnified by chronic exposure. These health complications include neurotoxicity, memory loss, infertility in males, and development of a neurologic psychiatric disorder, manganism. Thus, trace detection in environmental samples is increasingly important. Few electrode materials are able to reach the negative reductive potential of Mn required for anodic stripping voltammetry (ASV), so cathodic stripping voltammetry (CSV) has been shown to be a viable alternative. We demonstrate Mn CSV using an indium tin oxide (ITO) working electrode both bare and coated with a sulfonated charge selective polymer film, polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene-sulfonate (SSEBS). ITO itself proved to be an excellent electrode material for Mn CSV, achieving a calculated detection limit of 5 nM (0.3 ppb) with a deposition time of 3 min. Coating the ITO with the SSEBS polymer was found to increase the sensitivity and lower the detection limit to 1 nM (0.06 ppb). This polymer modified electrode offers excellent selectivity for Mn as no interferences were observed from other metal ions tested (Zn(2+), Cd(2+), Pb(2+), In(3+), Sb(3+), Al(3+), Ba(2+), Co(2+), Cu(2+), Ni(3+), Bi(3+), and Sn(2+)) except Fe(2+), which was found to interfere with the analytical signal for Mn(2+) at a ratio 20:1 (Fe(2+)/Mn(2+)). The applicability of this procedure to the analysis of tap, river, and pond water samples was demonstrated. This simple, sensitive analytical method using ITO and SSEBS-ITO could be applied to a number of electroactive transition metals detectable by CSV.
Collapse
Affiliation(s)
- Cory A. Rusinek
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Adam Bange
- Department of Chemistry, Xavier University, Cincinnati, OH 45207-4221, USA
| | - Mercedes Warren
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Wenjing Kang
- BioMicrosystems Lab, Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH, 45221-0030, USA
| | - Keaton Nahan
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| | - Ian Papautsky
- BioMicrosystems Lab, Department of Electrical Engineering and Computing Systems, University of Cincinnati, Cincinnati, OH, 45221-0030, USA
| | - William R. Heineman
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221-0172, USA
| |
Collapse
|
46
|
Walter E, Alsaffar S, Livingstone C, Ashley SL. Manganese toxicity in critical care: Case report, literature review and recommendations for practice. J Intensive Care Soc 2015; 17:252-257. [PMID: 28979499 DOI: 10.1177/1751143715622216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We present the case of a 62-year-old man on the intensive care unit with pancreatitis. Since early in his admission, and for the remainder of his prolonged stay in intensive care, he has received parenteral nutrition for intestinal failure. The whole blood manganese concentration was significantly increased after 2½ months of parenteral nutrition (PN). Three months into his stay, he developed a resting tremor and extra-pyramidal dyskinesia. In the absence of other neurological symptoms, and with no history of essential tremor, Parkinsonism or cerebral signs, hypermanganesaemia was presumed to be the cause. We review manganese metabolism and toxicity in patients who are fed with parenteral nutrition and review the current recommendations and guidelines.
Collapse
Affiliation(s)
- Edward Walter
- Department of Intensive Care, Royal Surrey County Hospital, Surrey, UK
| | - Sinan Alsaffar
- Department of Intensive Care, Royal Surrey County Hospital, Surrey, UK
| | - Callum Livingstone
- Clinical Biochemistry Department, Royal Surrey County Hospital, Surrey, UK
| | - Sarah L Ashley
- Department of Nutrition and Dietetics, Royal Surrey County Hospital, Surrey, UK
| |
Collapse
|
47
|
Gow AG, Frowde PE, Elwood CM, Burton CA, Powell RM, Tappin SW, Foale RD, Duncan A, Mellanby RJ. Surgical attenuation of spontaneous congenital portosystemic shunts in dogs resolves hepatic encephalopathy but not hypermanganesemia. Metab Brain Dis 2015; 30:1285-9. [PMID: 25936718 DOI: 10.1007/s11011-015-9676-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/23/2015] [Indexed: 12/26/2022]
Abstract
Hypermanganesemia is commonly recognized in human patients with hepatic insufficiency and portosystemic shunting. Since manganese is neurotoxic, increases in brain manganese concentrations have been implicated in the development of hepatic encephalopathy although a direct causative role has yet to be demonstrated. Evaluate manganese concentrations in dogs with a naturally occurring congenital shunt before and after attenuation as well as longitudinally following the changes in hepatic encephalopathy grade. Our study demonstrated that attenuation of the shunt resolved encephalopathy, significantly reduced postprandial bile acids, yet a hypermanganasemic state persisted. This study demonstrates that resolution of hepatic encephalopathy can occur without the correction of hypermanganesemia, indicating that increased manganese concentrations alone do not play a causative role in encephalopathy. Our study further demonstrates the value of the canine congenital portosystemic shunt as a naturally occurring spontaneous model of human hepatic encephalopathy.
Collapse
Affiliation(s)
- Adam G Gow
- Division of Veterinary Clinical Studies, Easter Bush Veterinary Centre, Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Hospital for Small Animals, Roslin, Midlothian, EH25 9RG, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Michalke B, Aslanoglou L, Ochsenkühn-Petropoulou M, Bergström B, Berthele A, Vinceti M, Lucio M, Lidén G. An approach for manganese biomonitoring using a manganese carrier switch in serum from transferrin to citrate at slightly elevated manganese concentration. J Trace Elem Med Biol 2015; 32:145-54. [PMID: 26302922 DOI: 10.1016/j.jtemb.2015.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022]
Abstract
After high-dose-short-term exposure (usually from occupational exposure) and even more under low-dose long term exposure (mainly environmental) manganese (Mn) biomonitoring is still problematic since these exposure scenarios are not necessarily reflected by a significant increase of total Mn in blood or serum. Usually, Mn concentrations of exposed and unexposed persons overlap and individual differentiation is often not possible. In this paper Mn speciation on a large sample size (n=180) was used in order to be able to differentiate between highly Mn-exposed or low or unexposed individuals at low total Mn concentration in serum (Mn(S)). The whole sample set consisted of three subsets from Munich, Emilia Romagna region in Italy and from Sweden. It turned out that also at low total Mn(S) concentrations a change in major Mn carriers in serum takes place from Mn-transferrin (Mn-Tf(S)) towards Mn-citrate (Mn-Cit(S)) with high statistical significance (p<0.000002). This carrier switch from Mn-Tf(S) to Mn-Cit(S) was observed between Mn(S) concentrations of 1.5μg/L to ca. 1.7μg/L. Parallel to this carrier change, for sample donors from Munich where serum and cerebrospinal fluid were available, the concentration of Mn beyond neural barriers - analysed as Mn in cerebrospinal fluid (Mn(C)) - positively correlates to Mn-Cit(S) when Mn(S) concentration was above 1.7μg/L. The correlation between Mn-Cit(S) and Mn(C) reflects the facilitated Mn transport through neural barrier by means of Mn-citrate. Regional differences in switch points from Mn-Tf(S) to Mn-Cit(S) were observed for the three sample subsets. It is currently unknown whether these differences are due to differences in location, occupation, health status or other aspects. Based on our results, Mn-Cit(S) determination was considered as a potential means for estimating the Mn load in brain and CSF, i.e., it could be used as a biomarker for Mn beyond neural barrier. For a simpler Mn-Cit(S) determination than size exclusion chromatography inductively coupled plasma mass spectrometry (SEC-ICP-MS), ultrafiltration (UF) of serum samples was tested for suitability, the latter possibly being a preferred choice for routine occupational medicine laboratories. Our results revealed that UF could be an alternative if methodical prerequisites and limitations are carefully considered. These prerequisites were determined to be a thorough cleaning procedure at a minimum Mn(S) concentration >1.5μg/L, as at lower concentrations a wide scattering of the measured concentrations in comparison to the standardized SEC-ICP-MS results were observed.
Collapse
Affiliation(s)
- B Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany.
| | - L Aslanoglou
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany; School of Chemical Engineering, Laboratory of Inorganic and Analytical Chemistry, National Technical University of Athens, Greece
| | - M Ochsenkühn-Petropoulou
- School of Chemical Engineering, Laboratory of Inorganic and Analytical Chemistry, National Technical University of Athens, Greece
| | - B Bergström
- Örebro University Hospital, Department of Occupational and Environmental Medicine, SE-70185 Örebro, Sweden
| | - A Berthele
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - M Vinceti
- CREAGEN - Environmental, Genetic and Nutritional Epidemiology Research Center, University of Modena and Reggio Emilia, Modena, Italy
| | - M Lucio
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich - German Research Center for Environmental Health GmbH, 85764 Neuherberg, Germany
| | - G Lidén
- Department of Analytical Chemistry and Environmental Science, Atmospheric Science Unit, Stockholm University, SE-106 90 Stockholm, Sweden
| |
Collapse
|
49
|
Abstract
Exposure to manganese (Mn) causes clinical signs and symptoms resembling, but not identical to, Parkinson's disease. Since our last review on this subject in 2004, the past decade has been a thriving period in the history of Mn research. This report provides a comprehensive review on new knowledge gained in the Mn research field. Emerging data suggest that beyond traditionally recognized occupational manganism, Mn exposures and the ensuing toxicities occur in a variety of environmental settings, nutritional sources, contaminated foods, infant formulas, and water, soil, and air with natural or man-made contaminations. Upon fast absorption into the body via oral and inhalation exposures, Mn has a relatively short half-life in blood, yet fairly long half-lives in tissues. Recent data suggest Mn accumulates substantially in bone, with a half-life of about 8-9 years expected in human bones. Mn toxicity has been associated with dopaminergic dysfunction by recent neurochemical analyses and synchrotron X-ray fluorescent imaging studies. Evidence from humans indicates that individual factors such as age, gender, ethnicity, genetics, and pre-existing medical conditions can have profound impacts on Mn toxicities. In addition to body fluid-based biomarkers, new approaches in searching biomarkers of Mn exposure include Mn levels in toenails, non-invasive measurement of Mn in bone, and functional alteration assessments. Comments and recommendations are also provided with regard to the diagnosis of Mn intoxication and clinical intervention. Finally, several hot and promising research areas in the next decade are discussed.
Collapse
Affiliation(s)
- Stefanie L. O’Neal
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Room 1173, West Lafayette, IN 47907, USA
| | - Wei Zheng
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, Room 1173, West Lafayette, IN 47907, USA
| |
Collapse
|
50
|
Lee EY, Flynn MR, Du G, Lewis MM, Fry R, Herring AH, Van Buren E, Van Buren S, Smeester L, Kong L, Yang Q, Mailman RB, Huang X. T1 Relaxation Rate (R1) Indicates Nonlinear Mn Accumulation in Brain Tissue of Welders With Low-Level Exposure. Toxicol Sci 2015; 146:281-9. [PMID: 25953701 PMCID: PMC4607746 DOI: 10.1093/toxsci/kfv088] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the essential element manganese (Mn) is neurotoxic at high doses, the effects of lower exposure are unclear. MRI T1-weighted (TIW) imaging has been used to estimate brain Mn exposure via the pallidal index (PI), defined as the T1W intensity ratio in the globus pallidus (GP) versus frontal white matter (FWM). PI may not, however, be sensitive to Mn in GP because Mn also may accumulate in FWM. This study explored: (1) whether T1 relaxation rate (R1) could quantify brain Mn accumulation more sensitively; and (2) the dose-response relationship between estimated Mn exposure and T1 relaxation rate (R1). Thirty-five active welders and 30 controls were studied. Occupational questionnaires were used to estimate hours welding in the past 90 days (HrsW) and lifetime measures of Mn exposure. T1W imaging and T1-measurement were utilized to generate PI and R1 values in brain regions of interest (ROIs). PI did not show a significant association with any measure of Mn and/or welding-related exposure. Conversely, in several ROIs, R1 showed a nonlinear relationship to HrsW, with R1 signal increasing only after a critical exposure was reached. The GP had the greatest rate of Mn accumulation. Welders with higher exposure showed significantly higher R1 compared either with controls or with welders with lower exposure. Our data are additional evidence that Mn accumulation can be assessed more sensitively by R1 than by PI. Moreover, the nonlinear relationship between welding exposure and Mn brain accumulation should be considered in future studies and policies.
Collapse
Affiliation(s)
- Eun-Young Lee
- *Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Michael R Flynn
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Guangwei Du
- *Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Mechelle M Lewis
- *Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Rebecca Fry
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Amy H Herring
- Department of Biostatistics, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Eric Van Buren
- Department of Biostatistics, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Scott Van Buren
- Department of Biostatistics, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania and
| | - Qing Yang
- Departments of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Richard B Mailman
- *Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Xuemei Huang
- *Department of Neurology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, Departments of Radiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, Department of Kinesiology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|