1
|
Wang S, Yu L, Guo H, Zuo W, Guo Y, Liu H, Wang J, Wang J, Li X, Hou W, Wang M. Gastrodin Ameliorates Post-Stroke Depressive-Like Behaviors Through Cannabinoid-1 Receptor-Dependent PKA/RhoA Signaling Pathway. Mol Neurobiol 2025; 62:366-385. [PMID: 38856794 DOI: 10.1007/s12035-024-04267-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Post-stroke depression (PSD) is a significant complication in stroke patients, increases long-term mortality, and exaggerates ischemia-induced brain injury. However, the underlying molecular mechanisms and effective therapeutic targets related to PSD have remained elusive. Here, we employed an animal behavioral model of PSD by combining the use of middle cerebral artery occlusion (MCAO) followed by spatial restraint stress to study the molecular underpinnings and potential therapies of PSD. Interestingly, we found that sub-chronic application of gastrodin (Gas), a traditional Chinese medicinal herb Gastrodia elata extraction, relieved depression-related behavioral deficits, increased the impaired expression of synaptic transmission-associated proteins, and restored the altered spine density in hippocampal CA1 of PSD animals. Furthermore, our results indicated that the anti-PSD effect of Gas was dependent on membrane cannabinoid-1 receptor (CB1R) expression. The contents of phosphorated protein kinase A (p-PKA) and phosphorated Ras homolog gene family member A (p(ser188)-RhoA) were decreased in the hippocampus of PSD-mice, which was reversed by Gas treatment, and CB1R depletion caused a diminished efficacy of Gas on p-PKA and p-RhoA expression. In addition, the anti-PSD effect of Gas was partially blocked by PKA inhibition or RhoA activation, indicating that the anti-PSD effect of Gas is associated with the CB1R-mediated PKA/RhoA signaling pathway. Together, our findings revealed that Gas treatment possesses protective effects against the post-stroke depressive-like state; the CB1R-involved PKA/RhoA signaling pathway is critical in mediating Gas's anti-PSD potency, suggesting that Gas application may be beneficial in the prevention and adjunctive treatment of PSD.
Collapse
Affiliation(s)
- Shiquan Wang
- College of Life Sciences, Northwest University, Xi'an, 710127, Shaanxi, China
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Liang Yu
- Department of Information, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Haiyun Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenqiang Zuo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yaru Guo
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Huiqing Liu
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jiajia Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Wugang Hou
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Minghui Wang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
2
|
Xu N, Xie Q, Chen Y, Li J, Zhang X, Zheng H, Cheng Y, Wu M, Shen A, Wei L, Yao M, Yang Y, Sferra TJ, Jafri A, Fang Y, Peng J. Gastrodin Alleviates Angiotensin II-Induced Hypertension and Myocardial Apoptosis via Inhibition of the PRDX2/p53 Pathway In Vivo and In Vitro. Pharmaceuticals (Basel) 2024; 17:1200. [PMID: 39338362 PMCID: PMC11434704 DOI: 10.3390/ph17091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Gastrodin, a highly potent compound found in the traditional Chinese medicine Gastrodia elata Blume, exhibits significant antihypertensive properties. However, its role and the mechanism behind its protective effects on hypertensive cardiac conditions are not well understood. This study aims to investigate the cardiac protective effects and underlying mechanisms of gastrodin in angiotensin II (Ang II)-induced hypertensive models, both in vivo and in vitro. Treatment with gastrodin significantly decreased blood pressure and the heart weight/tibial length (HW/TL) ratio and attenuated cardiac dysfunction and pathological damage in Ang II-infused C57BL/6 mice. RNA sequencing analysis (RNA-seq) revealed 697 up-regulated and 714 down-regulated transcripts, along with 1105 signaling pathways, in Ang II-infused C57BL/6 mice following gastrodin treatment, compared to Ang II-induced hypertensive mice. Furthermore, the analyses of the top 30 Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway indicated significant enrichment in apoptosis and the peroxiredoxin 2 (PRDX2)/p53 pathway. Consistently, gastrodin treatment significantly reduced myocardial apoptosis in both the cardiac tissues of Ang II-induced hypertensive mice and Ang II-stimulated H9c2 cells. Additionally, gastrodin treatment significantly decreased the protein levels of PRDX2, p53, cleaved caspase-3, cleaved caspase-9, and Bax/Bcl-2 ratio in the cardiac tissues of Ang II-infused mice and H9c2 cells stimulated with Ang II. In conclusion, gastrodin treatment can mitigate hypertension-induced myocardial apoptosis in hypertensive mice by inhibiting the PRDX2/p53 pathway.
Collapse
Affiliation(s)
- Nanhui Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Youqin Chen
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Jiapeng Li
- Department of Physical Education, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China;
| | - Xiuli Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Huifang Zheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Lihui Wei
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Mengying Yao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
| | - Yanyan Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Thomas J. Sferra
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Anjum Jafri
- Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; (Y.C.); (T.J.S.); (A.J.)
| | - Yi Fang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; (N.X.); (Q.X.); (X.Z.); (H.Z.); (Y.C.); (M.W.); (A.S.); (L.W.); (M.Y.); (Y.Y.)
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
- Fujian Collaborative Innovation Center for Integrative Medicine in Prevention and Treatment of Major Chronic Cardiovascular Diseases, Fuzhou 350122, China
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| |
Collapse
|
3
|
Dai Y, Ban W, Yang Z. Gastrodin, a Promising Natural Small Molecule for the Treatment of Central Nervous System Disorders, and Its Recent Progress in Synthesis, Pharmacology and Pharmacokinetics. Int J Mol Sci 2024; 25:9540. [PMID: 39273485 PMCID: PMC11394983 DOI: 10.3390/ijms25179540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 09/15/2024] Open
Abstract
Gastrodia elata Blume is a traditional medicinal and food homology substance that has been used for thousands of years, is mainly distributed in China and other Asian countries, and has always been distinguished as a superior class of herbs. Gastrodin is the main active ingredient of G. elata Blume and has attracted increasing attention because of its extensive pharmacological activities. In addition to extraction and isolation from the original plant, gastrodin can also be obtained via chemical synthesis and biosynthesis. Gastrodin has significant pharmacological effects on the central nervous system, such as sedation and improvement of sleep. It can also improve epilepsy, neurodegenerative diseases, emotional disorders and cognitive impairment to a certain extent. Gastrodin is rapidly absorbed and widely distributed in the body and can also penetrate the blood-brain barrier. In brief, gastrodin is a promising natural small molecule with significant potential in the treatment of brain diseases. In this review, we summarised studies on the synthesis, pharmacological effects and pharmacokinetic characteristics of gastrodin, with emphasis on its effects on central nervous system disorders and the possible mechanisms, in order to find potential therapeutic applications and provide favourable information for the research and development of gastodin.
Collapse
Affiliation(s)
- Yanan Dai
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Weikang Ban
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhihong Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
4
|
El Menyiy N, Elouafy Y, Moubachir R, Abdnim R, Benali T, Taha D, Khalid A, Abdalla AN, Hamza SMA, Elhadi Ibrahim S, El-Shazly M, Zengin G, Bouyahya A. Chemistry, Biological Activities, and Pharmacological Properties of Gastrodin: Mechanism Insights. Chem Biodivers 2024; 21:e202400402. [PMID: 38573028 DOI: 10.1002/cbdv.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/30/2024] [Accepted: 04/04/2024] [Indexed: 04/05/2024]
Abstract
Gastrodin, a bioactive compound derived from the rhizome of the orchid Gastrodia elata, exhibits a diverse range of biological activities. With documented neuroprotective, anti-inflammatory, antioxidant, anti-apoptotic, and anti-tumor effects, gastrodin stands out as a multifaceted therapeutic agent. Notably, it has demonstrated efficacy in protecting against neuronal damage and enhancing cognitive function in animal models of Alzheimer's disease, Parkinson's disease, and cerebral ischemia. Additionally, gastrodin showcases immunomodulatory effects by mitigating inflammation and suppressing the expression of inflammatory cytokines. Its cytotoxic activity involves the inhibition of angiogenesis, suppression of tumor growth, and induction of apoptosis. This comprehensive review seeks to elucidate the myriad potential effects of Gastrodin, delving into the intricate molecular mechanisms underpinning its pharmacological properties. The findings underscore the therapeutic potential of gastrodin in addressing various conditions linked to neuroinflammation and cancer.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate, 34025, Morocco
| | - Youssef Elouafy
- Laboratory of Materials, Nanotechnology and Environment LMNE, Faculty of Sciences, Mohammed V University in Rabat, Rabat, BP 1014, Morocco
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, 11201, Meknes, Marocco
| | - Rhizlan Abdnim
- Laboratoire de bioressources, biotechnologie, ethnopharmacologie et santé, Département de biologie, Faculté des sciences, Université Mohamed premier, Boulevard Mohamed VI; BP:717, 60000, Oujda, Marocco
| | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Marrakesh-Safi, 46030, Morocco
| | - Douae Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University, Rabat, Rabat, 10106, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Unit, Health Research Cener, Jazan University, P.O. Box: 114, Jazan, 11111, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, 11111, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Siddiqa M A Hamza
- Department of Pathology, College of Medicine, Umm Alqura University, 24832, Alqunfudah, Saudi Arabia
| | - Salma Elhadi Ibrahim
- Department of Physiology, College of Medicine, Umm Alqura University, 24832, Alqunfudah, Saudi Arabia
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, 11566, Cairo, Egypt
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130, Konya, Turkey
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, 10106, Morocco
| |
Collapse
|
5
|
Wang Y, Bai M, Wang X, Peng Z, Cai C, Xi J, Yan C, Luo J, Li X. Gastrodin: a comprehensive pharmacological review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3781-3802. [PMID: 38165423 DOI: 10.1007/s00210-023-02920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Tianma is the dried tuber of Gastrodia elata Blume (G. elata), which is frequently utilized in clinical practice as a traditional Chinese medicine. Gastrodin (GAS) is the main active ingredient of Tianma, which has good pharmacological activity. Therefore, for the first time, this review focused on the extraction, synthesis, pharmacological effects, and derivatives of GAS and to investigate additional development options for GAS. The use of microorganisms to create GAS is a promising method. GAS has good efficacy in the treatment of neurological diseases, cardiovascular diseases, endocrine diseases, and liver diseases. GAS has significant anti-inflammatory, antioxidant, neuroprotective, vascular protective, blood sugar lowering, lipid-regulating, analgesic, anticancer, and antiviral effects. The mechanism involves various signaling pathways such as Nrf2, NF-κB, PI3K/AKT, and AMPK. In addition, the derivatives of GAS and biomaterials synthesized by GAS and PU suggested a broader application of GAS. The research on GAS is thoroughly summarized in this paper, which has useful applications for tackling a variety of disorders and exhibits good development value.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Mengting Bai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jia Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Askari H, Rabiei F, Yahyazadeh M, Biagini G, Ghasemi-Kasman M. Notch Signaling in Central Nervous System: From Cellular Development to Multiple Sclerosis Disease. Curr Neuropharmacol 2024; 23:3-19. [PMID: 39162293 PMCID: PMC11519821 DOI: 10.2174/1570159x22666240731114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 08/21/2024] Open
Abstract
INTRODUCTION/OBJECTIVE Multiple sclerosis (MS), is characterized by autoimmune-driven neuroinflammation, axonal degeneration, and demyelination. This study aimed to explore the therapeutic potential of targeting Notch signaling within the central nervous system (CNS) in the context of MS. Understanding the intricate roles of Notch signaling could pave the way for targeted interventions to mitigate MS progression. METHODS A comprehensive literature review was conducted using databases such as PubMed, Web of Science, and Scopus. Keywords such as "Notch signaling," "neuroglial interactions," and "MS" were used. The selection criteria included relevance to neuroglial interactions, peer-reviewed publications, and studies involving animal models of MS. RESULTS This review highlights the diverse functions of Notch signaling in CNS development, including its regulation of neural stem cell differentiation into neurons, astrocytes, and oligodendrocytes. In the context of MS, Notch signaling has emerged as a promising therapeutic target, exhibiting positive impacts on neuroprotection and remyelination. However, its intricate nature within the CNS necessitates precise modulation for therapeutic efficacy. CONCLUSION This study provides a comprehensive overview of the potential therapeutic role of Notch signaling in MS. The findings underscore the significance of Notch modulation for neuroprotection and remyelination, emphasizing the need for precision in therapeutic interventions. Further research is imperative to elucidate the specific underlying mechanisms involved, which will provide a foundation for targeted therapeutic strategies for the management of MS and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Masoomeh Yahyazadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
7
|
Li Y, Ji Y, Li F. A review: Mechanism and prospect of gastrodin in prevention and treatment of T2DM and COVID-19. Heliyon 2023; 9:e21218. [PMID: 37954278 PMCID: PMC10637887 DOI: 10.1016/j.heliyon.2023.e21218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/15/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Gastrodin is an extract from the dried tuber of the Chinese herb Gastrodia elata (Tian ma), with anti-inflammatory, antioxidant, and antiviral properties. Recent studies have shown that, compared to commonly used diabetes drugs, gastrodin has antidiabetic effects in multiple ways, with characteristics of low cost, high safety, less side effects, protection of β-cell function, relieving insulin resistance and alleviating multiple complications. In addition, it is confirmed that gastrodin can protect the function of lung and other organs, enhance antiviral activity via upregulating the type I interferon (IFN-I), and inhibit angiotensin II (AngII), a key factor in "cytokine storm" caused by COVID-19. Therefore, we reviewed the effect and mechanism of gastrodin on type 2 diabetes mellitus (T2DM), and speculated other potential mechanisms of gastrodin in alleviating insulin resistance from insulin signal pathway, inflammation, mitochondrial and endoplasmic reticulum and its potential in the prevention and treatment of COVID-19. We hope to provide new direction and treatment strategy for basic research and clinical work: gastrodin is considered as a drug for the prevention and treatment of diabetes and COVID-19.
Collapse
Affiliation(s)
- Yi Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Yuanyuan Ji
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| | - Fenglan Li
- Shanxi Provincial People's Hospital, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Xiao G, Tang R, Yang N, Chen Y. Review on pharmacological effects of gastrodin. Arch Pharm Res 2023; 46:744-770. [PMID: 37749449 DOI: 10.1007/s12272-023-01463-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Gastrodia elata Blume is a well-known traditional Chinese medicine that is mainly used to treat diseases related to the nervous system, such as stroke, epilepsy, and headache. Gastrodin is the main bioactive component of Gastrodia elata Blume, and studies have shown that it has extensive pharmacological activity. This narrative review aims to systematically review relevant studies on the pharmacological effects of gastrodin to provide researchers with the latest and most useful information. Studies have shown that gastrodin has prominent neuroprotective effects and can treat or improve epilepsy, Tourette syndrome, Alzheimer's disease, Parkinson's disease, emotional disorders, cerebral ischemia-reperfusion injury, cognitive impairment, and neuropathic pain. Gastrodin can also improve myocardial hypertrophy, hypertension, and myocardial ischemia-reperfusion injury. In addition, gastrodin can mitigate liver, kidney, and bone tissue damage caused by oxidative stress and inflammation. In short, gastrodin is expected to treat many diseases, and it is worth investing more effort in research on this compound.
Collapse
Affiliation(s)
- Guirong Xiao
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Tang
- Department of Pharmacy, Sichuan Hospital of Stomatology, Chengdu, 610031, China.
| | - Nan Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yanhua Chen
- Department of Pharmacy, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
9
|
Cao Y, Wang J, Li X, Liu B, Li C, Sun Y, Zou K. Gastrodin protects porcine sertoli cells from zearalenone-induced abnormal secretion of glial cell line-derived neurotrophic factor through the NOTCH signaling pathway. Reprod Biol 2023; 23:100781. [PMID: 37285694 DOI: 10.1016/j.repbio.2023.100781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/09/2023]
Abstract
Zearalenone (ZEA) is a prevalent mycotoxin found in moldy diets and is associated with reproductive dysfunction. However, the molecular underpinning of ZEA in impairment of spermatogenesis remains largely unknown. To unveil the toxic mechanism of ZEA, we established a co-culture model using porcine Sertoli cells and porcine spermatogonial stem cells (pSSCs) to investigate the impact of ZEA on these cell types and their associated signaling pathways. Our findings showed that low concentration of ZEA inhibited cell apoptosis, while high concentration induced cell apoptosis. Furthermore, the expression levels of Wilms' tumor 1 (WT1), proliferating cell nuclear antigen (PCNA) and glial cell line-derived neurotrophic factor (GDNF) were significantly decreased in ZEA treatment group, while concurrently upregulating the transcriptional levels of the NOTCH signaling pathway target genes HES1 and HEY1. The addition of the NOTCH signaling pathway inhibitor DAPT (GSI-IX) alleviated the damage to porcine Sertoli cells caused by ZEA. Gastrodin (GAS) significantly increased the expression levels of WT1, PCNA and GDNF, and inhibited the transcription of HES1 and HEY1. GAS also efficiently restored the decreased expression levels of DDX4, PCNA and PGP9.5 in co-cultured pSSCs suggesting its potential in ameliorating the damage caused by ZEA to Sertoli cells and pSSCs. In conclusion, the present study demonstrates that ZEA disrupts pSSCs self-renewal by affecting the function of porcine Sertoli cell, and highlights the protective mechanism of GAS through the regulation of the NOTCH signaling pathway. These findings may offer a novel strategy for alleviating ZEA-induced male reproductive dysfunction in animal production.
Collapse
Affiliation(s)
- Yulu Cao
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Biyun Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chongjun Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yijin Sun
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Angiotensin-converting enzyme inhibitor promotes angiogenesis through Sp1/Sp3-mediated inhibition of notch signaling in male mice. Nat Commun 2023; 14:731. [PMID: 36759621 PMCID: PMC9911748 DOI: 10.1038/s41467-023-36409-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Angiogenesis is a critical pathophysiological process involved in organ growth and various diseases. Transcription factors Sp1/Sp3 are necessary for fetal development and tumor growth. Sp1/Sp3 proteins were downregulated in the capillaries of the gastrocnemius in patients with critical limb ischemia samples. Endothelial-specific Sp1/Sp3 knockout reduces angiogenesis in retinal, pathological, and tumor models and induced activation of the Notch1 pathway. Further, the inactivation of VEGFR2 signaling by Notch1 contributes to the delayed angiogenesis phenotype. Mechanistically, endothelial Sp1 binds to the promoter of Notch1 and inhibits its transcription, which is enhanced by Sp3. The proangiogenic effect of ACEI is abolished in Sp1/Sp3-deletion male mice. We identify USP7 as an ACEI-activated deubiquitinating enzyme that translocated into the nucleus binding to Sp1/Sp3, which are deacetylated by HDAC1. Our findings demonstrate a central role for endothelial USP7-Sp1/Sp3-Notch1 signaling in pathophysiological angiogenesis in response to ACEI treatment.
Collapse
|
11
|
Li Y, Li F. Mechanism and Prospect of Gastrodin in Osteoporosis, Bone Regeneration, and Osseointegration. Pharmaceuticals (Basel) 2022; 15:1432. [PMID: 36422561 PMCID: PMC9698149 DOI: 10.3390/ph15111432] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 11/14/2023] Open
Abstract
Gastrodin, a traditional Chinese medicine ingredient, is widely used to treat vascular and neurological diseases. However, recently, an increasing number of studies have shown that gastrodin has anti-osteoporosis effects, and its mechanisms of action include its antioxidant effect, anti-inflammatory effect, and anti-apoptotic effect. In addition, gastrodin has many unique advantages in promoting bone healing in tissue engineering, such as inducing high hydrophilicity in the material surface, its anti-inflammatory effect, and pro-vascular regeneration. Therefore, this paper summarized the effects and mechanisms of gastrodin on osteoporosis and bone regeneration in the current research. Here we propose an assumption that the use of gastrodin in the surface loading of oral implants may greatly promote the osseointegration of implants and increase the success rate of implants. In addition, we speculated on the potential mechanisms of gastrodin against osteoporosis, by affecting actin filament polymerization, renin-angiotensin system (RAS) and ferroptosis, and proposed that the potential combination of gastrodin with Mg2+, angiotensin type 2 receptor blockers or artemisinin may greatly inhibit osteoporosis. The purpose of this review is to provide a reference for more in-depth research and application of gastrodin in the treatment of osteoporosis and implant osseointegration in the future.
Collapse
Affiliation(s)
| | - Fenglan Li
- Department of Prosthodontics, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|