1
|
Qi Y, Wang Y, Ni M, He Y, Li L, Hu Y. Safflower Yellow Alleviates Cognitive Impairment in Mice by Modulating Cholinergic System Function, Oxidative Stress, and CREB/BDNF/TrkB Signaling Pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024:118986. [PMID: 39461389 DOI: 10.1016/j.jep.2024.118986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Carthamus tinctorius L. (Safflower) was believed to have multiple benefits, including antioxidant effects, enhanced learning and memory, and improving neuronal injury. Safflower Yellow(SY) are the main active ingredients of Safflower, displays strong pharmacological potential treatment of Alzheimer's disease(AD). However, its effect on memory impairments remains insufficiently investigated. AIM OF THE STUDY The study aims to investigate the effects of SY on cognitive functions in memory impairments model and to explore the mechanism of its action. MATERIALS AND METHODS We utilized the Morris Water Maze, Step-Through Test, Step-Down Test to assess the potential of SY in ameliorating learning and memory dysfunction caused by SCOP, NaNO2 and ethanol in mice. Bioinformatic analysis and molecular biological approaches were used to study the related mechanisms of SY on anti-memory impairments. RESULTS The results of the Morris Water Test suggested that SY could shorten the escape latency and the time of the first crossing platform in the mice with memory acquisition and memory consolidation impairments, and increase the platform crossing times. The results of the Step-Though test and Step-Down test showed that the escape latency in the mice was prolonged and the number of errors was reduced after SY treatment. ELISA experiments indicated that SY decreased the AChE activities, increased the ChAT activities, and modulated oxidative stress markers (SOD, MDA, and GSH-PX) in scopolamine-induced mice. Western Blot and Nissl staining showed that SY could activated BDNF/TrkB/CREB signaling pathway and reduced neuronal damage. CONCLUSION The findings present that SY can restore the function of the cholinergic system, inhibit oxidative stress, regulate the expression of upstream and downstream proteins in the CREB/BDNF/TrkB pathway, and alleviate brain tissue damage to improve memory impairment in mice.
Collapse
Affiliation(s)
- Yanqiang Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China; Department of Pharmacy, the First People's Hospital of Xianyang, Xianyang, 712000, Shaanxi, People's Republic of China
| | - Yanyou Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Mingyue Ni
- School of Basic Medicine,Harbin Medical University, Harbin, 150081, People's Republic of China
| | - Yingxi He
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Le Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Yanli Hu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Department of Pharmacology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China.
| |
Collapse
|
2
|
Chen L, Liu X, Zheng J, Li G, Yang B, He A, Liu H, Liang Y, Wang WA, Du J. A randomized, double-blind, placebo-controlled study of Cistanche tubulosa and Ginkgo biloba extracts for the improvement of cognitive function in middle-aged and elderly people. Phytother Res 2024. [PMID: 38972848 DOI: 10.1002/ptr.8275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/28/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
Mild cognitive impairment poses an increasing challenge to middle-aged and elderly populations. Traditional Chinese medicinal herbs like Cistanche tubulosa and Ginkgo biloba (CG) have been proposed as potential agents to improve cognitive and memory functions. A randomized controlled trial involving 100 Chinese middle-aged and elderly participants was conducted to investigate the potential synergistic effects of CG on cognitive function in individuals at risk of neurodegenerative diseases. Over 90 days, both CG group and placebo group received two tablets daily, with each pair of CG tablets containing 72 mg echinacoside and 27 mg flavonol glycosides. Cognitive functions were assessed using multiple scales and blood biomarkers were determined at baseline, Day 45, and Day 90. The CG group exhibited significant improvements in the scores of Mini-Mental State Examination (26.5 at baseline vs. 27.1 at Day 90, p < 0.001), Montreal Cognitive Assessment (23.4 at baseline vs. 25.3 at Day 90, p < 0.001), and World Health Organization Quality of Life (81.6 at baseline vs. 84.2 at Day 90, p < 0.001), all surpassing scores in placebo group. Notably, both the Cognitrax matrix test and the Wechsler Memory Scale-Revised demonstrated enhanced memory functions, including long-term and delayed memory, after CG intervention. Moreover, cognitive-related blood biomarkers, including total tau, pT181, pS199, pT231, pS396, and thyroid-stimulating hormone, significantly decreased, whereas triiodothyronine and free triiodothyronine significantly increased. No treatment-related adverse events were reported, and routine blood and urine tests remained stable. These findings indicated that CG supplementation could potentially serve as an effective supplementary solution for enhancing cognitive and memory functions.
Collapse
Affiliation(s)
- Liang Chen
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Xin Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianheng Zheng
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Gang Li
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Binrui Yang
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Anli He
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | - Hongyue Liu
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| | | | - Wen' An Wang
- Department of Neurology, Xinhua Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Du
- Amway (Shanghai) Innovation & Science Co., Ltd., Shanghai, China
| |
Collapse
|
3
|
He Y, Wang Y, Li X, Qi Y, Qu Z, Hu Y. Lycium Barbarum Polysaccharides Improves Cognitive Functions in ICV-STZ-Induced Alzheimer's Disease Mice Model by Improving the Synaptic Structural Plasticity and Regulating IRS1/PI3K/AKT Signaling Pathway. Neuromolecular Med 2024; 26:15. [PMID: 38653878 DOI: 10.1007/s12017-024-08784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Lycium barbarum polysaccharide (LBP) have a certain curative effect on hypoglycemic and neuroprotective effects, but the specific mechanism is unclear and needs to be further explored. This study aimed to clarify the mechanisms of LBP in the treatment of ICV-STZ mice model of AD from the perspectives of insulin resistance, IRS1/PI3K/AKT signaling pathway, and synaptic protein expression. We used male C57BL/6J mice injected with STZ (3 mg/kg) in the lateral ventricle as an AD model. After treatment with LBP, the learning and memory abilities of ICV-STZ mice were enhanced, and the pathological changes in brain tissue were alleviated. LBP can regulate the expression of proteins related to the IRS1/PI3K/AKT signaling pathway and thereby reducing Aβ deposition and tau protein phosphorylation in the brain of ICV-STZ mice. In addition, LBP also can up-regulate the expression of synaptic proteins. The results indicated that LBP played a neuroprotective role by regulating the IRS1/PI3K/AKT pathway, inhibiting tau protein hyperphosphorylation and improving the expression levels of synapse-related proteins.
Collapse
Affiliation(s)
- Yingxi He
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanyou Wang
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Xia Li
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanqiang Qi
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Zuwei Qu
- Department of Phamacy, Shihezi University, Shihezi, China
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China
| | - Yanli Hu
- Department of Phamacy, Shihezi University, Shihezi, China.
- Key Laboratory of Xin Jiang Phytomedicine Resources Utilization, Ministry of Education, Shihezi, 832000, Xinjiang, China.
| |
Collapse
|
4
|
Hu GJ, Jiang XY, Du SY, Zhang K, Chen Z. miR-107-5p ameliorates neurological damage, oxidative stress, and immune responses in mice with Alzheimer's disease by suppressing the Toll-like receptor 4 (TLR4)/nuclear factor-kappaB(NF-κB) pathway. Kaohsiung J Med Sci 2024; 40:119-130. [PMID: 38305705 DOI: 10.1002/kjm2.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is a progressively debilitating neurodegenerative condition primarily affecting the elderly. Emerging research suggests that microRNAs (miRNAs) play a role in the development of AD. This study investigates the impact of miR-107-5p on neurological damage, oxidative stress, and immune responses in AD. We utilized APP/PS1 mice as AD mouse models and C57BL/6 J mice as controls. AD mice received treatment with agomir miR-107-5p (to overexpress miR-107-5p) or BAY11-7082 (an NF-κB pathway inhibitor). We evaluated learning and memory abilities through the Morris water maze test. Histopathological changes, hippocampal neuron distribution, and apoptosis were assessed using hematoxylin-eosin, Nissl, and TUNEL staining. Reactive oxygen species (ROS) levels, amyloid-Aβ (Aβ1-40/42) contents, and inflammatory factors (TNF-α, IL-6, IL-1β) in hippocampal tissues were measured using ROS kits and enzyme-linked immunosorbent assay (ELISA). Microglial activation in hippocampal tissues was observed under a fluorescence microscope. miR-107-5p's binding to TLR4 was predicted via the TargetScan database and confirmed through a dual-luciferase assay. miR-107-5p expression, along with TLR4, APOE, and TREM2 in hippocampal tissue homogenate, and NF-κB p65 protein expression in the nucleus and cytoplasm were assessed via RT-qPCR and Western blot. Overexpression of miR-107-5p ameliorated hippocampal neurological damage, oxidative stress, and immune responses. This was evidenced by improved enhanced learning/memory abilities, reduced Aβ1-40 and Aβ1-42 levels, diminished neuronal injuries, decreased ROS and TNF-α, IL-6, and IL-1β levels, increased APOE and TREM2 levels, and suppressed microglial activation. miR-107-5p directly targeted and inhibited TLR4 expression, leading to reduced nuclear translocation of NF-κB p65 in the NF-κB pathway. Inhibition of the NF-κB pathway similarly improved neurological damage, oxidative stress, and immune response in AD mice. miR-107-5p exerts its beneficial effects by suppressing the TLR4/NF-κB pathway, ultimately ameliorating neurological damage, oxidative stress, and immune responses in AD mice.
Collapse
Affiliation(s)
- Guang-Jun Hu
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Yang Jiang
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Si-Yu Du
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Kun Zhang
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhuo Chen
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Mandura Jarić A, Čikoš A, Pocrnić M, Aladić K, Jokić S, Šeremet D, Vojvodić Cebin A, Komes D. Teucrium montanum L.-Unrecognized Source of Phenylethanoid Glycosides: Green Extraction Approach and Elucidation of Phenolic Compounds via NMR and UHPLC-HR MS/MS. Antioxidants (Basel) 2023; 12:1903. [PMID: 38001756 PMCID: PMC10669637 DOI: 10.3390/antiox12111903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Health-oriented preferences, a demand for innovative food concepts, and technological advances have greatly influenced changes in the food industry and led to remarkable development of the functional food market. Incorporating herbal extracts as a rich source of bioactive compounds (BC) could be an effective solution to meet the high demand of consumers in terms of expanding the high-quality range of functional foods. The aim of this study is the valorization of the bioactive potential of T. montanum L., an understudied Mediterranean plant species, and the in-depth elucidation of a polyphenolic profile with a UHPLC-HR MS/MS and NMR analysis. The total phenolic content (TPC) and antioxidant capacity (AC) were determined on heat-assisted (HAE), microwave-assisted (MAE) and subcritical water (SWE) extracts. In terms of antioxidant capacity, SWE extracts showed the most notable potential (ABTS: 0.402-0.547 mmol eq Trolox g-1 dw, DPPH: 0.336-0.427 mmol eq Trolox g-1 dw). 12 phenolic compounds were identified in the samples of T. montanum from six microlocations in Croatia, including nine phenylethanoid glycosides (PGs) with total yields of 30.36-68.06 mg g-1 dw and 25.88-58.88 mg g-1 dw in HAE and MAE extracts, respectively. Echinacoside, teupolioside, stachysoside A, and poliumoside were the most abundant compounds HAE and MAE extracts, making T. montanum an emerging source of PGs.
Collapse
Affiliation(s)
- Ana Mandura Jarić
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotii St. 6, 10000 Zagreb, Croatia; (A.M.J.); (D.Š.); (A.V.C.)
| | - Ana Čikoš
- NMR Centre, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Marijana Pocrnić
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Krunoslav Aladić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (K.A.); (S.J.)
| | - Stela Jokić
- Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 20, 31000 Osijek, Croatia; (K.A.); (S.J.)
| | - Danijela Šeremet
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotii St. 6, 10000 Zagreb, Croatia; (A.M.J.); (D.Š.); (A.V.C.)
| | - Aleksandra Vojvodić Cebin
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotii St. 6, 10000 Zagreb, Croatia; (A.M.J.); (D.Š.); (A.V.C.)
| | - Draženka Komes
- Department of Food Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierotii St. 6, 10000 Zagreb, Croatia; (A.M.J.); (D.Š.); (A.V.C.)
| |
Collapse
|