1
|
Paramanik V, Kurrey K, Singh P, Tiwari S. Roles of genistein in learning and memory during aging and neurological disorders. Biogerontology 2023; 24:329-346. [PMID: 36828983 DOI: 10.1007/s10522-023-10020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/23/2023] [Indexed: 02/26/2023]
Abstract
Genistein (GEN) is a non-steroidal phytoestrogen that belongs to the isoflavone class. It is abundantly found in soy. Soy and its products are used as food components in many countries including India. The present review is focused to address roles of GEN in brain functions in the context of learning and memory as a function of aging and neurological disorders. Memory decline is one of the most disabling features observed during normal aging and age-associated neurodegenerative disorders namely Alzheimer's disease (AD) and Parkinson's disease (PD), etc. Anatomical, physiological, biochemical and molecular changes in the brain with advancement of age and pathological conditions lead to decline of cognitive functions. GEN is chemically comparable to estradiol and binds to estrogen receptors (ERs). GEN acts through ERs and mimics estrogen action. After binding to ERs, GEN regulates a plethora of brain functions including learning and memory; however detailed study still remains elusive. Due to the neuroprotective, anti-oxidative and anti-inflammatory properties, GEN is used to restore or improve memory functions in different animal models and humans. The present review may be helpful to understand roles of GEN in learning and memory during aging and neurological disorders, its direction of research and therapeutic perspectives.
Collapse
Affiliation(s)
- Vijay Paramanik
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India.
| | - Khuleshwari Kurrey
- Department of Psychiatry and Behavioral Sciences, Neurobiology Division, John Hopkins University, School of Medicine, Baltimore, MD, 21287, USA
| | - Padmanabh Singh
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| | - Sneha Tiwari
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, 484 887, MP, India
| |
Collapse
|
2
|
Tvilling L, West M, Glud AN, Zaer H, Sørensen JCH, Bjarkam CR, Orlowski D. Anatomy and histology of the Göttingen minipig adenohypophysis with special emphasis on the polypeptide hormones: GH, PRL, and ACTH. Brain Struct Funct 2021; 226:2375-2386. [PMID: 34235563 DOI: 10.1007/s00429-021-02337-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/01/2021] [Indexed: 12/19/2022]
Abstract
The pituitary is involved in the regulation of endocrine homeostasis. Therefore, animal models of pituitary disease based on a thorough knowledge of pituitary anatomy are of great importance. Accordingly, we aimed to perform a qualitative and quantitative description of polypeptide hormone secreting cellular components of the Göttingen minipig adenohypophysis using immunohistochemistry and stereology. Estimates of the total number of cells immune-stained for adrenocorticotrophic hormone (ACTH), prolactin (PRL), and growth hormone (GH) were obtained with the optical fractionator technique using Stereo Investigator software. Moreover, 3D reconstructions of cell distribution were made. We estimated that the normal minipig adenohypophysis contains, on average, 5.6 million GH, 3.5 million PRL, and 2.4 million ACTH producing cells. The ACTH producing cells were widely distributed, while the PRL and GH producing cells were located in clusters in the central and lateral regions of the adenohypophysis. The morphology of the hormone producing cells also differs. We visualized a clear difference in the numerical density of hormone producing cells throughout the adenohypophysis. The relative proportions of the cells analyzed in our experiment are comparable to those observed in humans, primates, and rodents; however, the distribution of cells differs among species. The distribution of GH cells in the minipig is similar to that in humans, while the PRL and ACTH cell distributions differ. The volume of the pituitary is slightly smaller than that of humans. These data provide a framework for future large animal experimentation on pituitary function in health and disease.
Collapse
Affiliation(s)
- Laura Tvilling
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Mark West
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Andreas N Glud
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Hamed Zaer
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Jens Christian H Sørensen
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark
| | - Carsten Reidies Bjarkam
- Department of Neurosurgery and the Department of Clinical Medicine, Aalborg University Hospital, 9100, Aalborg, Denmark
| | - Dariusz Orlowski
- CENSE, Department of Neurosurgery and the Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
3
|
Trifunovic S, Stevanovic I, Milosevic A, Ristic N, Janjic M, Bjelobaba I, Savic D, Bozic I, Jakovljevic M, Tesovic K, Laketa D, Lavrnja I. The Function of the Hypothalamic-Pituitary-Adrenal Axis During Experimental Autoimmune Encephalomyelitis: Involvement of Oxidative Stress Mediators. Front Neurosci 2021; 15:649485. [PMID: 34220419 PMCID: PMC8248369 DOI: 10.3389/fnins.2021.649485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/29/2021] [Indexed: 12/26/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease with an unknown origin. Previous studies showed the involvement of the hypothalamic–pituitary–adrenal (HPA) axis to susceptibility to autoimmune diseases, including MS, and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). During MS/EAE, innate immune cells are activated and release cytokines and other inflammatory mediators, leading to a vicious cycle of inflammation. In response to inflammation, the activated HPA axis modulates immune responses via glucocorticoid activity. Because the mechanisms involving oxidative stress to the HPA axis are relatively unrevealed, in this study, we investigate the inflammatory and oxidative stress status of HPA axis during EAE. Our results reveal an upregulation of Pomc gene expression, followed by POMC and ACTH protein increase at the peak of the EAE in the pituitary. Also, prostaglandins are well-known contributors of HPA axis activation, which increases during EAE at the periphery. The upregulated Tnf expression in the pituitary during the peak of EAE occurred. This leads to the activation of oxidative pathways, followed by upregulation of inducible NO synthase expression. The reactive oxidant/nitrosative species (ROS/RNS), such as superoxide anion and NO, increase their levels at the onset and peak of the disease in the pituitary and adrenal glands, returning to control levels at the end of EAE. The corticotrophs in the pituitary increased in number and volume at the peak of EAE that coincides with high lipid peroxidation levels. The expression of MC2R in the adrenal glands increases at the peak of EAE, where strong induction of superoxide anion and malondialdehyde (MDA), reduced total glutathione (GSH) content, and catalase activity occurred at the peak and end of EAE compared with controls. The results obtained from this study may help in understanding the mechanisms and possible pharmacological modulation in MS and demonstrate an effect of oxidative stress exposure in the HPA activation during the course of EAE.
Collapse
Affiliation(s)
- Svetlana Trifunovic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Stevanovic
- Medical Faculty of Military Medical Academy, Institute of Medical Research Belgrade, University of Defense, Belgrade, Serbia
| | - Ana Milosevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Natasa Ristic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Janjic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Bjelobaba
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Iva Bozic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marija Jakovljevic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Katarina Tesovic
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Laketa
- Department for General Physiology and Biophysics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
4
|
Pituitary Hyperplasia, Hormonal Changes and Prolactinoma Development in Males Exposed to Estrogens-An Insight From Translational Studies. Int J Mol Sci 2020; 21:ijms21062024. [PMID: 32188093 PMCID: PMC7139613 DOI: 10.3390/ijms21062024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/21/2020] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
Estrogen signaling plays an important role in pituitary development and function. In sensitive rat or mice strains of both sexes, estrogen treatments promote lactotropic cell proliferation and induce the formation of pituitary adenomas (dominantly prolactin or growth-hormone-secreting ones). In male patients receiving estrogen, treatment does not necessarily result in pituitary hyperplasia, hyperprolactinemia or adenoma development. In this review, we comprehensively analyze the mechanisms of estrogen action upon their application in male animal models comparing it with available data in human subjects. Sex-specific molecular targets of estrogen action in lactotropic (PRL) cells are highlighted in the context of their proliferative and secretory activity. In addition, putative effects of estradiol on the cellular/tumor microenvironment and the contribution of postnatal pituitary progenitor/stem cells and transdifferentiation processes to prolactinoma development have been analyzed. Finally, estrogen-induced morphological and hormone-secreting changes in pituitary thyrotropic (TSH) and adrenocorticotropic (ACTH) cells are discussed, as well as the putative role of the thyroid and/or glucocorticoid hormones in prolactinoma development, based on the current scarce literature.
Collapse
|
5
|
Nestorović N, Trifunović S, Manojlović-Stojanoski M, Jarić I, Ristić N, Filipović B, Šošić-Jurjević B, Milošević V. Soy Phytoestrogens Do Not Fully Reverse Changes in Rat Pituitary Castration Cells: Unbiased Stereological Study. Anat Rec (Hoboken) 2018; 301:1416-1425. [PMID: 29569839 DOI: 10.1002/ar.23809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/04/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
The aim of the study was to examine the potential of the principal soy isoflavones, genistein and daidzein, or isoflavone rich soy extract to recover pituitary castration cells in orchidectomized adult male rats in comparison with the effects of estradiol. Two weeks post orchidectomy (Orx), animals received estradiol-dipropionate, genistein, daidzein or soy extract subcutaneously for 3 weeks. Control sham-operated (So) and Orx rats received just the vehicle. Changes in the volumes of pars distalis, of individual follicle-stimulating hormone (FSH) and luteinizing hormone (LH) containing cells, their volume, numerical density and number were determined by unbiased design-based stereology. The intracellular content of βFSH and βLH was estimated by relative intensity of fluorescence (RIF). Orchidectomy increased all examined stereological parameters and RIF. Compared to Orx, estradiol increased the volume of pars distalis, but reversed RIF and all morphometric parameters of gonadotropes to the level of So rats, except their number. Treatments with purified isoflavones and soy extract decreased RIF to the control So level, expressing an estradiol-like effect. However, the histological appearance and morphometrical features of gonadotropes did not follow this pattern. Genistein increased the volume of pars distalis, decreased the volume density of LH-labeled cells and raised the number of gonadotropes. Daidzein decreased the cell volume of gonadotropic cells but increased their number and numerical density. Soy extract induced an increase in number and numerical density of FSH-containing cells. Therefore, it can be concluded that soy phytoestrogens do not fully reverse the Orx-induced changes in pituitary castration cells. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nataša Nestorović
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Svetlana Trifunović
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Milica Manojlović-Stojanoski
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Ivana Jarić
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Nataša Ristić
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Branko Filipović
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Branka Šošić-Jurjević
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| | - Verica Milošević
- Department of Cytology, University of Belgrade, Institute for Biological Research "Siniša Stanković,", Belgrade, 11060, Serbia
| |
Collapse
|
6
|
Ajdžanovic VZ, Trifunovic S, Miljic D, Šošic-Jurjevic B, Filipovic B, Miler M, Ristic N, Manojlovic-Stojanoski M, Miloševic V. Somatopause, weaknesses of the therapeutic approaches and the cautious optimism based on experimental ageing studies with soy isoflavones. EXCLI JOURNAL 2018; 17:279-301. [PMID: 29743865 PMCID: PMC5938552 DOI: 10.17179/excli2017-956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/10/2018] [Indexed: 12/15/2022]
Abstract
The pathological phenomenon of somatopause, noticeable in hypogonadal ageing subjects, is based on the growth hormone (GH) production and secretion decrease along with the fall in GH binding protein and insulin-like growth factor 1 (IGF-1) levels, causing different musculoskeletal, metabolic and mental issues. From the perspective of safety and efficacy, GH treatment is considered to be highly controversial, while some other therapeutic approaches (application of IGF-1, GH secretagogues, gonadal steroids, cholinesterase-inhibitors or various combinations) exhibit more or less pronounced weaknesses in this respect. Soy isoflavones, phytochemicals that have already demonstrated the health benefits in treated elderly, at least experimentally reveal their potential for the somatopausal symptoms remediation. Namely, genistein enhanced GHRH-stimulated cAMP accumulation and GH release in rat anterior pituitary cells; refreshed and stimulated the somatotropic system (hypothalamic nuclei and pituitary GH cells) function in a rat model of the mild andropause, and stimulated the GH output in ovariectomized ewes as well as the amplitude of GH pulses in the rams. Daidzein, on the other hand, increased body mass, trabecular bone mass and decreased bone turnover in the animal model of severe andropause, while both isoflavones demonstrated blood cholesterol-lowering effect in the same model. These data, which necessarily need to be preclinically and clinically filtered, hint some cautious optimism and call for further innovative designing of balanced soy isoflavone-based therapeutics.
Collapse
Affiliation(s)
- Vladimir Z Ajdžanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Svetlana Trifunovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dragana Miljic
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Branka Šošic-Jurjevic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Branko Filipovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Nataša Ristic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Milica Manojlovic-Stojanoski
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Verica Miloševic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Trifunović S, Milošević V. The Morpho-Functional Parameters of Rat Pituitary Hormone Producing Cells After Genistein Treatment. MACEDONIAN VETERINARY REVIEW 2018. [DOI: 10.1515/macvetrev-2017-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Abstract
Phytoestrogens are a diverse group of steroid–like compounds that occur naturally in many plants. There are various types of phytoestrogens, including the best-researched isoflavones which are commonly found in soy. The consumption of soy products has many health benefits, including protection against breast cancer, prostate cancer, menopausal symptoms, heart disease and osteoporosis. In contrast, use of hormonally active compounds-isoflavones may unfortunately interfere with the endocrine system and can have far-reaching consequences. Genistein, the most abundant soy-bean derived isoflavone, possesses a ring system similar to estrogens and acts through an estrogen receptor (ER)-mediated mechanism, by increasing or decreasing the transcription of ER-dependent target genes. Also, genistein can act on cells through ER non-dependent mechanisms, such as tyrosine kinase inhibitor. The neuroendocrine systems are responsible for the control of homeostatic processes in the body, including reproduction, growth, metabolism and energy balance, and stress responsiveness. It is well known, that estrogen is important for development of the neuroendocrine system in both sexes. At the pituitary level, estrogen is known to affect the regulation of all hormone producing (HP) cells, by direct and/or indirect mechanisms. Due to structural and functional resemblance to estrogen, the question may arise of whether and how genistein affects the morphofunctional features of pituitary HP cells. This review deals with the consequences of genistein’s effects on morphological, stereological and hormonal features of HP cells within the anterior pituitary gland. Transparency on this issue is needed because isoflavones are presently highly consumed. Inter alia, genistein as well as other isoflavones, are present in various dietary supplements and generally promoted as an accepted alternative to estrogen replacement therapy. Potential isoflavone biomedical exploitation is not only limited to estrogen replacement therapy, so it should be treated in a wider context of different ageing symptoms remediation.
Collapse
Affiliation(s)
- Svetlana Trifunović
- Department of Cytology, Institute for Biological Research “Siniša Stanković” , University of Belgrade , Bul Despot Stefan 142, 11060 Belgrade , Serbia
| | - Verica Milošević
- Department of Cytology, Institute for Biological Research “Siniša Stanković” , University of Belgrade , Bul Despot Stefan 142, 11060 Belgrade , Serbia
| |
Collapse
|
8
|
Trifunović S, Manojlović-Stojanoski M, Ristić N, Jurijević BŠ, Balind SR, Brajković G, Perčinić-Popovska F, Milošević V. Effects of prolonged alcohol exposure on somatotrophs and corticotrophs in adult rats: Stereological and hormonal study. Acta Histochem 2016; 118:353-60. [PMID: 27017477 DOI: 10.1016/j.acthis.2016.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
Abstract
Exposure to alcohol alters many physiological processes, including endocrine status. The present study examined whether prolonged alcohol (A) exposure could modulate selected stereological and hormonal aspects of pituitary somatotrophs (growth hormone-GH cells) and corticotrophs (adrenocorticotropic hormone-ACTH cells) in adult rats. Changes in pituitary gland volume; the volume density, total number and volume of GH and ACTH cells following alcohol exposure were evaluated using a stereological system (newCAST), while peripheral GH and ACTH levels were determined biochemically. Our results demonstrated the reduction (p<0.05) of the volume density (37%) and volume of GH cells (29%) in the group A. Also, there was a tendency for the total number of GH cells to be smaller in the group A. Serum GH level was significantly decreased (p<0.05; 70%) in the group A when compared to control values. Moreover, prolonged alcohol exposure induced declines (p<0.05) in volume density (24%) and volume of ACTH cells (29%). The total number of ACTH cells and ACTH level were higher (p<0.05; 42%) in the group A than in control rats. Collectively, these results indicate that prolonged alcohol exposure leads not only to changes in GH and ACTH hormone levels, but also to alterations of the morphological aspects of GH and ACTH cells within the pituitary.
Collapse
|
9
|
Medigović IM, Živanović JB, Ajdžanović VZ, Nikolić-Kokić AL, Stanković SD, Trifunović SL, Milošević VL, Nestorović NM. Effects of soy phytoestrogens on pituitary-ovarian function in middle-aged female rats. Endocrine 2015. [PMID: 26215277 DOI: 10.1007/s12020-015-0691-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The aim of this study was to assess the effects of genistein (G) and daidzein (D) on the histological, hormonal, and functional parameters of the pituitary-ovarian axis in middle-aged female rats, and to compare these effects with the effects of estradiol (E), commonly used in the prevention and treatment of menopausal symptoms. Middle-aged (12 month old) Wistar female rats subcutaneously received 35 mg/kg of G, or 35 mg/kg of D, or 0.625 mg/kg of E every day for 4 weeks. Each of the treated groups had a corresponding control group. An intact control group was also established. G and D did not change the intracellular protein content within gonadotropic and lactotropic cells, but vacuolization was observed in all the cell types. In contrast, E caused an inhibition of gonadotropic and stimulation of lactotropic cells. Also, ovaries of middle-aged female rats exposed to G or D have more healthy primordial and primary follicles and less atretic follicles. E treatment in the ovaries had a mostly negative effect, which is reflected by the increased number of atretic follicles in all tested classes. G and D provoked decrease in CuZnSOD and CAT activity, while E treatment increased MnSOD and decreased CuZnSOD and GSHPx activity. All the treatments increased serum estradiol and decreased testosterone levels, while D and E increased the serum progesterone level. In conclusion, soy phytoestrogens exhibited beneficial effects on pituitary-ovarian function in middle-aged female rats, as compared to estradiol.
Collapse
Affiliation(s)
- Ivana M Medigović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| | - Jasmina B Živanović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Vladimir Z Ajdžanović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Aleksandra L Nikolić-Kokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Sanja D Stanković
- Center for Medical Biochemistry, Clinical Centre of Serbia, School of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Svetlana L Trifunović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Verica Lj Milošević
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Nataša M Nestorović
- Department of Citology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| |
Collapse
|