1
|
Bellettini-Santos T, Batista-Silva H, Marcolongo-Pereira C, Quintela-Castro FCDA, Barcelos RM, Chiepe KCMB, Rossoni JV, Passamani-Ambrosio R, da Silva BS, Chiarelli-Neto O, Garcez ML. Move Your Body toward Healthy Aging: Potential Neuroprotective Mechanisms of Irisin in Alzheimer's Disease. Int J Mol Sci 2023; 24:12440. [PMID: 37569815 PMCID: PMC10420140 DOI: 10.3390/ijms241512440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in older adults, having a significant global burden and increasing prevalence. Current treatments for AD only provide symptomatic relief and do not cure the disease. Physical activity has been extensively studied as a potential preventive measure against cognitive decline and AD. Recent research has identified a hormone called irisin, which is produced during exercise, that has shown promising effects on cognitive function. Irisin acts on the brain by promoting neuroprotection by enhancing the growth and survival of neurons. It also plays a role in metabolism, energy regulation, and glucose homeostasis. Furthermore, irisin has been found to modulate autophagy, which is a cellular process involved in the clearance of protein aggregates, which are a hallmark of AD. Additionally, irisin has been shown to protect against cell death, apoptosis, oxidative stress, and neuroinflammation, all of which are implicated in AD pathogenesis. However, further research is needed to fully understand the mechanisms and therapeutic potential of irisin in AD. Despite the current gaps in knowledge, irisin holds promise as a potential therapeutic target for slowing cognitive decline and improving quality of life in AD patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Michelle Lima Garcez
- Graduate Program of Research and Extension (CEPEG), University Center of Espirito Santo, Espírito Santo 29703-858, Brazil; (T.B.-S.); (H.B.-S.); (C.M.-P.); (F.C.d.A.Q.-C.); (R.M.B.); (K.C.M.B.C.); (J.V.R.J.); (R.P.-A.); (B.S.d.S.); (O.C.-N.)
| |
Collapse
|
2
|
Maak S, Norheim F, Drevon CA, Erickson HP. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocr Rev 2021; 42:436-456. [PMID: 33493316 PMCID: PMC8284618 DOI: 10.1210/endrev/bnab003] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Indexed: 01/10/2023]
Abstract
In 2002, a transmembrane protein-now known as FNDC5-was discovered and shown to be expressed in skeletal muscle, heart, and brain. It was virtually ignored for 10 years, until a study in 2012 proposed that, in response to exercise, the ectodomain of skeletal muscle FNDC5 was cleaved, traveled to white adipose tissue, and induced browning. The wasted energy of this browning raised the possibility that this myokine, named irisin, might mediate some beneficial effects of exercise. Since then, more than 1000 papers have been published exploring the roles of irisin. A major interest has been on adipose tissue and metabolism, following up the major proposal from 2012. Many studies correlating plasma irisin levels with physiological conditions have been questioned for using flawed assays for irisin concentration. However, experiments altering irisin levels by injecting recombinant irisin or by gene knockout are more promising. Recent discoveries have suggested potential roles of irisin in bone remodeling and in the brain, with effects potentially related to Alzheimer's disease. We discuss some discrepancies between research groups and the mechanisms that are yet to be determined. Some important questions raised in the initial discovery of irisin, such as the role of the mutant start codon of human FNDC5 and the mechanism of ectodomain cleavage, remain to be answered. Apart from these specific questions, a promising new tool has been developed-mice with a global or tissue-specific knockout of FNDC5. In this review, we critically examine the current knowledge and delineate potential solutions to resolve existing ambiguities.
Collapse
Affiliation(s)
- Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frode Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
3
|
Sarcopenia and Cognitive Function: Role of Myokines in Muscle Brain Cross-Talk. Life (Basel) 2021; 11:life11020173. [PMID: 33672427 PMCID: PMC7926334 DOI: 10.3390/life11020173] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia is a geriatric syndrome characterized by the progressive degeneration of muscle mass and function, and it is associated with severe complications, which are falls, functional decline, frailty, and mortality. Sarcopenia is associated with cognitive impairment, defined as a decline in one or more cognitive domains as language, memory, reasoning, social cognition, planning, making decisions, and solving problems. Although the exact mechanism relating to sarcopenia and cognitive function has not yet been defined, several studies have shown that skeletal muscle produces and secrete molecules, called myokines, that regulate brain functions, including mood, learning, locomotor activity, and neuronal injury protection, showing the existence of muscle-brain cross-talk. Moreover, studies conducted on physical exercise supported the existence of muscle-brain cross-talk, showing how physical activity, changing myokines' circulating levels, exerts beneficial effects on the brain. The review mainly focuses on describing the role of myokines on brain function and their involvement in cognitive impairment in sarcopenia.
Collapse
|
4
|
Young MF, Valaris S, Wrann CD. A role for FNDC5/Irisin in the beneficial effects of exercise on the brain and in neurodegenerative diseases. Prog Cardiovasc Dis 2019; 62:172-178. [PMID: 30844383 DOI: 10.1016/j.pcad.2019.02.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 01/03/2023]
Abstract
The beneficial effects of exercise on the brain are well known. However, the underlying molecular mechanisms are much less well understood. Interestingly, myokines, hormones secreted by muscle in response to exercise, gained attention as such beneficial mediators. In this review, we will focus on FNDC5 and its secreted form, the newly discovered myokine "irisin". We will discuss their role in the beneficial effects of exercise and its potential application in neurodegenerative disorders.
Collapse
Affiliation(s)
- Michael F Young
- Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Sophia Valaris
- Massachusetts General Hospital, Harvard Medical School, Boston, United States of America
| | - Christiane D Wrann
- Massachusetts General Hospital, Harvard Medical School, Boston, United States of America; Broad Institute of MIT and Harvard, Cambridge, Boston, United States of America; Harvard Stem Cell Institute, Cambridge, MA, United States of America; Henry and Allison McCance Center for Brain Health, Massachusetts General Hospital, Boston, MA, United States of America.
| |
Collapse
|
5
|
Nadeau L, Aguer C. Interleukin-15 as a myokine: mechanistic insight into its effect on skeletal muscle metabolism. Appl Physiol Nutr Metab 2019; 44:229-238. [DOI: 10.1139/apnm-2018-0022] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Interleukin (IL)-15 is a cytokine with important immunological functions. It is highly expressed in skeletal muscle and is believed to be a myokine, a hypothesis supported by the rapid increase in circulating levels of IL-15 in response to exercise. Treatment with high doses of IL-15 results in metabolic adaptations such as improved insulin sensitivity and whole-body fatty acid oxidation and protection from high-fat-diet-induced obesity and insulin resistance. IL-15 secreted by contracting muscle may therefore act as an endocrine factor to improve adiposity and energy metabolism in different tissues. Most studies have used supraphysiological doses of IL-15 that do not represent circulating IL-15 in response to exercise. However, evidence shows that IL-15 levels are higher in muscle interstitium and that IL-15 might improve muscle glucose homeostasis and oxidative metabolism in an autocrine/paracrine manner. Nevertheless, how IL-15 signals in skeletal muscle to improve muscle energy metabolism is not understood completely, especially because the absence of the α subunit of the IL-15 receptor (IL-15Rα) results in a phenotype similar to that of overexpressing/oversecreting IL-15 in mice. In this article, we review the literature to propose a model for the regulation of IL-15 by the soluble form of IL-15Rα to explain why some findings in the literature seem, at first glance, to be contradictory.
Collapse
Affiliation(s)
- Lucien Nadeau
- Institut du Savoir Montfort – Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Céline Aguer
- Institut du Savoir Montfort – Recherche, 713 Montreal Road, Ottawa, ON K1K 0T2, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Kim OY, Song J. The Role of Irisin in Alzheimer's Disease. J Clin Med 2018; 7:jcm7110407. [PMID: 30388754 PMCID: PMC6262319 DOI: 10.3390/jcm7110407] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by progressive memory dysfunction, oxidative stress, and presence of senile plaques formed by amyloid beta (Aβ) accumulation in the brain. AD is one of the most important causes of morbidity and mortality worldwide. AD has a variety of risk factors, including environmental factors, metabolic dysfunction, and genetic background. Recent research has highlighted the relationship between AD and systemic metabolic changes such as glucose and lipid imbalance and insulin resistance. Irisin, a myokine closely linked to exercise, has been associated with glucose metabolism, insulin sensitivity, and fat browning. Recent studies have suggested that irisin is involved in the process in central nervous system (CNS) such as neurogenesis and has reported the effects of irisin on AD as one of the neurodegenerative disease. Here, we review the roles of irisin with respect to AD and suggest that irisin highlight therapeutic important roles in AD. Thus, we propose that irisin could be a potential future target for ameliorating AD pathology and preventing AD onset.
Collapse
Affiliation(s)
- Oh Yoen Kim
- Department of Food Science and Nutrition, Dong A University, Busan 49315, Korea;
- Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Dong A University, Busan 49315, Korea
- Human Life Research Center, Dong A University, Busan 49315, Korea
| | - Juhyun Song
- Human Life Research Center, Dong A University, Busan 49315, Korea
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Korea
- Correspondence: ; Tel.: +82-61-379-2706
| |
Collapse
|
7
|
Chen K, Xu Z, Liu Y, Wang Z, Li Y, Xu X, Chen C, Xia T, Liao Q, Yao Y, Zeng C, He D, Yang Y, Tan T, Yi J, Zhou J, Zhu H, Ma J, Zeng C. Irisin protects mitochondria function during pulmonary ischemia/reperfusion injury. Sci Transl Med 2018; 9:9/418/eaao6298. [PMID: 29187642 DOI: 10.1126/scitranslmed.aao6298] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 08/10/2017] [Accepted: 10/20/2017] [Indexed: 12/13/2022]
Abstract
Limb remote ischemic preconditioning (RIPC) is an effective means of protection against ischemia/reperfusion (IR)-induced injury to multiple organs. Many studies are focused on identifying endocrine mechanisms that underlie the cross-talk between muscle and RIPC-mediated organ protection. We report that RIPC releases irisin, a myokine derived from the extracellular portion of fibronectin domain-containing 5 protein (FNDC5) in skeletal muscle, to protect against injury to the lung. Human patients with neonatal respiratory distress syndrome show reduced concentrations of irisin in the serum and increased irisin concentrations in the bronchoalveolar lavage fluid, suggesting transfer of irisin from circulation to the lung under physiologic stress. In mice, application of brief periods of ischemia preconditioning stimulates release of irisin into circulation and transfer of irisin to the lung subjected to IR injury. Irisin, via lipid raft-mediated endocytosis, enters alveolar cells and targets mitochondria. Interaction between irisin and mitochondrial uncoupling protein 2 (UCP2) allows for prevention of IR-induced oxidative stress and preservation of mitochondrial function. Animal model studies show that intravenous administration of exogenous irisin protects against IR-induced injury to the lung via improvement of mitochondrial function, whereas in UCP2-deficient mice or in the presence of a UCP2 inhibitor, the protective effect of irisin is compromised. These results demonstrate that irisin is a myokine that facilitates RIPC-mediated lung protection. Targeting the action of irisin in mitochondria presents a potential therapeutic intervention for pulmonary IR injury.
Collapse
Affiliation(s)
- Ken Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China.,Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Zaicheng Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yukai Liu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Zhen Wang
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yu Li
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Xuefei Xu
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Tianyang Xia
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Qiao Liao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yonggang Yao
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Cindy Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Duofen He
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China.,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| | - Yongjian Yang
- Department of Cardiology, Chengdu Military General Hospital, Chengdu, Sichuan 610083, P.R. China
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianxun Yi
- Department of Physiology, Kansas City University, Kansas City, MO 64106, USA
| | - Jingsong Zhou
- Department of Physiology, Kansas City University, Kansas City, MO 64106, USA
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Jianjie Ma
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China. .,Chongqing Institute of Cardiology, Chongqing 400042, P.R. China
| |
Collapse
|
8
|
Fatouros IG. Is irisin the new player in exercise-induced adaptations or not? A 2017 update. ACTA ACUST UNITED AC 2017; 56:525-548. [DOI: 10.1515/cclm-2017-0674] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022]
Abstract
Abstract
Irisin is produced by a proteolytic cleavage of fibronectin type III domain-containing protein 5 (FNDC5) and has emerged as a potential mediator of exercise-induced energy metabolism. The purpose of this study was to review the results of studies that investigated irisin responses to acute and chronic exercise and provide an update. A comprehensive search in the databases of MEDLINE was performed (74 exercise studies). The focus of the analysis was on data concerning FNDC5 mRNA expression in skeletal muscle and circulating irisin concentration relatively to exercise mode, intensity, frequency and duration and the characteristics of the sample used. Circulating irisin levels may either not relate to FNDC5 transcription or expression of the later precedes irisin rise in the blood. Acute speed/strength and endurance exercise protocols represent potent stimuli for irisin release if they are characterized by adequate intensity and/or duration. There are no reports regarding irisin responses to field sport activities. Although animal studies suggest that irisin may also respond to systematic exercise training, the majority of human studies has produced contradictory results. Certain methodological issues need to be considered here such as the analytical assays used to measure irisin concentration in the circulation. Results may also be affected by subjects’ age, conditioning status and exercise intensity. The role of irisin as a moderator of energy metabolism during exercise remains to be seen.
Collapse
Affiliation(s)
- Ioannis G. Fatouros
- School of Physical Education and Sports Sciences , University of Thessaly , Karies 42100 , Trikala , Greece
| |
Collapse
|
9
|
The Role of FNDC5/Irisin in the Nervous System and as a Mediator for Beneficial Effects of Exercise on the Brain. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2017. [DOI: 10.1007/978-3-319-72790-5_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Anderson BG, Quinn LS. Free IL-15 Is More Abundant Than IL-15 Complexed With Soluble IL-15 Receptor-α in Murine Serum: Implications for the Mechanism of IL-15 Secretion. Endocrinology 2016; 157:1315-20. [PMID: 26812159 DOI: 10.1210/en.2015-1746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-15 is a cytokine that is part of the innate immune system, as well as a proposed myokine released from skeletal muscle during physical exercise that mediates many of the positive physiological effects of exercise. Many of the immune functions of IL-15 are mediated by juxtacrine signaling via externalized IL-15 bound to membrane-associated IL-15 receptor-α (IL-15Rα). Serum and plasma samples also contain measurable concentrations of IL-15, believed to arise from proteolytic cleavage of membrane-associated IL-15/IL-15Rα complexes to generate soluble IL-15/IL-15Rα species. Here, we validate commercial assays that can distinguish the free form of IL-15 and IL-15/IL-15Rα complexes. These assays showed that most (86%) IL-15 in mouse serum resides in the free state, with a minor proportion (14%) residing in complex with IL-15Rα. Given the much shorter half-life of free IL-15 compared with IL-15/IL-15Rα complexes, these findings cast doubt on the currently accepted model for IL-15 secretion from cleavage of membrane-bound IL-15/IL-15Rα and suggest that IL-15 is released as a free molecule by an unknown mechanism.
Collapse
Affiliation(s)
- Barbara G Anderson
- Geriatric Research, Education, and Clinical Center (B.G.A., L.S.Q.), and Research Service (L.S.Q.), Veteran's Administration Puget Sound Health Care System, Seattle, Washington 98108; and Division of Gerontology and Geriatric Medicine (B.G.A., L.S.Q.), Department of Medicine, University of Washington, Seattle, Washington 98195
| | - LeBris S Quinn
- Geriatric Research, Education, and Clinical Center (B.G.A., L.S.Q.), and Research Service (L.S.Q.), Veteran's Administration Puget Sound Health Care System, Seattle, Washington 98108; and Division of Gerontology and Geriatric Medicine (B.G.A., L.S.Q.), Department of Medicine, University of Washington, Seattle, Washington 98195
| |
Collapse
|
11
|
Wrann CD. FNDC5/irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain. Brain Plast 2015; 1:55-61. [PMID: 28480165 PMCID: PMC5419585 DOI: 10.3233/bpl-150019] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Exercise can improve cognitive function and the outcome of neurodegenerative diseases, like Alzheimer's disease. This effect has been linked to the increased expression of brain-derived neurotrophic factor (BDNF). However, the underlying molecular mechanisms driving the elevation of this neurotrophin remain unknown. Recently, we have reported a PGC-1α-FNDC5/irisin pathway, which is activated by exercise in the hippocampus in mice and induces a neuroprotective gene program, including Bdnf. This review will focus on FNDC5 and its secreted form "irisin", a newly discovered myokine, and their role in the nervous system and its therapeutic potential. In addition, we will briefly discuss the role of other exercise-induced myokines on positive brain effects.
Collapse
Affiliation(s)
- Christiane D. Wrann
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|