1
|
Papillary Thyroid Carcinoma: Current Position in Epidemiology, Genomics, and Classification. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2534:1-15. [PMID: 35670964 DOI: 10.1007/978-1-0716-2505-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Papillary thyroid carcinoma is the most common type of thyroid malignancy both in adults and pediatric population. Since the 1980s, there are changes in criteria in labelling thyroid lesions as "papillary thyroid carcinomas." Radiation exposure is a well-established risk factor for papillary thyroid carcinoma. Other environmental risk factors include dietary iodine, obesity, hormones, and environmental pollutants. Papillary thyroid carcinomas could occur in familial settings, and 5% of these familial cases have well-studied driver germline mutations. In sporadic papillary thyroid carcinoma, BRAF mutation is common and is associated with clinicopathologic and prognostic markers. The mutation could aid in the clinical diagnosis of papillary thyroid carcinoma. Globally, thyroid cancer is among the top ten commonest cancer in females. In both adult and pediatric populations, there are variations of prevalence of thyroid cancer and rising incidence rates of thyroid cancer worldwide. The increase of thyroid cancer incidence was almost entirely due to the increase of papillary thyroid carcinoma. The reasons behind the increase are complex, multifactorial, and incompletely understood. The most obvious reasons are increased use of diagnostic entities, change in classification of thyroid neoplasms, as well as factors such as obesity, environmental risk factors, and radiation. The prognosis of the patients with papillary thyroid carcinoma is generally good after treatment. Nevertheless, cancer recurrence and comorbidity of second primary cancer may occur, and it is important to have awareness of the clinical, pathological, and molecular parameters of papillary thyroid carcinoma.
Collapse
|
2
|
Smith RA, Lam AK. BRAF Mutations in Papillary Thyroid Carcinoma: A Genomic Approach Using Probe-Based DNA Capture for Next-Generation Sequencing. Methods Mol Biol 2022; 2534:161-174. [PMID: 35670975 DOI: 10.1007/978-1-0716-2505-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The BRAF V600E mutation in papillary thyroid carcinoma is the major mutation in classical subtype of papillary thyroid carcinoma and other cancers. It is the most studied predictor of clinical and pathological characteristics as well as molecular targets for cancer therapy. On the other hand, there is potential for many more forms of activating mutation in BRAF that are not detectable by simple assays to detect V600E, or even simple polymerase chain reaction (PCR)-based sequencing for full-length BRAF. Such activating mutations could arise from larger-scale rearrangements which may apparently leave no sequence change to BRAF while causing increased expression or activation by unusual means, such as gene fusion. Detection of these kinds of changes can take place using a variety of methods, though capture-based sequencing can identify the existence of such forms of mutant BRAF without needing foreknowledge of the loci involved in these kinds of mutation. In this chapter, we detail a method for capture of specific DNA sequences and their amplification to prepare for massively parallel sequencing.
Collapse
Affiliation(s)
- Robert A Smith
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove Campus, Brisbane, QLD, Australia.
- Cancer Molecular Pathology of School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology of School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
- Pathology Queensland, Gold Coast University Hospital, Southport, QLD, Australia
- Faculty of Medicine, University of Queensland, Herston, QLD, Australia
| |
Collapse
|
3
|
El-Naggar M, Amr AEGE, Fayed AA, Elsayed EA, Al-Omar MA, Abdalla MM. Potent Anti-Ovarian Cancer with Inhibitor Activities on both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates. Molecules 2019; 24:E2054. [PMID: 31146483 PMCID: PMC6600292 DOI: 10.3390/molecules24112054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
A series of 16-(α-alkoxyalkane)-17-hydrazino-estra-1(10),2,4-trien[17,16-c]-3-ol (3a-l) and estra-1(10),2,4-trien-[17,16-c]pyrazoline-3-ol derivatives (4a-d) were synthesized from corresponding arylidines 2a,b which was prepared from estrone 1 as starting material. Condensation of 1 with aldehydes gave the corresponding arylidine derivatives 2a,b which were treated with hydrazine derivatives in alcohols to give the corresponding derivatives 3a-l, respectively. Additionally, treatment of 2a,b with methyl- or phenylhydrazine in ethanolic potassium hydroxide afforded the corresponding N-substituted pyrazoline derivatives 4a-d, respectively. All these derivatives showed potent anti-ovarian cancer both in vitro and in vivo. The mechanism of anti-ovarian cancer was suggested to process via topoisomerase II and V600EBRAF inhibition.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE.
| | - Abd El-Galil E Amr
- Drug Exploration & Development Chair (DEDC), Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt.
| | - Ahmed A Fayed
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt.
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Madinah Munawara 22624, Saudi Arabia.
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo 12622, Egypt.
| | - Mohamed A Al-Omar
- Drug Exploration & Development Chair (DEDC), Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | |
Collapse
|
4
|
Notarangelo T, Sisinni L, Condelli V, Landriscina M. Dual EGFR and BRAF blockade overcomes resistance to vemurafenib in BRAF mutated thyroid carcinoma cells. Cancer Cell Int 2017; 17:86. [PMID: 29033690 PMCID: PMC5628448 DOI: 10.1186/s12935-017-0457-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/24/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND BRAF inhibitors are effective anticancer agents in BRAF-mutated melanomas. By contrast, evidences about sensitivity of thyroid carcinomas to BRAF inhibition are conflicting and it has been proposed that BRAF V600E thyroid carcinoma cells are less sensitive to BRAF inhibitors due to activation of parallel signaling pathways. This study evaluated the hypothesis that feedback activation of EGFR signaling counteracts the cytostatic activity of vemurafenib (PLX4032) in BRAF V600E thyroid carcinoma cells. METHODS Cell proliferation, cell cycle distribution, induction of apoptosis and EGFR and AKT signaling were evaluated in thyroid carcinoma cell lines bearing the BRAF V600E mutation in response to PLX4032. RESULTS A partial and transient cytostatic response to PLX4032 was observed in thyroid carcinoma cell lines bearing the BRAF V600E mutation, with lack of full inhibition of ERK pathway. Interestingly, the exposure of thyroid carcinoma cells to PLX4032 resulted in a rapid feedback activation of EGFR signaling with parallel activation of AKT phosphorylation. Consistently, the dual inhibition of EGFR and BRAF, through combination therapy with PLX4032 and gefitinib, resulted in prevention of EGFR phosphorylation and sustained inhibition of ERK and AKT signaling and cell proliferation. Of note, the combined treatment with gefitinib and vemurafenib or the exposure of EGFR-silenced thyroid carcinoma cells to vemurafenib induced synthetic lethality compared to single agents. CONCLUSIONS These data suggest that the dual EGFR and BRAF blockade represents a strategy to by-pass resistance to BRAF inhibitors in thyroid carcinoma cells.
Collapse
Affiliation(s)
- Tiziana Notarangelo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Via Padre Pio, 1, Rionero in Vulture, 85028 Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Via Padre Pio, 1, Rionero in Vulture, 85028 Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Via Padre Pio, 1, Rionero in Vulture, 85028 Italy
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Via Padre Pio, 1, Rionero in Vulture, 85028 Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Viale Pinto, 1, Foggia, 71100 Italy
| |
Collapse
|
5
|
Lam AKY, Saremi N. Cribriform-morular variant of papillary thyroid carcinoma: a distinctive type of thyroid cancer. Endocr Relat Cancer 2017; 24:R109-R121. [PMID: 28314770 DOI: 10.1530/erc-17-0014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023]
Abstract
The aim of this systematic review is to study the features of cribriform-morular variant of papillary thyroid carcinoma (CMV-PTC) by analysing the 129 documented cases in the English literature. The disease occurred almost exclusively in women. The median age of presentation for CMV-PTC was 24 years. Slightly over half of the patients with CMV-PTC had familial adenomatous polyposis (FAP). CMV-PTC presented before the colonic manifestations in approximately half of the patients with FAP. Patients with FAP often have multifocal tumours in the thyroid. Microscopic examination of CMV-PTC revealed predominately cribriform and morular pattern of cancer cells with characteristic nuclear features of papillary thyroid carcinoma. Psammoma body is rare. On immunohistochemical studies, β-catenin is diffusely positive in CMV-PTC. The morular cells in CMV-PTC are strongly positive for CD10, bcl-2 and E-cadherin. Pre-operative diagnosis of CMV-PTC by fine-needle aspiration biopsy could be aided by cribriform architecture, epithelial morules and β-catenin immunostaining. Mutations of APC gene are found in the patients with CMV-PTC associated with FAP. In addition, mutations in CTNNB1, RET/PTC rearrangement and PI3K3CA mutations have been reported. BRAF mutation is negative in all CMV-PTC tested. Compared to conventional papillary thyroid carcinoma, CMV-PTC had a lower frequency of lymph node metastases at presentation (12%) and distant metastases (3%) as well as lower recurrence rates (8.5%) and patients' mortality rates (2%). To conclude, patients with CMV-PTC have distinctive clinical, pathological and molecular profiles when compared to conventional papillary thyroid carcinoma.
Collapse
Affiliation(s)
- Alfred King-Yin Lam
- Cancer Molecular PathologySchool of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Nassim Saremi
- Cancer Molecular PathologySchool of Medicine and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| |
Collapse
|
6
|
Islam F, Gopalan V, Wahab R, Lee KTW, Haque MH, Mamoori A, Lu CT, Smith RA, Lam AKY. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Hum Genet 2017; 136:321-337. [DOI: 10.1007/s00439-017-1760-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/21/2017] [Indexed: 12/13/2022]
|