1
|
Wen P, Wang Y, Yang M, Qiao X, Yang P, Hu S, Liu L, Yang Z. Sex hormone imbalance and rheumatoid arthritis in American men: a cross-sectional analysis from NHANES 2011-2016. Front Immunol 2024; 15:1501257. [PMID: 39759528 PMCID: PMC11695343 DOI: 10.3389/fimmu.2024.1501257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Background Emerging evidence suggests that sex hormones, particularly testosterone and sex hormone-binding globulin (SHBG), play a critical role in the pathophysiology of Rheumatoid arthritis (RA). However, the precise relationship between these hormonal factors and RA risk in men remains underexplored. Methods We conducted a cross-sectional analysis using data from the National Health and Nutrition Examination Survey (NHANES) 2011-2016. A total of 3,110 male participants were included after excluding those with missing data on testosterone, SHBG, RA, or key covariates. Serum testosterone and SHBG levels were measured, and RA status was determined based on self-reported physician diagnosis. Multivariate logistic regression models were used to assess the association between testosterone, SHBG, and RA. Restricted cubic spline (RCS) regression was applied to explore nonlinear relationships. Subgroup and interaction analyses were performed to assess effect modifications by age, race/ethnicity, body mass index (BMI), hypertension, and poverty-income ratio (PIR). Results Of the 3,110 men analyzed, 191 were diagnosed with RA. Low testosterone levels (<300 ng/dL) were significantly associated with increased RA risk (OR = 2.30, 95% CI: 1.65-3.21, p < 0.001), and elevated SHBG levels (>57 nmol/L) were also associated with a higher risk of RA (OR = 1.65, 95% CI: 1.14-2.39, p = 0.008). RCS analysis indicated a nonlinear relationship between testosterone, SHBG, and RA risk, with sharp increases in RA risk at the lower ends of testosterone and SHBG levels. Interaction analyses revealed that age, race/ethnicity, hypertension, and PIR significantly modified the relationship between these hormonal factors and RA, while BMI did not exhibit any significant interaction. Conclusion This study provides evidence that low testosterone and high SHBG levels are associated with an increased risk of RA in men. These associations are nonlinear and modified by factors such as age, race/ethnicity, hypertension, and PIR. Our findings highlight the importance of considering hormonal status in RA risk assessment and suggest potential avenues for targeted therapeutic strategies aimed at hormonal regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Shaanxi, China
| |
Collapse
|
2
|
Sánchez-Fernández D, Eguibar A, López C, Cuesta ÁM, Albiñana V, Rogers-Ezewuike S, Gómez-Rivas JA, Saldaña L, Botella LM, Ferrer M. Effect of 5β-dihydrotestosterone on vasodilator function and on cell proliferation. PLoS One 2024; 19:e0312080. [PMID: 39441776 PMCID: PMC11498709 DOI: 10.1371/journal.pone.0312080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Aging is one of the main factors associated with cardiovascular diseases. Androgens exert beneficial effects on the cardiovascular system and testosterone (TES) replacement therapy improves cardiometabolic risk factors. However, TES is contraindicated in patients with prostate cancer due to its proliferative effects on prostatic tumor cells. Additionally, TES and its reduced metabolites 5α- and 5β-dihydrotestosterone (5α-DHT and 5β-DHT) exert vasodilatory effects. Since androgen levels decrease during aging and 5β-DHT lacks genomic effects, this study is focused on analyzing its effect on vasodilator function and the proliferation rate of prostatic tumor and vascular smooth muscle cells. To study the vascular function, mesenteric arteries from aged-orchidectomized Sprague-Dawley rats were used. Mesenteric segments were divided into one control (without treatment) and three groups with the androgens (10 nM, 30 min) to analyze: acetylcholine- and sodium nitroprusside-induced responses and nitric oxide and superoxide anion production. To analyze cell proliferation, the effect of androgens on cell viability was determined. The results showed that 5β-DHT improves vasodilator function in arteries from aged-orchidectomized rats and induces antioxidant action, while the proliferation rate of the androgen-dependent prostatic tumor cells remains unaltered. These results make 5β-DHT a promising therapeutic agent for the treatment of cardiovascular pathologies.
Collapse
Affiliation(s)
- David Sánchez-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Aritz Eguibar
- Servicio de Urología, Hospital Quirón Salud, Marbella, Spain
| | - Cristina López
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ángel M. Cuesta
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Virginia Albiñana
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Soline Rogers-Ezewuike
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan A. Gómez-Rivas
- Servicio de Urología, Hospital Clínico San Carlos, Madrid, Spain
- Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Laura Saldaña
- Grupo de Fisiopatología Ósea y Biomateriales, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER- BBN, Madrid, Spain
| | - Luisa M. Botella
- Departamento de Biomedicina Molecular, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Unidad 707, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
3
|
Perusquía M, Herrera N. Rat Model of Menopausal/Andropausal Hypertension with Different Sensitivities to Non-Genomic Antihypertensive Responses of Female and Male Sex Steroids. Pharmacology 2024:1-12. [PMID: 39406205 DOI: 10.1159/000542007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/09/2024] [Indexed: 11/12/2024]
Abstract
INTRODUCTION Hypertension is prevalent in older women and men, but the impact of sex differences is unclear. METHODS Blood pressure (BP) was evaluated weekly for 15 weeks using tail-cuff plethysmography in intact or gonadectomized female and male rats. Similarly, gonadectomized rats were subcutaneously treated daily for 15 weeks with estradiol in females or testosterone in males. Treatment with estrogen in males and androgen in females for BP was also examined. The non-genomic antihypertensive potency and efficacy of different sex steroids were determined; catheters were implanted in the carotid artery of hypertensive rats for BP recording with bolus injections in the jugular vein at cumulative doses (1 × 10-7-1 × 10-4M kg-1 min-1) of dehydroepiandrosterone (DHEA), estradiol, testosterone, or 5β-dihydrotestosterone (5β-DHT). RESULTS Data showed a time-dependent increase in BP after gonadectomy in female and male rats until hypertension values were reached. Males are more sensitive to the development of hypertension than females. The increases in BP in females and males were completely prevented by estradiol or testosterone, respectively. Testosterone completely prevented hypertension in females, whereas estradiol only partially in males. Antihypertensive potencies in conscious hypertensive rats were DHEA = 5β-DHT = testosterone >> estradiol, in females and DHEA = 5β-DHT >> testosterone >> estradiol in males. The efficacy was DHEA = 5β-DHT = testosterone >> estradiol in females and 5β-DHT = DHEA >> testosterone >> estradiol in males. CONCLUSION Gonadectomized males developed hypertension faster than females, suggesting that androgen deficiency plays an important role in BP reduction. Antihypertensive responses of steroids are structure-dependent; estradiol demonstrated the lowest potency, whereas 5β-DHT was a potent antihypertensive without estrogenic and androgenic actions, suggesting it is as a therapeutic candidate for controlling hypertension in both sexes.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Department of Cell Biology and Physiology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| | - Nieves Herrera
- Department of Cell Biology and Physiology, Institute for Biomedical Research, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
4
|
Perusquía M, Herrera N, Jasso-Kamel J, González L, Alejandre N. Hyperandrogenism Protects Against High Blood Pressure by Nongenomic Mechanisms and Obesity Causes Hypertension in Females with Polycystic Ovary Syndrome. Endocr Res 2023; 48:101-111. [PMID: 37598377 DOI: 10.1080/07435800.2023.2249087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND Androgens induce vasorelaxation and reduce blood pressure in different mammals, including humans. Most women with polycystic ovary syndrome (PCOS), with hyperandrogenism, are obese and exhibit hypertension; thus, the fact that androgens increase blood pressure (BP) is controversial. Our aim was to determine whether hypertension is produced by androgen excess and/or obesity. METHODS Experiments were performed in dehydroepiandrosterone; (DHEA, s.c)-induced PCOS model. BP from nonobese and obese rats with PCOS (fed a normal or high-fat diet, respectively) was evaluated weekly for 10 weeks by plethysmography and compared between them. We determined whether androgen receptors are responsible for androgen action on BP in rats with PCOS; a group of DHEA-treated rats was implanted with pellets of an antiandrogen and was compared with nonobese rats with PCOS. Isometric tension from aortas of nonobese and obese rats was recorded and compared to explore the integrity of the vascular endothelium when acetylcholine-induced endothelium-dependent vascular relaxation on phenylephrine contraction. Additionally, BP was obtained from 30 women diagnosed with PCOS: nonobese (BMI ≤25) and obese women (BMI ≥35) and compared with healthy counterparts; 15 obese and 15 nonobese women. RESULTS Nonobese rats and women with PCOS showed hypotension, while obese rats and women with PCOS displayed hypertension. Healthy obese women were hypertensive and nonobese women remained normotensive. Antiandrogen did not modify the BP values in nonobese rats with PCOS, and obese rats with PCOS revealed marked endothelial dysfunction. CONCLUSIONS Our findings show that obesity is responsible for hypertension in PCOS and partial endothelial damage was observed, which may contribute to elevated BP. Remarkably, hyperandrogenism is capable of regulating BP to low values that are androgen receptor-independent.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Nieves Herrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Jaime Jasso-Kamel
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Lorena González
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Nohemí Alejandre
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| |
Collapse
|
5
|
Stallone JN, Oloyo AK. Cardiovascular and metabolic actions of the androgens: Is testosterone a Janus-faced molecule? Biochem Pharmacol 2023; 208:115347. [PMID: 36395900 DOI: 10.1016/j.bcp.2022.115347] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Cardiovascular disease (CVD) is a major cause of morbidity and mortality worldwide and in the Western world, one-third of all deaths are attributed to CVD. A conspicuous characteristic of this healthcare epidemic is that most CVD is higher in men than in age-matched premenopausal women, yet reasons for these obvious sex differences remain poorly understood. Driven by clinical case and epidemiological studies and supported by animal experiments, a strong dogma emerged early on that testosterone (TES) exerts deleterious effects on cardiovascular health and exacerbates development of CVD and metabolic dysfunctions in men. In this review, earlier and more recent clinical and experimental animal evidence of cardiovascular and metabolic effects of androgens are discussed. The more recent evidence overwhelmingly suggests that it is progressive, age-dependent declines in TES levels in men that exacerbate CVD and metabolic dysfunctions, while TES exerts beneficial systemic hypotensive effects and protects against metabolic syndrome (MetS) and type2 diabetes mellitus (T2DM). Recent findings reveal existence of bi-directional modulation of glucose and fat homeostasis by TES in females vs males, such that age-dependent declines in TES levels in males and abnormal increases in normally low TES levels in females both result in similar dysfunction in glucose and fat homeostasis, resulting in development of MetS and T2DM, central risk factors for development of CVD, in men as well as women. These findings suggest that the long-held view that TES is detrimental to male health should be discarded in favor of the view that, at least in men, TES is beneficial to cardiovascular and metabolic health.
Collapse
Affiliation(s)
- John N Stallone
- Department of Veterinary Physiology and Pharmacology and Michael E. DeBakey Institute for Comparative Cardiovascular Sciences, School of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4466, United States.
| | - Ahmed K Oloyo
- Department of Physiology, College of Medicine, University of Lagos, Idi-Araba, Lagos 23401, Nigeria
| |
Collapse
|
6
|
Rouver WDN, Delgado NTB, Gonçalves LT, Giesen JAS, Santos da Costa C, Merlo E, Damasceno Costa E, Lemos VS, Bernardes Graceli J, Santos RLD. Sex hormones and vascular reactivity: a temporal evaluation in resistance arteries of male rats. J Mol Endocrinol 2023; 70:e220147. [PMID: 36476761 DOI: 10.1530/jme-22-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
The role of androgens in vascular reactivity is controversial, particularly regarding their age-related actions. The objective of this study was to conduct a temporal evaluation of the vascular reactivity of resistance arteries of young male rats, as well as to understand how male sex hormones can influence the vascular function of these animals. Endothelium-mediated relaxation was characterized in third-order mesenteric arteries of 10-, 12-, 16-, and 18w (week-old) male rats. Concentration-response curves to acetylcholine (ACh, 0.1 nmol/L-10 µmol/L) were constructed in arteries previously contracted with phenylephrine (PE, 3 µmol/L), before and after the use of nitric oxide synthase or cyclooxygenase inhibitors. PE concentration-response curves (1 nmol/L-100 μmol/L) were also built. The levels of vascular nitric oxide, superoxide anion, and hydrogen peroxide were assessed and histomorphometry analysis was performed. The 18w group had impaired endothelium-dependent relaxation. All groups showed prostanoid-independent and nitric oxide-dependent vasodilatory response, although this dependence seems to be smaller in the 18w group. The 18w group had the lowest nitric oxide and hydrogen peroxide production, in addition to the highest superoxide anion levels. Besides functional impairment, 18w animals showed morphological differences in third-order mesenteric arteries compared with the other groups. Our data show that time-dependent exposure to male sex hormones appears to play an important role in the development of vascular changes that can lead to impaired vascular reactivity in mesenteric arteries, which could be related to the onset of age-related cardiovascular changes in males.
Collapse
Affiliation(s)
- Wender do Nascimento Rouver
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Leticia Tinoco Gonçalves
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Charles Santos da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Eduardo Merlo
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Eduardo Damasceno Costa
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Virginia Soares Lemos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jones Bernardes Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Roger Lyrio Dos Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| |
Collapse
|
7
|
Dearing C, Handa RJ, Myers B. Sex differences in autonomic responses to stress: implications for cardiometabolic physiology. Am J Physiol Endocrinol Metab 2022; 323:E281-E289. [PMID: 35793480 PMCID: PMC9448273 DOI: 10.1152/ajpendo.00058.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 07/01/2022] [Indexed: 11/22/2022]
Abstract
Chronic stress is a significant risk factor for negative health outcomes. Furthermore, imbalance of autonomic nervous system control leads to dysregulation of physiological responses to stress and contributes to the pathogenesis of cardiometabolic and psychiatric disorders. However, research on autonomic stress responses has historically focused on males, despite evidence that females are disproportionality affected by stress-related disorders. Accordingly, this mini-review focuses on the influence of biological sex on autonomic responses to stress in humans and rodent models. The reviewed literature points to sex differences in the consequences of chronic stress, including cardiovascular and metabolic disease. We also explore basic rodent studies of sex-specific autonomic responses to stress with a focus on sex hormones and hypothalamic-pituitary-adrenal axis regulation of cardiovascular and metabolic physiology. Ultimately, emerging evidence of sex differences in autonomic-endocrine integration highlights the importance of sex-specific studies to understand and treat cardiometabolic dysfunction.
Collapse
Affiliation(s)
- Carley Dearing
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
8
|
Perusquía M. Androgens and Non-Genomic vascular responses in hypertension. Biochem Pharmacol 2022; 203:115200. [PMID: 35926652 DOI: 10.1016/j.bcp.2022.115200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
Arterial hypertension is a global public health concern. In the last few years, the interest in androgen deficiency has been growing, and the association between androgens and high blood pressure (BP) is still controversial. One purpose of this review was to summarize the available findings in order to clarify whether male sex steroid hormones have beneficial or harmful effect on BP. The second purpose was to enhance the recognition of the acute non-genomic sex-independent vasorelaxing effect of androgens. Remarkably, BP variation is expected to be a consequence of the androgen-induced vasorelaxation which reduces systemic BP; hence the in vivo vasodepressor, hypotensive, and antihypertensive responses of androgens were also analyzed. This article reviews the current understanding of the physiological regulation of vascular smooth muscle contractility by androgens. Additionally, it summarizes older and more recent data on androgens, and some of the possible underlying mechanisms of relaxation, structural-functional differences in the androgen molecules, and their designing ability to induce vasorelaxation. The clinical relevance of these findings in terms of designing future therapeutics mainly the 5-reduced metabolite of testosterone, 5β-dihydrotestosterone, is also highlighted. Literature collected through a PubMed database search, as well as our experimental work, was used for the present review.
Collapse
Affiliation(s)
- Mercedes Perusquía
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México.
| |
Collapse
|
9
|
Isidoro-García L, Villalpando DM, Ferrer M. Vasomotor action of androgens in the mesenteric artery of hypertensive rats. Role of perivascular innervation. PLoS One 2021; 16:e0246254. [PMID: 33529222 PMCID: PMC7853503 DOI: 10.1371/journal.pone.0246254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Androgens may exert cardiovascular protective actions by regulating the release and function of different vascular factors. In addition, testosterone (TES) and its 5-reduced metabolites, 5α- and 5β-dihydrotestosterone (5α- and 5β-DHT) induce vasorelaxant and hypotensive effects. Furthermore, hypertension has been reported to alter the release and function of the neurotransmitters nitric oxide (NO), calcitonin gene-related peptide (CGRP) and noradrenaline (NA). Since the mesenteric arteries possess a dense perivascular innervation and significantly regulate total peripheral vascular resistance, the objective of this study was to analyze the effect of TES, 5α- and 5β-DHT on the neurogenic release and vasomotor function of NO, CGRP and NA. For this purpose, the superior mesenteric artery from male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats was used to analyze: (i) the effect of androgens (10 nM, incubated for 30 min) on the neurogenic release of NO, CGRP and NA and (ii) the vasoconstrictor-response to NA and the vasodilator responses to the NO donor, sodium nitroprusside (SNP) and exogenous CGRP. The results showed that TES, 5α- or 5β-DHT did not modify the release of NO, CGRP or NA induced by electrical field stimulation (EFS) in the arteries of SHR; however, in the arteries of WKY rats androgens only caused an increase in EFS-induced NO release. Moreover, TES, and especially 5β-DHT, increased the vasodilator response induced by SNP and CGRP in the arteries of SHR. These findings could be contributing to the hypotensive/antihypertensive efficacy of 5β-DHT previously described in conscious SHR and WKY rats, pointing to 5β- DHT as a potential drug for the treatment of hypertension.
Collapse
Affiliation(s)
- Lucía Isidoro-García
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Diva M. Villalpando
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - Mercedes Ferrer
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Madrid, Spain
| |
Collapse
|
10
|
Castelán F, Cuevas-Romero E, Martínez-Gómez M. The Expression of Hormone Receptors as a Gateway toward Understanding Endocrine Actions in Female Pelvic Floor Muscles. Endocr Metab Immune Disord Drug Targets 2021; 20:305-320. [PMID: 32216732 DOI: 10.2174/1871530319666191009154751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/06/2019] [Accepted: 07/19/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To provide an overview of the hormone actions and receptors expressed in the female pelvic floor muscles, relevant for understanding the pelvic floor disorders. METHODS We performed a literature review focused on the expression of hormone receptors mainly in the pelvic floor muscles of women and female rats and rabbits. RESULTS The impairment of the pelvic floor muscles can lead to the onset of pelvic floor dysfunctions, including stress urinary incontinence in women. Hormone milieu is associated with the structure and function alterations of pelvic floor muscles, a notion supported by the fact that these muscles express different hormone receptors. Nuclear receptors, such as steroid receptors, are up till now the most investigated. The present review accounts for the limited studies conducted to elucidate the expression of hormone receptors in pelvic floor muscles in females. CONCLUSION Hormone receptor expression is the cornerstone in some hormone-based therapies, which require further detailed studies on the distribution of receptors in particular pelvic floor muscles, as well as their association with muscle effectors, involved in the alterations relevant for understanding pelvic floor disorders.
Collapse
Affiliation(s)
- Francisco Castelán
- Department of Cellular Biology and Physiology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico.,Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Estela Cuevas-Romero
- Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| | - Margarita Martínez-Gómez
- Department of Cellular Biology and Physiology, Biomedical Research Institute, National Autonomous University of Mexico, Mexico City, Mexico.,Tlaxcala Center for Behavioral Biology, Autonomous University of Tlaxcala, Tlaxcala, Mexico
| |
Collapse
|
11
|
Hanson AE, Perusquia M, Stallone JN. Hypogonadal hypertension in male Sprague-Dawley rats is renin-angiotensin system-dependent: role of endogenous androgens. Biol Sex Differ 2020; 11:48. [PMID: 32843085 PMCID: PMC7448502 DOI: 10.1186/s13293-020-00324-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 07/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Acutely, testosterone (TES) and other androgens are efficacious vasodilators, both in vitro and in vivo; however, their long-term effects on arterial blood pressure (BP) remain unclear. It was hypothesized that endogenous androgens exert long-term anti-hypertensive effects on systemic BP through a combination of genomic and nongenomic effects to enhance vasodilation of the systemic vasculature. Methods The long-term effects of endogenous TES and exogenous TES replacement therapy (TRT) on BP were studied in intact (InT) and castrated (CsX) male Sprague-Dawley (SD) and testicular-feminized male (Tfm, androgen receptor defective) rats (12 weeks old). Systolic BP (tail-cuff plethysmography) was determined weekly for 15 weeks in InT-control and CsX rats. Some CsX-SD rats received androgen replacement therapy at 10-15 weeks with TES-enanthate (TRT; 1.75 mg/kg, 2x/week) or DHT-enanthate (DRT; 1.00 mg/kg. 2x/week) and a separate group of CsX-SD rats received losartan-potassium in drinking water (LST, 250 mg/L) for the entire 15 week period. Expression of renin, angiotensinogen (Agt), angiotensin converting enzyme (ACE), and angiotensin II type I receptor (AT1R) mRNA in kidney and aorta were determined by real-time PCR (rt-PCR) and plasma renin levels were determined by radioimmunoassay. Results There was a progressive rise in BP over 10 weeks in CsX (109 ± 3.3 vs. 143 ± 3.5 mmHg), while BP remained stable in InT-control (109 ± 3.0 vs. 113 ± 0.3). BP gradually declined to normal in CsX-TRT rats (113 ± 1.3), while BP remained elevated in CsX (140 ± 1.2) and normal in InT-control (113 ± 0.3). LST prevented the development of hypertension in CsX at 10 weeks (100 ± 1.5 in CsX + LST vs. 143 ± 3.5 in CsX). During the next 5 weeks with TES-RT, BP declined in CsX-TRT (113 ± 1.3) and remained lower in CsX + LST (99 ± 0.4). DHT-RT reduced BP in CxS to a similar extent. In Tfm, CsX resulted in a similar rise in BP (109 ± 0.7 vs. 139 ± 0.4 mmHg), but TRT reduced BP more rapidly and to a greater extent (106 ± 2.8). rt-PCR of the kidney revealed that CsX increased expression of mRNA for renin (92%), ACE (58%), and AT1R (80%) compared to InT, while TES RT normalized expression of renin, AT1R, and ACE mRNA to levels of InT rats. Plasma renin levels exhibited changes similar to those observed for renin mRNA expression. Conclusions This is the first study to examine the long-term effects of endogenous and exogenous androgens on BP in male SD and Tfm rats. These data reveal that endogenous androgens (TES) exert anti-hypertensive effects that appear to involve non-genomic and possibly genomic mechanism(s), resulting in reductions in RAS expression in the kidney and enhanced systemic vasodilation.
Collapse
Affiliation(s)
- Andrea E Hanson
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Mercedes Perusquia
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F, Mexico
| | - John N Stallone
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4466, USA. .,Michael E. DeBakey Institute For Comparative Cardiovascular Sciences, Women's Health Division, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|