1
|
Dehais F, Karwowski W, Ayaz H. Brain at Work and in Everyday Life as the Next Frontier: Grand Field Challenges for Neuroergonomics. FRONTIERS IN NEUROERGONOMICS 2020; 1:583733. [PMID: 38234310 PMCID: PMC10790928 DOI: 10.3389/fnrgo.2020.583733] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2024]
Affiliation(s)
- Frederic Dehais
- ISAE-SUPAERO, Université de Toulouse, Toulouse, France
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, United States
- Drexel Solutions Institute, Drexel University, Philadelphia, PA, United States
- Department of Psychology, College of Arts and Sciences, Drexel University, Philadelphia, PA, United States
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, PA, United States
- Center for Injury Research and Prevention, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
2
|
Cheng S, Quan T, Liu X, Zeng S. Large-scale localization of touching somas from 3D images using density-peak clustering. BMC Bioinformatics 2016; 17:375. [PMID: 27628179 PMCID: PMC5024436 DOI: 10.1186/s12859-016-1252-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Abstract
Background Soma localization is an important step in computational neuroscience to map neuronal circuits. However, locating somas from large-scale and complicated datasets is challenging. The challenges primarily originate from the dense distribution of somas, the diversity of soma sizes and the inhomogeneity of image contrast. Results We proposed a novel localization method based on density-peak clustering. In this method, we introduced two quantities (the local density ρ of each voxel and its minimum distance δ from voxels of higher density) to describe the soma imaging signal, and developed an automatic algorithm to identify the soma positions from the feature space (ρ, δ). Compared with other methods focused on high local density, our method allowed the soma center to be characterized by high local density and large minimum distance. The simulation results indicated that our method had a strong ability to locate the densely positioned somas and strong robustness of the key parameter for the localization. From the analysis of the experimental datasets, we demonstrated that our method was effective at locating somas from large-scale and complicated datasets, and was superior to current state-of-the-art methods for the localization of densely positioned somas. Conclusions Our method effectively located somas from large-scale and complicated datasets. Furthermore, we demonstrated the strong robustness of the key parameter for the localization and its effectiveness at a low signal-to-noise ratio (SNR) level. Thus, the method provides an effective tool for the neuroscience community to quantify the spatial distribution of neurons and the morphologies of somas. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1252-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shenghua Cheng
- School of Mathematics and Statistics, Huazhong University of Science and Technology, 1037 Luoyu Rd, Building of Science - 715, Wuhan, 430074, China.,Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tingwei Quan
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.,School of Mathematics and Statistics, Hubei University of Education, Wuhan, 430205, China
| | - Xiaomao Liu
- School of Mathematics and Statistics, Huazhong University of Science and Technology, 1037 Luoyu Rd, Building of Science - 715, Wuhan, 430074, China.
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology-Wuhan National Laboratory for Optoelectronics, Wuhan, 430074, China.,MoE Key Laboratory for Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
3
|
Luo G, Sui D, Wang K, Chae J. Neuron anatomy structure reconstruction based on a sliding filter. BMC Bioinformatics 2015; 16:342. [PMID: 26498293 PMCID: PMC4619512 DOI: 10.1186/s12859-015-0780-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/16/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Reconstruction of neuron anatomy structure is a challenging and important task in neuroscience. However, few algorithms can automatically reconstruct the full structure well without manual assistance, making it essential to develop new methods for this task. METHODS This paper introduces a new pipeline for reconstructing neuron anatomy structure from 3-D microscopy image stacks. This pipeline is initialized with a set of seeds that were detected by our proposed Sliding Volume Filter (SVF), given a non-circular cross-section of a neuron cell. Then, an improved open curve snake model combined with a SVF external force is applied to trace the full skeleton of the neuron cell. A radius estimation method based on a 2D sliding band filter is developed to fit the real edge of the cross-section of the neuron cell. Finally, a surface reconstruction method based on non-parallel curve networks is used to generate the neuron cell surface to finish this pipeline. RESULTS The proposed pipeline has been evaluated using publicly available datasets. The results show that the proposed method achieves promising results in some datasets from the DIgital reconstruction of Axonal and DEndritic Morphology (DIADEM) challenge and new BigNeuron project. CONCLUSION The new pipeline works well in neuron tracing and reconstruction. It can achieve higher efficiency, stability and robustness in neuron skeleton tracing. Furthermore, the proposed radius estimation method and applied surface reconstruction method can obtain more accurate neuron anatomy structures.
Collapse
Affiliation(s)
- Gongning Luo
- Research Center of Perception and Computing, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Dong Sui
- Research Center of Perception and Computing, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Kuanquan Wang
- Research Center of Perception and Computing, School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China.
| | - Jinseok Chae
- Department of Computer Science and Engineering, Incheon National University, Incheon, Korea.
| |
Collapse
|
4
|
Szigeti B, Gleeson P, Vella M, Khayrulin S, Palyanov A, Hokanson J, Currie M, Cantarelli M, Idili G, Larson S. OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front Comput Neurosci 2014; 8:137. [PMID: 25404913 PMCID: PMC4217485 DOI: 10.3389/fncom.2014.00137] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 10/11/2014] [Indexed: 01/27/2023] Open
Abstract
OpenWorm is an international collaboration with the aim of understanding how the behavior of Caenorhabditis elegans (C. elegans) emerges from its underlying physiological processes. The project has developed a modular simulation engine to create computational models of the worm. The modularity of the engine makes it possible to easily modify the model, incorporate new experimental data and test hypotheses. The modeling framework incorporates both biophysical neuronal simulations and a novel fluid-dynamics-based soft-tissue simulation for physical environment-body interactions. The project's open-science approach is aimed at overcoming the difficulties of integrative modeling within a traditional academic environment. In this article the rationale is presented for creating the OpenWorm collaboration, the tools and resources developed thus far are outlined and the unique challenges associated with the project are discussed.
Collapse
Affiliation(s)
- Balázs Szigeti
- Neuroinformatics Doctoral Training Centre, University of Edinburgh Edinburgh, UK ; OpenWorm Project San Diego, CA, USA
| | - Padraig Gleeson
- OpenWorm Project San Diego, CA, USA ; Department of Neuroscience, Physiology and Pharmacology, University College London London, UK
| | - Michael Vella
- OpenWorm Project San Diego, CA, USA ; Department of Physiology, Development and Neuroscience, University of Cambridge Cambridge, UK
| | - Sergey Khayrulin
- OpenWorm Project San Diego, CA, USA ; Laboratory of Complex Systems Simulation, A.P. Ershov Institute of Informatics Systems Novosibirsk, Russia
| | - Andrey Palyanov
- OpenWorm Project San Diego, CA, USA ; Laboratory of Complex Systems Simulation, A.P. Ershov Institute of Informatics Systems Novosibirsk, Russia
| | - Jim Hokanson
- OpenWorm Project San Diego, CA, USA ; Department of Biomedical Engineering, Duke University Durham, NC, USA
| | | | | | | | | |
Collapse
|
5
|
Ferguson AR, Nielson JL, Cragin MH, Bandrowski AE, Martone ME. Big data from small data: data-sharing in the 'long tail' of neuroscience. Nat Neurosci 2014; 17:1442-7. [PMID: 25349910 PMCID: PMC4728080 DOI: 10.1038/nn.3838] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/17/2014] [Indexed: 11/08/2022]
Abstract
The launch of the US BRAIN and European Human Brain Projects coincides with growing international efforts toward transparency and increased access to publicly funded research in the neurosciences. The need for data-sharing standards and neuroinformatics infrastructure is more pressing than ever. However, 'big science' efforts are not the only drivers of data-sharing needs, as neuroscientists across the full spectrum of research grapple with the overwhelming volume of data being generated daily and a scientific environment that is increasingly focused on collaboration. In this commentary, we consider the issue of sharing of the richly diverse and heterogeneous small data sets produced by individual neuroscientists, so-called long-tail data. We consider the utility of these data, the diversity of repositories and options available for sharing such data, and emerging best practices. We provide use cases in which aggregating and mining diverse long-tail data convert numerous small data sources into big data for improved knowledge about neuroscience-related disorders.
Collapse
Affiliation(s)
- Adam R Ferguson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California at San Francisco, San Francisco, California, USA
| | - Jessica L Nielson
- Brain and Spinal Injury Center, Department of Neurological Surgery, University of California at San Francisco, San Francisco, California, USA
| | - Melissa H Cragin
- Directorate for Biological Sciences, National Science Foundation, Arlington, Virginia, USA
| | - Anita E Bandrowski
- Center for Research in Biological Structure, University of California at San Diego, San Diego, California, USA
| | - Maryann E Martone
- 1] Center for Research in Biological Structure, University of California at San Diego, San Diego, California, USA. [2] Department of Neuroscience, University of California at San Diego, San Diego, California, USA
| |
Collapse
|
6
|
Ming X, Li A, Wu J, Yan C, Ding W, Gong H, Zeng S, Liu Q. Rapid reconstruction of 3D neuronal morphology from light microscopy images with augmented rayburst sampling. PLoS One 2013; 8:e84557. [PMID: 24391966 PMCID: PMC3877282 DOI: 10.1371/journal.pone.0084557] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/16/2013] [Indexed: 11/22/2022] Open
Abstract
Digital reconstruction of three-dimensional (3D) neuronal morphology from light microscopy images provides a powerful technique for analysis of neural circuits. It is time-consuming to manually perform this process. Thus, efficient computer-assisted approaches are preferable. In this paper, we present an innovative method for the tracing and reconstruction of 3D neuronal morphology from light microscopy images. The method uses a prediction and refinement strategy that is based on exploration of local neuron structural features. We extended the rayburst sampling algorithm to a marching fashion, which starts from a single or a few seed points and marches recursively forward along neurite branches to trace and reconstruct the whole tree-like structure. A local radius-related but size-independent hemispherical sampling was used to predict the neurite centerline and detect branches. Iterative rayburst sampling was performed in the orthogonal plane, to refine the centerline location and to estimate the local radius. We implemented the method in a cooperative 3D interactive visualization-assisted system named flNeuronTool. The source code in C++ and the binaries are freely available at http://sourceforge.net/projects/flneurontool/. We validated and evaluated the proposed method using synthetic data and real datasets from the Digital Reconstruction of Axonal and Dendritic Morphology (DIADEM) challenge. Then, flNeuronTool was applied to mouse brain images acquired with the Micro-Optical Sectioning Tomography (MOST) system, to reconstruct single neurons and local neural circuits. The results showed that the system achieves a reasonable balance between fast speed and acceptable accuracy, which is promising for interactive applications in neuronal image analysis.
Collapse
Affiliation(s)
- Xing Ming
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Jingpeng Wu
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Yan
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxiang Ding
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Shaoqun Zeng
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Liu
- Britton Chance Center for Biomedical Photonics, Huazhong University of Science and Technology - Wuhan National Laboratory for Optoelectronics, Wuhan, China
- MoE Key Laboratory of Biomedical Photonics, Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, China
- * E-mail:
| |
Collapse
|
7
|
Parekh R, Ascoli GA. Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 2013; 77:1017-38. [PMID: 23522039 PMCID: PMC3653619 DOI: 10.1016/j.neuron.2013.03.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 02/07/2023]
Abstract
The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of "digital reconstructions" of neuron morphology across neuroscience subdisciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semiautomated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research "ecosystem" as a central reference for experimental and computational neuroscience.
Collapse
Affiliation(s)
- Ruchi Parekh
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|
8
|
Abstract
Motivation: Digital reconstruction, or tracing, of 3D neuron structures is critical toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low signal-to-noise ratio (SNR) and fragmented neuron segments. Published work can handle these hard situations only by introducing global prior information, such as where a neurite segment starts and terminates. However, manual incorporation of such global information can be very time consuming. Thus, a completely automatic approach for these hard situations is highly desirable. Results: We have developed an automatic graph algorithm, called the all-path pruning (APP), to trace the 3D structure of a neuron. To avoid potential mis-tracing of some parts of a neuron, an APP first produces an initial over-reconstruction, by tracing the optimal geodesic shortest path from the seed location to every possible destination voxel/pixel location in the image. Since the initial reconstruction contains all the possible paths and thus could contain redundant structural components (SC), we simplify the entire reconstruction without compromising its connectedness by pruning the redundant structural elements, using a new maximal-covering minimal-redundant (MCMR) subgraph algorithm. We show that MCMR has a linear computational complexity and will converge. We examined the performance of our method using challenging 3D neuronal image datasets of model organisms (e.g. fruit fly). Availability: The software is available upon request. We plan to eventually release the software as a plugin of the V3D-Neuron package at http://penglab.janelia.org/proj/v3d. Contact:pengh@janelia.hhmi.org
Collapse
Affiliation(s)
- Hanchuan Peng
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | | | | |
Collapse
|
9
|
Peng H, Ruan Z, Atasoy D, Sternson S. Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics 2010; 26:i38-46. [PMID: 20529931 PMCID: PMC2881396 DOI: 10.1093/bioinformatics/btq212] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Motivation: Digital reconstruction of 3D neuron structures is an important step toward reverse engineering the wiring and functions of a brain. However, despite a number of existing studies, this task is still challenging, especially when a 3D microscopic image has low single-to-noise ratio and discontinued segments of neurite patterns. Results: We developed a graph-augmented deformable model (GD) to reconstruct (trace) the 3D structure of a neuron when it has a broken structure and/or fuzzy boundary. We formulated a variational problem using the geodesic shortest path, which is defined as a combination of Euclidean distance, exponent of inverse intensity of pixels along the path and closeness to local centers of image intensity distribution. We solved it in two steps. We first used a shortest path graph algorithm to guarantee that we find the global optimal solution of this step. Then we optimized a discrete deformable curve model to achieve visually more satisfactory reconstructions. Within our framework, it is also easy to define an optional prior curve that reflects the domain knowledge of a user. We investigated the performance of our method using a number of challenging 3D neuronal image datasets of different model organisms including fruit fly, Caenorhabditis elegans, and mouse. In our experiments, the GD method outperformed several comparison methods in reconstruction accuracy, consistency, robustness and speed. We further used GD in two real applications, namely cataloging neurite morphology of fruit fly to build a 3D ‘standard’ digital neurite atlas, and estimating the synaptic bouton density along the axons for a mouse brain. Availability: The software is provided as part of the V3D-Neuron 1.0 package freely available at http://penglab.janelia.org/proj/v3d Contact:pengh@janelia.hhmi.org
Collapse
Affiliation(s)
- Hanchuan Peng
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | | | | | | |
Collapse
|
10
|
Abstract
The study of the structure and function of neuronal cells and networks is of crucial importance in the endeavor to understand how the brain works. A key component in this process is the extraction of neuronal morphology from microscopic imaging data. In the past four decades, many computational methods and tools have been developed for digital reconstruction of neurons from images, with limited success. As witnessed by the growing body of literature on the subject, as well as the organization of challenging competitions in the field, the quest for a robust and fully automated system of more general applicability still continues. The aim of this work, is to contribute by surveying recent developments in the field for anyone interested in taking up the challenge. Relevant aspects discussed in the article include proposed image segmentation methods, quantitative measures of neuronal morphology, currently available software tools for various related purposes, and morphology databases. (c) 2010 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Erik Meijering
- Biomedical Imaging Group Rotterdam, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
11
|
|
12
|
V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nat Biotechnol 2010; 28:348-53. [PMID: 20231818 PMCID: PMC2857929 DOI: 10.1038/nbt.1612] [Citation(s) in RCA: 457] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/08/2010] [Indexed: 11/16/2022]
Abstract
The V3D system provides three-dimensional (3D) visualization of gigabyte-sized microscopy image stacks in real time on current laptops and desktops. Combined with highly ergonomic features for selecting an X, Y, Z location of an image directly in 3D space and for visualizing overlays of a variety of surface objects, V3D streamlines the on-line analysis, measurement, and proofreading of complicated image patterns. V3D is cross-platform and can be enhanced by plug-ins. We built V3D-Neuron on top of V3D to reconstruct complex 3D neuronal structures from large brain images. V3D-Neuron enables us to precisely digitize the morphology of a single neuron in a fruit fly brain in minutes, with about 17-fold improvement in reliability and 10-fold savings in time compared to other neuron reconstruction tools. Using V3D-Neuron, we demonstrated the feasibility of building a 3D digital atlas of neurite tracts in the fruit fly brain.
Collapse
|