1
|
Wang T, Chen X, Zhang J, Feng Q, Huang M. Deep multimodality-disentangled association analysis network for imaging genetics in neurodegenerative diseases. Med Image Anal 2023; 88:102842. [PMID: 37247468 DOI: 10.1016/j.media.2023.102842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/01/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Imaging genetics is a crucial tool that is applied to explore potentially disease-related biomarkers, particularly for neurodegenerative diseases (NDs). With the development of imaging technology, the association analysis between multimodal imaging data and genetic data is gradually being concerned by a wide range of imaging genetics studies. However, multimodal data are fused first and then correlated with genetic data in traditional methods, which leads to an incomplete exploration of their common and complementary information. In addition, the inaccurate formulation in the complex relationships between imaging and genetic data and information loss caused by missing multimodal data are still open problems in imaging genetics studies. Therefore, in this study, a deep multimodality-disentangled association analysis network (DMAAN) is proposed to solve the aforementioned issues and detect the disease-related biomarkers of NDs simultaneously. First, the imaging data are nonlinearly projected into a latent space and imaging representations can be achieved. The imaging representations are further disentangled into common and specific parts by using a multimodal-disentangled module. Second, the genetic data are encoded to achieve genetic representations, and then, the achieved genetic representations are nonlinearly mapped to the common and specific imaging representations to build nonlinear associations between imaging and genetic data through an association analysis module. Moreover, modality mask vectors are synchronously synthesized to integrate the genetic and imaging data, which helps the following disease diagnosis. Finally, the proposed method achieves reasonable diagnosis performance via a disease diagnosis module and utilizes the label information to detect the disease-related modality-shared and modality-specific biomarkers. Furthermore, the genetic representation can be used to impute the missing multimodal data with our learning strategy. Two publicly available datasets with different NDs are used to demonstrate the effectiveness of the proposed DMAAN. The experimental results show that the proposed DMAAN can identify the disease-related biomarkers, which suggests the proposed DMAAN may provide new insights into the pathological mechanism and early diagnosis of NDs. The codes are publicly available at https://github.com/Meiyan88/DMAAN.
Collapse
Affiliation(s)
- Tao Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Xiumei Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Jiawei Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Meiyan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
2
|
Huang W, Tan K, Zhang Z, Hu J, Dong S. A Review of Fusion Methods for Omics and Imaging Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:74-93. [PMID: 35044920 DOI: 10.1109/tcbb.2022.3143900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The development of omics data and biomedical images has greatly advanced the progress of precision medicine in diagnosis, treatment, and prognosis. The fusion of omics and imaging data, i.e., omics-imaging fusion, offers a new strategy for understanding complex diseases. However, due to a variety of issues such as the limited number of samples, high dimensionality of features, and heterogeneity of different data types, efficiently learning complementary or associated discriminative fusion information from omics and imaging data remains a challenge. Recently, numerous machine learning methods have been proposed to alleviate these problems. In this review, from the perspective of fusion levels and fusion methods, we first provide an overview of preprocessing and feature extraction methods for omics and imaging data, and comprehensively analyze and summarize the basic forms and variations of commonly used and newly emerging fusion methods, along with their advantages, disadvantages and the applicable scope. We then describe public datasets and compare experimental results of various fusion methods on the ADNI and TCGA datasets. Finally, we discuss future prospects and highlight remaining challenges in the field.
Collapse
|
3
|
Qian J, Tanigawa Y, Li R, Tibshirani R, Rivas MA, Hastie T. LARGE-SCALE MULTIVARIATE SPARSE REGRESSION WITH APPLICATIONS TO UK BIOBANK. Ann Appl Stat 2022; 16:1891-1918. [PMID: 36091495 PMCID: PMC9454085 DOI: 10.1214/21-aoas1575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In high-dimensional regression problems, often a relatively small subset of the features are relevant for predicting the outcome, and methods that impose sparsity on the solution are popular. When multiple correlated outcomes are available (multitask), reduced rank regression is an effective way to borrow strength and capture latent structures that underlie the data. Our proposal is motivated by the UK Biobank population-based cohort study, where we are faced with large-scale, ultrahigh-dimensional features, and have access to a large number of outcomes (phenotypes)-lifestyle measures, biomarkers, and disease outcomes. We are hence led to fit sparse reduced-rank regression models, using computational strategies that allow us to scale to problems of this size. We use a scheme that alternates between solving the sparse regression problem and solving the reduced rank decomposition. For the sparse regression component we propose a scalable iterative algorithm based on adaptive screening that leverages the sparsity assumption and enables us to focus on solving much smaller subproblems. The full solution is reconstructed and tested via an optimality condition to make sure it is a valid solution for the original problem. We further extend the method to cope with practical issues, such as the inclusion of confounding variables and imputation of missing values among the phenotypes. Experiments on both synthetic data and the UK Biobank data demonstrate the effectiveness of the method and the algorithm. We present multiSnpnet package, available at http://github.com/junyangq/multiSnpnet that works on top of PLINK2 files, which we anticipate to be a valuable tool for generating polygenic risk scores from human genetic studies.
Collapse
Affiliation(s)
| | | | - Ruilin Li
- Institute for Computational and Mathematical Engineering, Stanford University
| | | | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University
| | | |
Collapse
|
4
|
Ko W, Jung W, Jeon E, Suk HI. A Deep Generative-Discriminative Learning for Multimodal Representation in Imaging Genetics. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2348-2359. [PMID: 35344489 DOI: 10.1109/tmi.2022.3162870] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Imaging genetics, one of the foremost emerging topics in the medical imaging field, analyzes the inherent relations between neuroimaging and genetic data. As deep learning has gained widespread acceptance in many applications, pioneering studies employed deep learning frameworks for imaging genetics. However, existing approaches suffer from some limitations. First, they often adopt a simple strategy for joint learning of phenotypic and genotypic features. Second, their findings have not been extended to biomedical applications, e.g., degenerative brain disease diagnosis and cognitive score prediction. Finally, existing studies perform insufficient and inappropriate analyses from the perspective of data science and neuroscience. In this work, we propose a novel deep learning framework to simultaneously tackle the aforementioned issues. Our proposed framework learns to effectively represent the neuroimaging and the genetic data jointly, and achieves state-of-the-art performance when used for Alzheimer's disease and mild cognitive impairment identification. Furthermore, unlike the existing methods, the framework enables learning the relation between imaging phenotypes and genotypes in a nonlinear way without any prior neuroscientific knowledge. To demonstrate the validity of our proposed framework, we conducted experiments on a publicly available dataset and analyzed the results from diverse perspectives. Based on our experimental results, we believe that the proposed framework has immense potential to provide new insights and perspectives in deep learning-based imaging genetics studies.
Collapse
|
5
|
Xin Y, Sheng J, Miao M, Wang L, Yang Z, Huang H. A review ofimaging genetics in Alzheimer's disease. J Clin Neurosci 2022; 100:155-163. [PMID: 35487021 DOI: 10.1016/j.jocn.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/01/2022] [Accepted: 04/15/2022] [Indexed: 01/18/2023]
Abstract
Determining the association between genetic variation and phenotype is a key step to study the mechanism of Alzheimer's disease (AD), laying the foundation for studying drug therapies and biomarkers. AD is the most common type of dementia in the aged population. At present, three early-onset AD genes (APP, PSEN1, PSEN2) and one late-onset AD susceptibility gene apolipoprotein E (APOE) have been determined. However, the pathogenesis of AD remains unknown. Imaging genetics, an emerging interdisciplinary field, is able to reveal the complex mechanisms from the genetic level to human cognition and mental disorders via macroscopic intermediates. This paper reviews methods of establishing genotype-phenotype to explore correlations, including sparse canonical correlation analysis, sparse reduced rank regression, sparse partial least squares and so on. We found that most research work did poorly in supervised learning and exploring the nonlinear relationship between SNP-QT.
Collapse
Affiliation(s)
- Yu Xin
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - Jinhua Sheng
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China.
| | - Miao Miao
- Beijing Hospital, Beijing 100730, China; National Center of Gerontology, Beijing 100730, China; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Luyun Wang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
| | - Ze Yang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| | - He Huang
- College of Computer Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
6
|
Sheng J, Wang L, Cheng H, Zhang Q, Zhou R, Shi Y. Strategies for multivariate analyses of imaging genetics study in Alzheimer's disease. Neurosci Lett 2021; 762:136147. [PMID: 34332030 DOI: 10.1016/j.neulet.2021.136147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 03/27/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disease primarily affecting the elderly population. Early diagnosis of AD is critical for the management of this disease. Imaging genetics examines the influence of genetic variants (i.e., single nucleotide polymorphisms (SNPs)) on brain structure and function and many novel approaches of imaging genetics are proposed for studying AD. We review and synthesize the Alzheimer's Disease Neuroimaging Initiative (ADNI) genetic associations with quantitative disease endophenotypes including structural and functional neuroimaging, diffusion tensor imaging (DTI), positron emission tomography (PET), and fluid biomarker assays. In this review, we survey recent publications using neuroimaging and genetic data of AD, with a focus on methods capturing multivariate effects accommodating the large number variables from both imaging data and genetic data. We review methods focused on bridging the imaging and genetic data by establishing genotype-phenotype association, including sparse canonical correlation analysis, parallel independent component analysis, sparse reduced rank regression, sparse partial least squares, genome-wide association study, and so on. The broad availability and wide scope of ADNI genetic and phenotypic data has advanced our understanding of the genetic basis of AD and has nominated novel targets for future pharmaceutical therapy and biomarker development.
Collapse
Affiliation(s)
- Jinhua Sheng
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China.
| | - Luyun Wang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; College of Information Engineering, Hangzhou Vocational & Technical College, Hangzhou, Zhejiang 310018, China
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | | | - Rougang Zhou
- Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China; School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Mstar Technologies Inc., Hangzhou, Zhejiang 310018, China
| | - Yuchen Shi
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China; Key Laboratory of Intelligent Image Analysis for Sensory and Cognitive Health, Ministry of Industry and Information Technology of China, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
7
|
Huang M, Lai H, Yu Y, Chen X, Wang T, Feng Q. Deep-gated recurrent unit and diet network-based genome-wide association analysis for detecting the biomarkers of Alzheimer's disease. Med Image Anal 2021; 73:102189. [PMID: 34343841 DOI: 10.1016/j.media.2021.102189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/30/2021] [Accepted: 07/16/2021] [Indexed: 01/01/2023]
Abstract
Genome-wide association analysis (GWAS) is a commonly used method to detect the potential biomarkers of Alzheimer's disease (AD). Most existing GWAS methods entail a high computational cost, disregard correlations among imaging data and correlations among genetic data, and ignore various associations between longitudinal imaging and genetic data. A novel GWAS method was proposed to identify potential AD biomarkers and address these problems. A network based on a gated recurrent unit was applied without imputing incomplete longitudinal imaging data to integrate the longitudinal data of variable lengths and extract an image representation. In this study, a modified diet network that can considerably reduce the number of parameters in the genetic network was proposed to perform GWAS between image representation and genetic data. Genetic representation can be extracted in this way. A link between genetic representation and AD was established to detect potential AD biomarkers. The proposed method was tested on a set of simulated data and a real AD dataset. Results of the simulated data showed that the proposed method can accurately detect relevant biomarkers. Moreover, the results of real AD dataset showed that the proposed method can detect some new risk-related genes of AD. Based on previous reports, no research has incorporated a deep-learning model into a GWAS framework to investigate the potential information on super-high-dimensional genetic data and longitudinal imaging data and create a link between imaging genetics and AD for detecting potential AD biomarkers. Therefore, the proposed method may provide new insights into the underlying pathological mechanism of AD.
Collapse
Affiliation(s)
- Meiyan Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | - Haoran Lai
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Yuwei Yu
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Xiumei Chen
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Tao Wang
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.
| | - Qianjin Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.
| | | |
Collapse
|
8
|
Discriminative margin-sensitive autoencoder for collective multi-view disease analysis. Neural Netw 2020; 123:94-107. [DOI: 10.1016/j.neunet.2019.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/18/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
|
9
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|