1
|
Comut E, Karstarli Bakay OS, Demirkan NC. What is the predominant etiological factor for Merkel cell carcinoma in Turkey: viral infection or sun exposure? BMC Cancer 2025; 25:336. [PMID: 40001006 DOI: 10.1186/s12885-025-13706-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin carcinoma. The pathogenesis involves Merkel cell polyomavirus (MCPyV) and ultraviolet radiation exposure. Studies on MCC in Turkey are scarce, with essential data on local etiopathogenic and prognostic factors still lacking. We aimed to analyze the clinical and histopathologic features, biomarkers, and to evaluate these findings alongside Turkish literature to infer the etiopathogenesis, prognosis, and possible treatment options for the disease. METHODS We analyzed the clinicopathologic features of 7 MCC patients diagnosed at the Pathology Department of Pamukkale University between 2003 and 2024 in this retrospective study. Clinical data was retrieved from the hospital's electronic records. Formalin-fixed, paraffin-embedded tumor specimens stained with hematoxylin-eosin were examined microscopically. MCPyV, Retinoblastoma 1 (RB1), p53, PRAME, PD-L1, and MMR proteins were evaluated immunohistochemically. Research on MCC from Turkey was sourced from Turkish databases (ULAKBIM, Turkiye Atif Dizini, DergiPark, Turk Medline) and international databases (Pubmed, Google Scholar, Scopus, Embase). The literature review identified original research, case reports, theses, and conference presentations. RESULTS The patients in our series, all aged over 50 (mean age 76.1 ± 14.8), with a slight predominance of one gender (F: M = 1.33:1). During a mean follow-up of 16.1 months, 42.9% (3/7) had lymph node metastases, and 57.1% (4/7) showed distant metastases. PRAME was positive in 42.9% of the cases (3/7). The total number of MCC cases reported from Turkey was estimated at 227 ± 46, with MCPyV status available in a subset, showing a positivity rate of 70.3%. PD-L1 expression was observed in the tumor microenvironment in 55% of virus-positive MCC cases from Turkey. CONCLUSIONS The 9% incidence of gluteal localization in Turkish MCC cases, considering its geographical significance, is noteworthy. Notably, all MCC cases from Turkey in which microsatellite instability status has been assessed were found to be microsatellite stable. PRAME should be investigated in larger series for its potential role in the shared oncogenic pathways of MCC.
Collapse
Affiliation(s)
- Erdem Comut
- Faculty of Medicine, Department of Pathology, Pamukkale University, Denizli, 20000, Turkey.
| | - Ozge S Karstarli Bakay
- Faculty of Medicine, Department of Dermatology, Pamukkale University, Denizli, 20000, Turkey
| | - Nese Calli Demirkan
- Faculty of Medicine, Department of Pathology, Pamukkale University, Denizli, 20000, Turkey
| |
Collapse
|
2
|
Macamo A, Liu D, Färber M, Borman F, van den Oord J, Winnepenninckx V, Klufah F, Chteinberg E, Zur Hausen A. Exploring the effects of Merkel cell polyomavirus T antigens expression in REH and MCC13 cells by methylome and transcriptome profiling. J Med Virol 2024; 96:e29938. [PMID: 39344364 DOI: 10.1002/jmv.29938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer with a tripled incidence in the US and Europe over the past decade. Around 80% of MCC is linked to Merkel cell polyomavirus, but the cell of origin remains unknown. We stably introduced Merkel cell polyomavirus (MCPyV)-sT) and LT antigens to MCC13 and REH cell lines, analyzing DNA methylation and gene transcriptional regulation. Gene ontology analysis assessed MCPyV effects, and integrative analysis correlated gene expression and methylation. Expression patterns were compared with 15 previously sequenced primary MCCs. We found that MCPyV-LT induces DNA methylation changes in both cell lines, while MCPyV-sT only affected REH cells. Greater gene expression changes are observed in MCC13 cells, with upregulated genes associated with cellular components and downregulated genes related to biological processes. Integrative analysis of differentially expressed genes (DEG) and differentially methylated regions (DMR) of REH cell lines revealed that no genes were commonly methylated and differentially expressed. The study compared DEGs and DMG in MCC13 and REH cells to overlapping genes in MCPyV-positive cell lines (MKL1, MKL2, and WaGa), identifying hypomethylated genes in the gene body and hypermethylated genes at TSS1500. GO analysis of the two cell lines showed that MCPyV-TAs can downregulate genes in MHC-I pathways; this downregulation offers a target that can be used to create novel and efficient MCC immunotherapy approaches. Finally, it was confirmed that MCPyV-LT controls gene expression in MCC tissues using an integrative investigation of DNA methylation and gene expression.
Collapse
Affiliation(s)
- Amanda Macamo
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Dan Liu
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Martina Färber
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | - Joost van den Oord
- Department of Pathology and Laboratory Translational Cell and Tissue Research, University of Leuven, Leuven, Belgium
| | - Véronique Winnepenninckx
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Faisal Klufah
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al Baha University, Albaha, Saudi Arabia
| | | | - Axel Zur Hausen
- Department of Pathology, GROW-Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
3
|
Tapoi DA, Gheorghișan-Gălățeanu AA, Gosman LM, Derewicz D, Costache M. The Prognostic Value of Proliferative Activity in Cutaneous Melanoma: A Pilot Study Evaluating the Mitotic Rate and Ki67 Index to Predict Patient Outcomes. Biomedicines 2024; 12:1318. [PMID: 38927524 PMCID: PMC11202243 DOI: 10.3390/biomedicines12061318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Proliferative activity in cutaneous melanomas can be appreciated both histopathologically by counting mitotic figures and immunohistochemically through the Ki67 index, but the prognostic value of each method is still a matter of debate. In this context, we performed a retrospective study on 33 patients diagnosed with cutaneous melanomas between 2013 and 2018 in order to evaluate progression-free survival and overall survival. Multivariate Cox proportional hazards regression was performed by considering both clinical histopathological and immunohistochemical features. The mitotic rate was significantly independently associated with both outcomes, while the Ki67 index was not an independent prognostic factor. However, the Ki67 predictive accuracy could be improved by establishing both a cut-off value and a standardized protocol for evaluating its expression. Until these desiderata are met, the mitotic rate remains superior to the Ki67 index for predicting prognosis in cutaneous melanomas, as also has the advantage of being easily interpreted in a standard histopathological examination regardless of the pathologist's experience and with no further financial expenses. Importantly, this is one of very few articles that has shown perineural invasion to be an independent prognostic factor for both progression-free survival and overall survival in cutaneous melanomas. As a consequence, this parameter should become a mandatory feature in the histopathological evaluation of cutaneous melanomas as it can improve the identification of patients who are at high risk for disease progression.
Collapse
Affiliation(s)
- Dana Antonia Tapoi
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.A.T.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| | | | - Laura Maria Gosman
- Doctoral School, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pathology, Saint Pantelimon Clinical Emergency Hospital, 021659 Bucharest, Romania
| | - Diana Derewicz
- Department of Pediatrics, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Pediatric Hematology and Oncology, Marie Sklodowska Curie Clinical Emergency Hospital, 041447 Bucharest, Romania
| | - Mariana Costache
- Department of Pathology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (D.A.T.); (M.C.)
- Department of Pathology, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
4
|
Agostinelli C, Morandi L, Righi S, Cirillo L, Iommi M, Tonon C, Mazzatenta D, Zoli M, Rossi M, Bagnato G, Broccoli A, Lodi R, Zinzani PL, Sabattini E, Giannini C, Asioli S. Genomic Profiling of Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System Suggests Novel Potential Therapeutic Targets. Mod Pathol 2023; 36:100323. [PMID: 37678673 DOI: 10.1016/j.modpat.2023.100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Primary diffuse large B-cell lymphoma of the primary central nervous system (CNS-DLBCL) is an aggressive disease, with dismal prognosis despite the use of high-dose methotrexate-based polychemotherapy. Our study aimed to expand the biologic profiles of CNS-DLBCL and to correlate them with clinical/imaging findings to gain diagnostic insight and possibly identify new therapeutic targets. We selected 61 CNS-DLBCL whose formalin-fixed paraffin-embedded samples were available at first diagnosis. These were investigated by immunohistochemistry, cMYC rearrangements were explored by fluorescence in situ hybridization, and CNS-DLBCL mutated genes were evaluated by next-generation sequencing. CD10, BCL6, and IRF4 were observed in 16%, 83.6%, and 93% of cases, respectively. As typical of CNS lymphoma, 10 (16.4%) of 61 cases were classified as germinal center (GCB) type and 51 (83.6%) of 61 as non-germinal center (non-GCB) type according to the Hans algorithm. Double-expression status for BCL2 and cMYC was detected in 36 (59%) of 61 cases whereas 25 (41%) of 61 were non-DE. Rearrangement of the cMYC gene was detected in 2 cases, associated with BCL6 translocation only in 1 case MYD88, PIM1, CD79B, and TP53 were mutated in 54.5%, 53.5%, 30.2%, and 18.4% cases, respectively. Novel mutations not previously reported in CNS-DLBCL were found: AIP in 23.1%, PI3KCA in 15%, NOTCH1 in 11.4%, GNAS in 8.1%, CASP8 in 7.9%, EGFR in 6.4%, PTEN in 5.1, and KRAS in 2.6% of cases. Survival was significantly longer for patients with mutated MYD88 (8.7 months vs 1.7 months; log-rank test = 5.43; P = .020) and for patients with mutated CD79B (10.8 months vs 2.5 months; log-rank test = 4.64; P = .031). MYD88 and CD79B predicted a longer survival in patients affected by CNS-DLBCL. Notably, we identified novel mutations that enrich the mutational landscape of CNS-DLBCL, suggest a role of PTEN-PI3K-AKT and receptor tyrosine kinase-RAS-mitogen-activated protein kinase signaling in a subset of CNS-DLBCL, and provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luca Morandi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Simona Righi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Cirillo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Marica Iommi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Diego Mazzatenta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Pituitary Unit
| | - Matteo Zoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Maura Rossi
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Gianmarco Bagnato
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Alessandro Broccoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Raffaele Lodi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Functional and Molecular Neuroimaging Unit, Bologna, Italy
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna Istituto di Ematologia "Seràgnoli" Bologna Italy
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, Bologna, Italy
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Center for the Diagnosis and Treatment of Hypothalamic-Pituitary Diseases, Pituitary Unit.
| |
Collapse
|
5
|
Santoro F, Maletta F, Parente R, Fissore J, Tampieri C, Santoro L, Birocco N, Picciotto F, Quaglino P, Volante M, Asioli S, Senetta R, Papotti M. Clinical-Pathological Evaluation and Prognostic Analysis of 228 Merkel Cell Carcinomas Focusing on Tumor-Infiltrating Lymphocytes, MCPYV Infection and ALK Expression. Endocr Pathol 2022; 33:289-303. [PMID: 35551625 PMCID: PMC9135831 DOI: 10.1007/s12022-022-09716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Merkel cell carcinoma is a rare and aggressive primary neuroendocrine carcinoma of the skin, whose pathogenesis can be traced back to UV radiation damage or Merkel cell polyomavirus (MCPyV) infection. Despite some improvements on the characterization of the disease partly due to its increased incidence, crucial pathogenetic and prognostic factors still need to be refined. A consecutive series of 228 MCC from three hospitals in Turin was collected with the aim of both analyzing the apparent increase in MCC incidence in our area and investigating the distribution and prognostic role of clinical-pathological parameters, with a focus on MCPyV status, ALK tumor expression and tumor infiltrating lymphocytes (TILs). Review of morphology and conventional immunohistochemical staining was possible in 191 cases. In 50 cases, the expression of the novel neuroendocrine marker INSM1 was additionally assessed. Fourteen cases of MCC of unknown primary skin lesion were identified and separately analyzed. While confirming an exponential trend in MCC incidence in the last decades and providing a description of histological and cytological features of a large series of MCC, the present study concludes that 1) INSM1 is a highly sensitive marker in both skin and lymph node primary MCC; 2) positive MCPyV status, brisk TILs and lower tumor size and thickness are independent positive prognostic parameters, and the combination of the former two may provide a novel tool for prognostic stratification; 3) ALK is expressed 87% of MCC and associated with positive viral status, and could represent a prognostic biomarker, if validated in larger series.
Collapse
Affiliation(s)
- Federica Santoro
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesca Maletta
- Pathology Unit, Department of Laboratory Medicine, Città Della Salute e Della Scienza of Turin, Turin, Italy
| | - Renato Parente
- Pathology Unit, Humanitas-Gradenigo Hospital, Turin, Italy
| | - Jessica Fissore
- Pathology Unit, Department of Oncology, Città Della Salute e Della Scienza of Turin, University of Turin, Via Santena 7, 10126, Turin, Italy
| | - Cristian Tampieri
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Nadia Birocco
- Oncology Unit, Città della Salute e della Scienza, Turin, Italy
| | - Franco Picciotto
- Dermatologic Surgery Section, Department of Surgery, Città Della Salute e Della Scienza of Turin, Turin, Italy
| | - Pietro Quaglino
- Dermatology Clinic, Department of Medical Sciences, Città Della Salute e Della Scienza of Turin, University of Turin, Turin, Italy
| | - Marco Volante
- Pathology Unit, Department of Oncology, San Luigi Hospital of Orbassano, University of Turin, Turin, Italy
| | - Sofia Asioli
- Pathology Unit, Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Rebecca Senetta
- Pathology Unit, Department of Oncology, Città Della Salute e Della Scienza of Turin, University of Turin, Via Santena 7, 10126, Turin, Italy.
| | - Mauro Papotti
- Pathology Unit, Department of Oncology, Città Della Salute e Della Scienza of Turin, University of Turin, Via Santena 7, 10126, Turin, Italy
| |
Collapse
|
6
|
Mete O, Wenig BM. Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Overview of the 2022 WHO Classification of Head and Neck Neuroendocrine Neoplasms. Head Neck Pathol 2022; 16:123-142. [PMID: 35312985 PMCID: PMC9018952 DOI: 10.1007/s12105-022-01435-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
This review article provides a brief overview of the new WHO classification by adopting a question-answer model to highlight the spectrum of head and neck neuroendocrine neoplasms which includes epithelial neuroendocrine neoplasms (neuroendocrine tumors and neuroendocrine carcinomas) arising from upper aerodigestive tract and salivary glands, and special neuroendocrine neoplasms including middle ear neuroendocrine tumors (MeNET), ectopic or invasive pituitary neuroendocrine tumors (PitNET; formerly known as pituitary adenoma) and Merkel cell carcinoma as well as non-epithelial neuroendocrine neoplasms (paragangliomas). The new WHO classification follows the IARC/WHO nomenclature framework and restricts the diagnostic term of neuroendocrine carcinoma to poorly differentiated epithelial neuroendocrine neoplasms. In this classification, well-differentiated epithelial neuroendocrine neoplasms are termed as neuroendocrine tumors (NET), and are graded as G1 NET (no necrosis and < 2 mitoses per 2 mm2; Ki67 < 20%), G2 NET (necrosis or 2-10 mitoses per 2 mm2, and Ki67 < 20%) and G3 NET (> 10 mitoses per 2 mm2 or Ki67 > 20%, and absence of poorly differentiated cytomorphology). Neuroendocrine carcinomas (> 10 mitoses per 2 mm2, Ki67 > 20%, and often associated with a Ki67 > 55%) are further subtyped based on cytomorphological characteristics as small cell and large cell neuroendocrine carcinomas. Unlike neuroendocrine carcinomas, head and neck NETs typically show no aberrant p53 expression or loss of RB reactivity. Ectopic or invasive PitNETs are subtyped using pituitary transcription factors (PIT1, TPIT, SF1, GATA3, ER-alpha), hormones and keratins (e.g., CAM5.2). The new classification emphasizes a strict correlation of morphology and immunohistochemical findings in the accurate diagnosis of neuroendocrine neoplasms. A particular emphasis on the role of biomarkers in the confirmation of the neuroendocrine nature of a neoplasm and in the distinction of various neuroendocrine neoplasms is provided by reviewing ancillary tools that are available to pathologists in the diagnostic workup of head and neck neuroendocrine neoplasms. Furthermore, the role of molecular immunohistochemistry in the diagnostic workup of head and neck paragangliomas is discussed. The unmet needs in the field of head and neck neuroendocrine neoplasms are also discussed in this article. The new WHO classification is an important step forward to ensure accurate diagnosis that will also form the basis of ongoing research in this field.
Collapse
Affiliation(s)
- Ozgur Mete
- Department of Pathology, University Health Network, 200 Elizabeth Street, 11th floor, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
- Endocrine Oncology Site, The Princess Margaret Cancer Center, Toronto, ON, Canada.
| | - Bruce M Wenig
- Department of Pathology Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|
7
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|