1
|
Gao H, Yang S, Gao J, Zhang S, Qin L, Huang M, Wu H, Tang Q. An experimental study to estimate the early postmortem interval based on the degradation of lncRNAs in rat brain tissue. Sci Rep 2024; 14:19586. [PMID: 39179611 PMCID: PMC11343772 DOI: 10.1038/s41598-024-70678-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024] Open
Abstract
To study the degradation of lncRNAs in EPMI in rat brain tissue, this study provides a new direction for the estimation of EPMI. LncRNA high-throughput sequencing was performed on the brain tissues of hemorrhagic shock model rats at 0 h and 24 h, and the target lncRNAs were screened. Samples at 0, 1, 3, 6, 12, 18 and 24 h after death were collected, and miRNA-9 and miRNA-125b were used as reference genes. The relative expression levels of lncRNAs at each PMI were detected by RT-qPCR, and a functional model involving lncRNAs and EPMI was established. Samples were collected at 6, 9, 15, and 21 h after death for functional model verification. The expression of several lncRNAs decreased with the prolongation of EPMI, and the mathematical model established by several lncRNA indices exhibited good fit. The verification results of the multi-index joint function model are significantly better than those of the single-index function model, and the established model is more practical. There is a linear relationship between lncRNAs and EPMI, and the multi-index function model is significantly better than the single-index function model, which is important for EPMI inference in forensic pathology practice.
Collapse
Affiliation(s)
- Haibo Gao
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Siyu Yang
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Jie Gao
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Siqi Zhang
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Li Qin
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Meng Huang
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China
| | - Hua Wu
- The Second People's Hospital of Hunan Province, Furong District, Changsha City, 410007, Hunan Province, China.
| | - Qun Tang
- Hunan University of Chinese Medicine, Yuelu District, Changsha City, 410208, Hunan Province, China.
| |
Collapse
|
2
|
Kouadio KJ, Kouadio KKA, Koffi AF, Kouassi KF, Aboua LRN, Beugré JB. Diet and rate of decomposition of the corpse in a human surrogate. Int J Legal Med 2024; 138:43-53. [PMID: 35999319 DOI: 10.1007/s00414-022-02877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
The decomposition of an inert body seems to depend on the physiological, biological and physical characteristics of the corpse. The effect of these, especially of extra-biological mechanisms, on the rate of decomposition of the corpse does not seem to be sufficiently explored. The present work proposes to examine the influence of the type of feeding on the rate of cadaver decomposition in a human surrogate. It is based on a sample of four corpses of juvenile male pigs of the species Sus scrofa domesticus, three of which are experimental and one is a control aged 12 weeks and having a mass between 19 and 24 kg. The three experimental pigs were fed an energetic, construction and functional diet respectively. The control was fed a general diet. These different carcasses are exposed to the open air on four similar sites. The experiment is repeated twice, according to the protocol that guided the initial experiment conducted on comparable sites (eight cadavers, six experimental and two control). The measurement of the pigs' diet was done through a questionnaire. The mass of the decomposing carcass was explored by a specific tool, in this case, the weighing device. The results show that the rate of decomposition of the cadaver of pigs fed a general diet is higher than that of the cadavers of their counterparts fed construction, functional or energy diets. The type of diet would therefore influence the rate of decomposition of the cadaver of a human surrogate.
Collapse
Affiliation(s)
- Kouakou Jérôme Kouadio
- Pedagogical and Research Unit of Paleoanthropology, Institute of Anthropological Development Sciences (ISAD), University of Félix Houphouët-Boigny (UFHB), 01, P. O. Box 2965, Abidjan, Côte d'Ivoire.
- Laboratory of Biomorphology, Pathologies, Training and Research Unit (TRU) OdontoStomatology, Oro-Maxillofacial and Oral Health, UFHB, Abidjan, Côte d'Ivoire.
- Ivorian Society of Forensic Medicine and Judicial Investigations, Abidjan, Côte d'Ivoire.
- Society of Anthropology of Paris, Paris, France.
- Swiss Society of Anthropology, Geneva, Switzerland.
| | - Kobénan Kouman Anicet Kouadio
- Pedagogical and Research Unit of Paleoanthropology, Institute of Anthropological Development Sciences (ISAD), University of Félix Houphouët-Boigny (UFHB), 01, P. O. Box 2965, Abidjan, Côte d'Ivoire
- Laboratory of Biomorphology, Pathologies, Training and Research Unit (TRU) OdontoStomatology, Oro-Maxillofacial and Oral Health, UFHB, Abidjan, Côte d'Ivoire
| | - Alexandre Franklin Koffi
- Laboratory of Zoology and Animal Biology - UFHB, TRU Biosciences, Abidjan, Côte d'Ivoire
- National Institute of Public Health, Abidjan, Côte d'Ivoire
| | - Kouakou Firmin Kouassi
- Pedagogical and Research Unit of Paleoanthropology, Institute of Anthropological Development Sciences (ISAD), University of Félix Houphouët-Boigny (UFHB), 01, P. O. Box 2965, Abidjan, Côte d'Ivoire
- Laboratory of Biomorphology, Pathologies, Training and Research Unit (TRU) OdontoStomatology, Oro-Maxillofacial and Oral Health, UFHB, Abidjan, Côte d'Ivoire
- Society of Anthropology of Paris, Paris, France
| | | | - Jean-Bertin Beugré
- Pedagogical and Research Unit of Paleoanthropology, Institute of Anthropological Development Sciences (ISAD), University of Félix Houphouët-Boigny (UFHB), 01, P. O. Box 2965, Abidjan, Côte d'Ivoire
- Laboratory of Biomorphology, Pathologies, Training and Research Unit (TRU) OdontoStomatology, Oro-Maxillofacial and Oral Health, UFHB, Abidjan, Côte d'Ivoire
- Department of Dentofacial Orthopedics, TRU OdontoStomatology - UFHB, Abidjan, Côte d'Ivoire
| |
Collapse
|
3
|
Stanasiuk C, Milting H, Homm S, Persson J, Holtz L, Wittmer A, Fox H, Laser T, Knöll R, Pohl GM, Paluszkiewicz L, Jakob T, Bachmann-Mennenga B, Henzler D, Grautoff S, Veit G, Klingel K, Hori E, Kellner U, Karger B, Schlepper S, Pfeiffer H, Gummert J, Gärtner A, Tiesmeier J. Blood taken immediately after fatal resuscitation attempts yields higher quality DNA for genetic studies as compared to autopsy samples. Int J Legal Med 2023; 137:1569-1581. [PMID: 36773088 PMCID: PMC10421769 DOI: 10.1007/s00414-023-02966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
BACKGROUND The out-of-hospital cardiac arrest (OHCA) in the young may be associated with a genetic predisposition which is relevant even for genetic counseling of relatives. The identification of genetic variants depends on the availability of intact genomic DNA. DNA from autopsy may be not available due to low autopsy frequencies or not suitable for high-throughput DNA sequencing (NGS). The emergency medical service (EMS) plays an important role to save biomaterial for subsequent molecular autopsy. It is not known whether the DNA integrity of samples collected by the EMS is better suited for NGS than autopsy specimens. MATERIAL AND METHODS DNA integrity was analyzed by standardized protocols. Fourteen blood samples collected by the EMS and biomaterials from autopsy were compared. We collected 172 autopsy samples from different tissues and blood with postmortem intervals of 14-168 h. For comparison, DNA integrity derived from blood stored under experimental conditions was checked against autopsy blood after different time intervals. RESULTS DNA integrity and extraction yield were higher in EMS blood compared to any autopsy tissue. DNA stability in autopsy specimens was highly variable and had unpredictable quality. In contrast, collecting blood samples by the EMS is feasible and delivered comparably the highest DNA integrity. CONCLUSIONS Isolation yield and DNA integrity from blood samples collected by the EMS is superior in comparison to autopsy specimens. DNA from blood samples collected by the EMS on scene is stable at room temperature or even for days at 4 °C. We conclude that the EMS personnel should always save a blood sample of young fatal OHCA cases died on scene to enable subsequent genetic analysis.
Collapse
Affiliation(s)
- Caroline Stanasiuk
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development, Heart- and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, D-32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development, Heart- and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, D-32545, Bad Oeynhausen, Germany.
| | - Sören Homm
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, Johannes Wesling Hospital Minden, MKK-Hospital, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Jan Persson
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, Johannes Wesling Hospital Minden, MKK-Hospital, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Lars Holtz
- Emergency Department, Herford Hospital, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Axel Wittmer
- Institute for Pathology, Herford Hospital, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Henrik Fox
- Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetes Center NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Thorsten Laser
- Center for Congenital Heart Diseases, Heart and Diabetes Center NRW, 32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Ralph Knöll
- Karolinska Institute, University Hospital, Myocardial Genetic, 14157, Huddinge, Sweden
| | - Greta Marie Pohl
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development, Heart- and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, D-32545, Bad Oeynhausen, Germany
| | - Lech Paluszkiewicz
- Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetes Center NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Thomas Jakob
- Intensive Care and Emergency Medicine, Herford Hospital, Campus OWL, Ruhr-University Bochum, University Clinic for Anesthesiology, Bochum, Germany
- Present address: Clinic for Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Medicine, Bielefeld Hospital, University Hospital Eastern Westphalia-Lippe, Bielefeld University, Bielefeld, Germany
| | - Bernd Bachmann-Mennenga
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, Johannes Wesling Hospital Minden, MKK-Hospital, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Dietrich Henzler
- Intensive Care and Emergency Medicine, Herford Hospital, Campus OWL, Ruhr-University Bochum, University Clinic for Anesthesiology, Bochum, Germany
| | - Steffen Grautoff
- Emergency Department, Herford Hospital, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Gunter Veit
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, Johannes Wesling Hospital Minden, MKK-Hospital, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Karin Klingel
- Institute for Pathology and Neuropathology, University Hospital Tuebingen, D-72076, Tuebingen, Germany
| | - Erika Hori
- Institute for Pathology, Johannes Wesling Hospital Minden, MKK-Hospital, D-32429 Minden, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Udo Kellner
- Institute for Pathology, Johannes Wesling Hospital Minden, MKK-Hospital, D-32429 Minden, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| | - Bernd Karger
- Institute for Forensic Medicine, University Hospital, Wilhelms-University Muenster, Muenster, Germany
| | - Stefanie Schlepper
- Institute for Forensic Medicine, University Hospital, Wilhelms-University Muenster, Muenster, Germany
| | - Heidi Pfeiffer
- Institute for Forensic Medicine, University Hospital, Wilhelms-University Muenster, Muenster, Germany
| | - Jan Gummert
- Clinic for Thoracic and Cardiovascular Surgery, Heart- and Diabetes Center NRW, D-32545 Bad Oeynhausen, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Anna Gärtner
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development, Heart- and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, D-32545, Bad Oeynhausen, Germany
| | - Jens Tiesmeier
- Erich and Hanna Klessmann-Institute for Cardiovascular Research and Development, Heart- and Diabetes Center NRW, University Hospital of the Ruhr-University Bochum, Georgstr. 11, D-32545, Bad Oeynhausen, Germany
- Institute for Anesthesiology, Intensive Care- and Emergency Medicine, Luebbecke MKK-Hospital, Campus OWL, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Thakral S, Purohit P, Mishra R, Gupta V, Setia P. The impact of RNA stability and degradation in different tissues to the determination of post-mortem interval: A systematic review. Forensic Sci Int 2023; 349:111772. [PMID: 37450949 DOI: 10.1016/j.forsciint.2023.111772] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/11/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Postmortem interval (PMI) in legal medicine is extremely important for both criminal and civil cases, and several sorts of techniques have been recommended. This systematic review solely focuses on approaches linked to RNA analysis, instead of including all proposed methods for determining the PMI. The term PMI will be used in this review to indicate the time between a person's death and the postmortem examination of the body. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Guidelines when conducting this systematic review. The majority of studies on various tissues at various time intervals at various temperatures are non-human, and just a small number are on humans. The results are then provided using various statistical approaches. To calculate the PMI, post-mortem RNA degradation was examined using several tissues. The result so obtained had an opposite polarity. While some studies show that RNA stability in various tissues remained constant for several days after death, the other group of studies showed evident RNA degradation over time post-mortem, which was significantly influenced by temperature and other agonal factors. These factors have an impact on the multi-parametric mathematical model of ante and post-mortem factors on RNA degradation, as well as its applicability and feasibility. The estimation of PMI using RNA degradation can prove to be highly objective and efficient after controlling for the various factors and challenges that pose the estimation of RNA in forensic samples difficult.
Collapse
Affiliation(s)
- Sahil Thakral
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Bathinda, Punjab 151001, India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India
| | - Richa Mishra
- Department of Transfusion Medicine and Blood Bank, All India Institute of Medical Sciences, Bathinda, Punjab 151001, India
| | - Vaibhav Gupta
- Department of Forensic Medicine and Toxicology, Vardhman Mahavir Medical College, New Delhi, India
| | - Puneet Setia
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Jodhpur, Rajasthan 342005, India.
| |
Collapse
|
5
|
Wenzlow N, Mills D, Byrd J, Warren M, Long MT. Review of the current and potential use of biological and molecular methods for the estimation of the postmortem interval in animals and humans. J Vet Diagn Invest 2023; 35:97-108. [PMID: 36744749 PMCID: PMC9999395 DOI: 10.1177/10406387231153930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We provide here an overview of the state of applied techniques in the estimation of the early period of the postmortem interval (PMI). The biological methods included consist of body cooling, CSF potassium, body cooling combined with CSF potassium, and tissue autolysis. For each method, we present its application in human and veterinary medicine and provide current methodology, strengths, and weaknesses, as well as target areas for improvement. We examine current and future molecular methods as they pertain to DNA and primarily to messenger RNA degradation for the estimation of the PMI, as well as the use of RNA in aging wounds, aging blood stains, and the identification of body fluids. Various types of RNA have different lengths, structures, and functions in cells. These differences in RNAs determine various intrinsic properties, such as their half-lives in cells, and, hence, their decay rate as well as their unique use for specific forensic tests. Future applications and refinements of RNA-based techniques provide opportunities for the use of molecular methods in the estimation of PMI and other general forensic applications.
Collapse
Affiliation(s)
- Nanny Wenzlow
- Louisiana Animal Disease Diagnostic Laboratory, Louisiana State University, Baton Rouge, LA, USA
| | - DeEtta Mills
- Department of Biological Sciences and International Forensic Research Institute, Florida International University, Miami, FL, USA
| | - Jason Byrd
- Maples Center for Forensic Medicine, University of Florida, Gainesville, FL, USA
| | - Mike Warren
- Maples Center for Forensic Medicine, University of Florida, Gainesville, FL, USA
| | - Maureen T. Long
- Department of Comparative, Diagnostic, and Population Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Dupont ME, Christiansen SN, Jacobsen SB, Kampmann ML, Olsen KB, Tfelt-Hansen J, Banner J, Morling N, Andersen JD. DNA quality evaluation of formalin-fixed paraffin-embedded heart tissue for DNA methylation array analysis. Sci Rep 2023; 13:2004. [PMID: 36737451 PMCID: PMC9898234 DOI: 10.1038/s41598-023-29120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Archived formalin-fixed and paraffin-embedded (FFPE) heart tissue from autopsied individuals represents an important resource for investigating the DNA methylation of heart tissue of deceased individuals. The DNA quality of FFPE tissue from autopsies may be decreased, affecting the DNA methylation measurements. Therefore, inexpensive screening methods for estimating DNA quality are valuable. We investigated the correlation between the DNA quality of archived FFPE heart tissue examined with the Illumina Infinium HD FFPE QC assay (Infinium QC) and Thermo Fisher's Quantifiler Trio DNA Quantification kit (QuantifilerTrio), respectively, and the amount of usable DNA methylation data as measured by the probe detection rate (probe DR) obtained with the Illumina Infinium MethylationEPIC array. We observed a high correlation (r2 = 0.75; p < 10-11) between the QuantifilerTrio degradation index, DI, and the amount of usable DNA methylation data analysed with SeSAMe, whereas a much weaker correlation was observed between the Infinium QC and SeSAMe probe DR (r2 = 0.17; p < 0.05). Based on the results, QuantifilerTrio DI seems to predict the proportion of usable DNA methylation data analysed with the Illumina Infinium MethylationEPIC array and SeSAMe by a linear model: SeSAMe probe DR = 0.80-log10(DI) × 0.25.
Collapse
Affiliation(s)
- Mikkel E Dupont
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Steffan N Christiansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine B Jacobsen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie-Louise Kampmann
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristine B Olsen
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Tfelt-Hansen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jytte Banner
- Section of Forensic Pathology, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Niels Morling
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| | - Jeppe D Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Du QX, Zhang S, Long FH, Lu XJ, Wang L, Cao J, Jin QQ, Ren K, Zhang J, Huang P, Sun JH. Combining with lab-on-chip technology and multi-organ fusion strategy to estimate post-mortem interval of rat. Front Med (Lausanne) 2023; 9:1083474. [PMID: 36703889 PMCID: PMC9871555 DOI: 10.3389/fmed.2022.1083474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background The estimation of post-mortem interval (PMI) is one of the most important problems in forensic pathology all the time. Although many classical methods can be used to estimate time since death, accurate and rapid estimation of PMI is still a difficult task in forensic practice, so the estimation of PMI requires a faster, more accurate, and more convenient method. Materials and methods In this study, an experimental method, lab-on-chip, is used to analyze the characterizations of polypeptide fragments of the lung, liver, kidney, and skeletal muscle of rats at defined time points after death (0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 21, 24, 27, and 30 days). Then, machine learning algorithms (base model: LR, SVM, RF, GBDT, and MLPC; ensemble model: stacking, soft voting, and soft-weighted voting) are applied to predict PMI with single organ. Multi-organ fusion strategy is designed to predict PMI based on multiple organs. Then, the ensemble pruning algorithm determines the best combination of multi-organ. Results The kidney is the best single organ for predicting the time of death, and its internal and external accuracy is 0.808 and 0.714, respectively. Multi-organ fusion strategy dramatically improves the performance of PMI estimation, and its internal and external accuracy is 0.962 and 0.893, respectively. Finally, the best organ combination determined by the ensemble pruning algorithm is all organs, such as lung, liver, kidney, and skeletal muscle. Conclusion Lab-on-chip is feasible to detect polypeptide fragments and multi-organ fusion is more accurate than single organ for PMI estimation.
Collapse
Affiliation(s)
- Qiu-xiang Du
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Shuai Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Fei-hao Long
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Xiao-jun Lu
- Criminal Investigation Detachment, Baotou Public Security Bureau, Baotou, Inner Mongolia, China
| | - Liang Wang
- National Center for Liver Cancer, Second Military Medical University, Shanghai, China
| | - Jie Cao
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Qian-qian Jin
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Kang Ren
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| | - Ji Zhang
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Jun-hong Sun
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, China
| |
Collapse
|
8
|
Cui C, Song Y, Mao D, Cao Y, Qiu B, Gui P, Wang H, Zhao X, Huang Z, Sun L, Zhong Z. Predicting the Postmortem Interval Based on Gravesoil Microbiome Data and a Random Forest Model. Microorganisms 2022; 11:microorganisms11010056. [PMID: 36677348 PMCID: PMC9860995 DOI: 10.3390/microorganisms11010056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The estimation of a postmortem interval (PMI) is particularly important for forensic investigations. The aim of this study was to assess the succession of bacterial communities associated with the decomposition of mouse cadavers and determine the most important biomarker taxa for estimating PMIs. High-throughput sequencing was used to investigate the bacterial communities of gravesoil samples with different PMIs, and a random forest model was used to identify biomarker taxa. Redundancy analysis was used to determine the significance of environmental factors that were related to bacterial communities. Our data showed that the relative abundance of Proteobacteria, Bacteroidetes and Firmicutes showed an increasing trend during decomposition, but that of Acidobacteria, Actinobacteria and Chloroflexi decreased. At the genus level, Pseudomonas was the most abundant bacterial group, showing a trend similar to that of Proteobacteria. Soil temperature, total nitrogen, NH4+-N and NO3--N levels were significantly related to the relative abundance of bacterial communities. Random forest models could predict PMIs with a mean absolute error of 1.27 days within 36 days of decomposition and identified 18 important biomarker taxa, such as Sphingobacterium, Solirubrobacter and Pseudomonas. Our results highlighted that microbiome data combined with machine learning algorithms could provide accurate models for predicting PMIs in forensic science and provide a better understanding of decomposition processes.
Collapse
Affiliation(s)
- Chunhong Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- College of Resource and Environment, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Song
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongmei Mao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yajun Cao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Bowen Qiu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Gui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xingchun Zhao
- Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China
- Key Laboratory of Forensic Genetics of Ministry of Public Security, Beijing 100038, China
- Correspondence: (X.Z.); (Z.H.); (L.S.)
| | - Zhi Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (X.Z.); (Z.H.); (L.S.)
| | - Liqiong Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (X.Z.); (Z.H.); (L.S.)
| | - Zengtao Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Elliott CI, Stotesbury TE, Shafer ABA. Using total RNA quality metrics for time since deposition estimates in degrading bloodstains. J Forensic Sci 2022; 67:1776-1785. [PMID: 35665927 DOI: 10.1111/1556-4029.15072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Abstract
The physicochemical changes occurring in biomolecules in degrading bloodstains can be used to approximate the time since deposition (TSD) of bloodstains. This would provide forensic scientists with critical information regarding the timeline of the events involving bloodshed. Our study aims to quantify the timewise degradation trends and temperature dependence found in total RNA from bloodstains without the use of amplification, expanding the scope of the RNA TSD research which has traditionally targeted mRNA and miRNA. Bovine blood with ACD-A anticoagulant was deposited and stored in plastic microcentrifuge tubes at 21 or 4°C and tested over different timepoints spanning 1 week. Total RNA was extracted from each sample and analyzed using automated high sensitivity gel electrophoresis. Nine RNA metrics were visually assessed and quantified using linear and mixed models. The RNA Integrity Number equivalent (RINe) and DV200 were not influenced by the addition of anticoagulant and demonstrated strong negative trends over time. The RINe model fit was high (R2 = 0.60), and while including the biological replicate as a random effect increased the fit for all RNA metrics, no significant differences were found between biological replicates stored at the same temperature for the RINe and DV200. This suggests that these standardized metrics can be directly compared between scenarios and individuals, with DV200 having an inflection point at approximately 28 h. This study provides a novel approach for blood TSD research, revealing metrics that are not affected by inter-individual variation, and improving our understanding of the rapid RNA degradation occurring in bloodstains.
Collapse
Affiliation(s)
- Colin I Elliott
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada.,Applied Bioscience Graduate Program, Faculty of Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Theresa E Stotesbury
- Faculty of Science, Forensic Science, Ontario Tech University, Oshawa, Ontario, Canada
| | - Aaron B A Shafer
- Department of Forensic Science, Trent University, Peterborough, Ontario, Canada.,Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
10
|
Liu J, Wang B, Liu X, Xiao K. Study on activity of different tissues from juvenile Yangtze sturgeon in the early post-mortem period. In Vitro Cell Dev Biol Anim 2022; 58:3-7. [DOI: 10.1007/s11626-021-00630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
|
11
|
Which tissue to take? A retrospective study of the identification success of altered human remains. J Forensic Leg Med 2021; 84:102271. [PMID: 34715438 DOI: 10.1016/j.jflm.2021.102271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/21/2021] [Accepted: 10/24/2021] [Indexed: 01/17/2023]
Abstract
In forensic medicine, deceased are usually identified by comparing ante- and post-mortem dental or radiological features. However, in severe putrefaction, burning or absent reference data, the remaining tool for identifying human remains is DNA genotyping. But even a DNA-based identification can be challenging when confronted with a high post-mortem interval or heat impacts because it can lead to undesirable degradation of the DNA that varies among tissue types. This retrospective study investigated the identification success in 402 altered human corpses over seven years by comparing the examined tissue types from decomposed, skeletonised and burnt corpses as well as bodies found in water. For each tissue, the STR genotyping results and the number of additional or parallel genetic analyses were evaluated. By comparing the amplification success in samples from altered and unaltered remains, condition-based and tissue-specific differences were observed. With a mean number of 1.6 additional amplifications in cases with well-preserved corpses and 4.5 in altered corpses, the results showed significantly more DNA analyses for altered remains. In 83% of the cases, extra amplifications were performed to identify the corpse. The tissue-specific differences revealed an uncertainty in choosing suitable material from altered corpses for a successful DNA profile. Especially for bone and muscle samples, the genotyping success was the most unpredictable. Furthermore, comparing the retrospective outcome with other research findings, a remarkable variety of recommendations for the "best tissue choice" exists in the forensic community. Thus, our survey highlights the advantages of a broader and systematic approach on hard and soft tissues for successful DNA-based identification of altered human remains at first attempt.
Collapse
|
12
|
Life and death: A systematic comparison of antemortem and postmortem gene expression. Gene 2020; 731:144349. [PMID: 31935499 DOI: 10.1016/j.gene.2020.144349] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/30/2022]
Abstract
Gene expression is the process by which DNA is decoded to produce a functional transcript. The collection of all transcripts is referred to as the transcriptome and has extensively been used to evaluate differentially expressed genes in a certain cell or tissue type. In response to internal or external stimuli, the transcriptome is greatly regulated by epigenetic changes. Many studies have elucidated that antemortem gene expression (transcriptome) may be linked to an array of disease etiologies as well as potential targets for drug discovery; on the other hand, a number of studies have utilized postmortem gene expression (thanatotranscriptome) patterns to determine cause and time of death. The "transcriptome after death" involves the study of mRNA transcripts occurring in human tissues after death (thanatos, Greek for death). While antemortem gene expression can provide a wide range of important information about the host, the determination of the communication of genes after a human dies has recently been explored. After death a plethora of genes are regulated via activation versus repression as well as diverse regulatory factors such as the absence or presence of stimulated feedback. Even postmortem transcriptional regulation contains many more cellular constituents and is massively more complicated. The rates of degradation of mRNA transcripts vary depending on the types of postmortem tissues and their combinatorial gene expression signatures. mRNA molecules have been shown to persist for extended time frames; nevertheless, they are highly susceptible to degradation, with half-lives of selected mRNAs varying between minutes to weeks for specifically induced genes. Furthermore, postmortem genetic studies may be used to improve organ transplantation techniques. This review is the first of its kind to fully explore both gene expression and mRNA stability after death and the trove of information that can be provided about phenotypical characteristics of specific genes postmortem.
Collapse
|
13
|
The thanatotranscriptome: Gene expression of male reproductive organs after death. Gene 2018; 675:191-196. [PMID: 30180965 DOI: 10.1016/j.gene.2018.06.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 11/23/2022]
Abstract
The prostate gland is one of the last internal organs to deteriorate during human decomposition; however, this phenomenon is still mysterious. Gene expression in antemortem cases has been widely studied and a majority of the analyses concentrate on discovering basic physiological processes. The question of "What happens to gene expression after a human dies?" is a novel and emerging topic. Thanatotranscriptome (thanatos-, Greek for death) involves research on mRNA transcript abundances and gene expression in human tissues after death. Our previous studies have shown that RNA is a suitable and stable molecule in postmortem liver samples up to two days. Consequently, we hypothesized that there are also measurable and significant differences in mRNA transcript abundances in prostate tissues from human remains. In the current study, the goal was to identify apoptotic molecular markers (i.e., pro- and/or anti-apoptosis genes) that provide accurate gene expression profiles regarding the time of death. Tissue samples were removed by a medical examiner from the prostate of five cadavers during autopsy. After RNA extraction, cDNA was synthesized and the concentration was determined. The cDNA was reacted in apoptosis-related gene expression profiling by human PCR Array. The PCR Array results showed that at 38 h after death, a majority of the genes for apoptosis induction and positive regulation (i.e., caspases) were over-expressed more than at five days. The expression of anti-apoptotic genes such as BAG1, BCL2, and negative regulator of apoptosis, XIAP, was significantly elevated in a time-dependent manner. However, pro-apoptotic gene expression such as TP53 and TNFSF10 was not significantly upregulated. Therefore, postmortem prostate cells counteract programmed cell death with its anti-apoptotic machinery; yet as time progresses, pro-apoptotic mechanisms dominate. In conclusion, our study implies that over-expression of genes in male reproductive organs still occurs during decomposition, which may play substantial roles in forensic research and clinical application. These findings demonstrate that there is still active postmortem gene expression; however, our future research question will be, "When does gene expression terminate after death?"
Collapse
|
14
|
Fan J, Khanin R, Sakamoto H, Zhong Y, Michael C, Pena D, Javier B, Wood LD, Iacobuzio-Donahue CA. Quantification of nucleic acid quality in postmortem tissues from a cancer research autopsy program. Oncotarget 2018; 7:66906-66921. [PMID: 27602498 PMCID: PMC5341846 DOI: 10.18632/oncotarget.11836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/31/2016] [Indexed: 12/18/2022] Open
Abstract
The last decade has seen a marked rise in the use of cancer tissues obtained from research autopsies. Such resources have been invaluable for studying cancer evolution or the mechanisms of therapeutic resistance to targeted therapies. Degradation of biomolecules is a potential challenge to usage of cancer tissues obtained in the post-mortem setting and remains incompletely studied. We analysed the nucleic acid quality in 371 different frozen tissue samples collected from 80 patients who underwent a research autopsy, including eight normal tissue types, primary and metastatic tumors. Our results indicate that RNA integrity number (RIN) of normal tissues decline with the elongation of post-mortem interval (PMI) in a tissue-type specific manner. Unlike normal tissues, the RNA quality of cancer tissues is highly variable with respect to post-mortem interval. The kinetics of DNA damage also has tissue type-specific features. Moreover, while DNA degradation is an indicator of low RNA quality, the converse is not true. Finally, we show that despite RIN values as low as 5.0, robust data can be obtained by RNA sequencing that reliably discriminates expression signatures.
Collapse
Affiliation(s)
- Jun Fan
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Raya Khanin
- Bioinformatics Core, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hitomi Sakamoto
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yi Zhong
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Chelsea Michael
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Derwin Pena
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Breanna Javier
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Laura D Wood
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.,David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| |
Collapse
|
15
|
Wu Z, Lu X, Chen F, Dai X, Ye Y, Yan Y, Liao L. Estimation of early postmortem interval in rats by GC-MS-based metabolomics. Leg Med (Tokyo) 2017; 31:42-48. [PMID: 29310000 DOI: 10.1016/j.legalmed.2017.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/25/2017] [Accepted: 12/29/2017] [Indexed: 12/12/2022]
Abstract
Accurately predicting the early postmortem interval (PMI) is of great significance in forensic practice. This study aimed to establish a novel method for estimating the early PMI by analyzing endogenous substances in the cardiac blood of male and female rats and compare different model for estimating early PMI using these data. Adult Sprague-Dawley (SD) rats (50% male) were sacrificed by suffocation. Then, cardiac blood was collected at various time intervals (0, 3, 6, 12, 24, 48, and 72 h) after death, and the collected samples were analyzed by gas chromatography-tandem mass spectrometry (GC-MS). The data were analyzed by multivariate statistical analysis. An orthogonal signal correction-partial least squares (OSC-PLS) regression model was constructed with whole endogenous metabolites to validate the PMI. The OSC-PLS regression model successfully predicted the PMI of the forecast set and no significant differences was observed between male and female rats. This is the first study to establish an OSC-PLS regression model for predicting PMI with the metabolome, which provides a new technical method and platform for estimating PMI through metabolomics.
Collapse
Affiliation(s)
- Zhigui Wu
- West China School of Basci Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiang Lu
- West China School of Basci Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fan Chen
- West China School of Basci Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinhua Dai
- West China School of Basci Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yi Ye
- West China School of Basci Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Youyi Yan
- West China School of Basci Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linchuan Liao
- West China School of Basci Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
16
|
Reid KM, Maistry S, Ramesar R, Heathfield LJ. A review of the optimisation of the use of formalin fixed paraffin embedded tissue for molecular analysis in a forensic post-mortem setting. Forensic Sci Int 2017; 280:181-187. [PMID: 29078160 DOI: 10.1016/j.forsciint.2017.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/15/2017] [Accepted: 09/26/2017] [Indexed: 11/26/2022]
Abstract
Molecular analyses in a post-mortem setting are becoming increasingly common, particularly in cases of sudden unexplained death, with the aim of identifying genetic mutations which may be responsible for causing death. In retrospective investigations, the access to suitable autopsy biological samples may be limited, and often formalin fixed paraffin embedded (FFPE) tissue is the only sample available. The preservation of tissue in formalin is known to damage DNA through crosslinking activity. This results in the extraction of severely fragmented DNA of variable yields, which subsequently reduces the ability to perform downstream molecular analyses. Numerous studies have investigated possible improvements to various aspects of the DNA extraction and amplification procedures from FFPE tissue and this review aims to collate these optimization steps in a cohesive manner. A systematic review was performed of three major databases, which identified 111 articles meeting the inclusion criteria. Five main areas for optimization and improvements were identified in the workflow: (1) tissue type, (2) fixation process, (3) post-fixation, (4) DNA extraction procedure and (5) amplification. It was found that some factors identified, for example tissue type and fixation process, could not be controlled by the researcher when conducting retrospective analyses. For this reason, optimization should be performed in other areas, within the financial means of the laboratories, and in accordance with the purposes of the investigation. Implementation of one or more of the optimization measures described here is anticipated to assist in the extraction of higher quality DNA. Despite the challenges posed by FFPE tissue, it remains a valuable source of DNA in retrospective molecular forensic investigations.
Collapse
Affiliation(s)
- Kate Megan Reid
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa; MRC/UCT Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Science, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
| | - Sairita Maistry
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa
| | - Raj Ramesar
- MRC/UCT Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Science, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa
| | - Laura Jane Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, 7925, South Africa; MRC/UCT Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Science, University of Cape Town, Anzio Road, Observatory, Cape Town, South Africa.
| |
Collapse
|
17
|
Li C, Li Z, Tuo Y, Ma D, Shi Y, Zhang Q, Zhuo X, Deng K, Chen Y, Wang Z, Huang P. MALDI-TOF MS as a Novel Tool for the Estimation of Postmortem Interval in Liver Tissue Samples. Sci Rep 2017; 7:4887. [PMID: 28687792 PMCID: PMC5501804 DOI: 10.1038/s41598-017-05216-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 05/25/2017] [Indexed: 12/23/2022] Open
Abstract
Estimation of the postmortem interval (PMI) is a complicated task in forensic medicine, especially during homicide and unwitnessed death investigations. Many biological, chemical, and physical indicators can be used to determine the postmortem interval, but most are not accurate. Here, we present a novel matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method that can be used for the estimation of PMI using molecular images and multivariate analyses. In this study, we demonstrate that both rat and human liver tissues of various PMIs (0, 2, 4, and 6days) can be discriminated using MALDI imaging and principal component analysis (PCA). Using genetic algorithm (GA), supervised neural network (SNN), and quick classifier (QC) methods, we built 6 classification models, which showed high recognition capability and good cross-validation. The histological changes in all the samples at different time points were also consistent with the changes seen in MALDI imaging. Our work suggests that MALDI-TOF MS, along with multivariate analysis, can be used to determine intermediate PMIs.
Collapse
Affiliation(s)
- Chengzhi Li
- School of Forensic Science and Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.,Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice, P.R.China, Shanghai, 200063, China
| | - Zhengdong Li
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice, P.R.China, Shanghai, 200063, China
| | - Ya Tuo
- Department of Biochemistry and Physiology, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Dong Ma
- Shanghai Key Laboratory of Forensic Science, Institute of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Science, Institute of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Qinghua Zhang
- Shanghai Key Laboratory of Forensic Science, Institute of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Xianyi Zhuo
- Shanghai Key Laboratory of Forensic Science, Institute of Forensic Science, Ministry of Justice, Shanghai, 200063, China
| | - Kaifei Deng
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice, P.R.China, Shanghai, 200063, China
| | - Yijiu Chen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice, P.R.China, Shanghai, 200063, China
| | - Zhenyuan Wang
- School of Forensic Science and Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Ping Huang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice, P.R.China, Shanghai, 200063, China.
| |
Collapse
|
18
|
Zhang J, Li B, Wang Q, Li C, Zhang Y, Lin H, Wang Z. Characterization of postmortem biochemical changes in rabbit plasma using ATR-FTIR combined with chemometrics: A preliminary study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:733-739. [PMID: 27788472 DOI: 10.1016/j.saa.2016.10.041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 06/06/2023]
Abstract
Postmortem interval (PMI) determination is one of the most challenging tasks in forensic medicine due to a lack of accurate and reliable methods. It is especially difficult for late PMI determination. Although many attempts with various types of body fluids based on chemical methods have been made to solve this problem, few investigations are focused on blood samples. In this study, we employed an attenuated total reflection (ATR)-Fourier transform infrared (FTIR) technique coupled with principle component analysis (PCA) to monitor biochemical changes in rabbit plasma with increasing PMI. Partial least square (PLS) model was used based on the spectral data for PMI prediction in an independent sample set. Our results revealed that postmortem chemical changes in compositions of the plasma were time-dependent, and various components including proteins, lipids and nucleic acids contributed to the discrimination of the samples at different time points. A satisfactory prediction within 48h postmortem was performed by the combined PLS model with a good fitting between actual and predicted PMI of 0.984 and with an error of ±1.92h. In consideration of the simplicity and portability of ATR-FTIR, our preliminary study provides an experimental and theoretical basis for application of this technique in forensic practice.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Bing Li
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Qi Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Chengzhi Li
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Yinming Zhang
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Hancheng Lin
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China
| | - Zhenyuan Wang
- Department of Forensic Pathology, College of Forensic Medicine, Xian Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Abstract
OBJECTIVES Attaining high-quality RNA from the tissues or organs of deceased donors used for research can be challenging due to physiological and logistical considerations. In this investigation, METHODS: RNA Integrity Number (RIN) was determined in pancreatic samples from 236 organ donors and used to define high (≥6.5) and low (≤4.5) quality RNAs. Logistic regression was used to evaluate the potential effects of novel or established organ and donor factors on RIN. RESULTS Univariate analysis revealed donor cause of death (odds ratio [OR], 0.35; 95% confidence interval [CI], 0.15-0.77; P = 0.01), prolonged tissue storage before RNA extraction (OR, 0.65; 95% CI, 0.52-0.79; P < 0.01), pancreas region sampled (multiple comparisons, P < 0.01), and sample type (OR, 0.32; 95% CI, 0.15-0.67; P < 0.01) negatively influenced outcome. Conversely, duration of final hospitalization (OR, 3.95; 95% CI, 1.59-10.37; P < 0.01) and sample collection protocol (OR, 8.48; 95% CI, 3.96-19.30; P < 0.01) positively impacted outcome. Islet RNA obtained via laser capture microdissection improved RIN when compared with total pancreatic RNA from the same donor (ΔRIN = 1.3; 95% CI, 0.6-2.0; P < 0.01). CONCLUSIONS A multivariable model demonstrates that autopsy-free and biopsy-free human pancreata received, processed, and preserved at a single center, using optimized procedures, from organ donors dying of anoxia with normal lipase levels increase the odds of obtaining high-quality RNA.
Collapse
|
20
|
DNA and RNA profiling of excavated human remains with varying postmortem intervals. Int J Legal Med 2016; 130:1471-1480. [PMID: 27627902 DOI: 10.1007/s00414-016-1438-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/09/2016] [Indexed: 01/03/2023]
Abstract
When postmortem intervals (PMIs) increase such as with longer burial times, human remains suffer increasingly from the taphonomic effects of decomposition processes such as autolysis and putrefaction. In this study, various DNA analysis techniques and a messenger RNA (mRNA) profiling method were applied to examine for trends in nucleic acid degradation and the postmortem interval. The DNA analysis techniques include highly sensitive DNA quantitation (with and without degradation index), standard and low template STR profiling, insertion and null alleles (INNUL) of retrotransposable elements typing and mitochondrial DNA profiling. The used mRNA profiling system targets genes with tissue specific expression for seven human organs as reported by Lindenbergh et al. (Int J Legal Med 127:891-900, 27) and has been applied to forensic evidentiary traces but not to excavated tissues. The techniques were applied to a total of 81 brain, lung, liver, skeletal muscle, heart, kidney and skin samples obtained from 19 excavated graves with burial times ranging from 4 to 42 years. Results show that brain and heart are the organs in which both DNA and RNA remain remarkably stable, notwithstanding long PMIs. The other organ tissues either show poor overall profiling results or vary for DNA and RNA profiling success, with sometimes DNA and other times RNA profiling being more successful. No straightforward relations were observed between nucleic acid profiling results and the PMI. This study shows that not only DNA but also RNA molecules can be remarkably stable and used for profiling of long-buried human remains, which corroborate forensic applications. The insight that the brain and heart tissues tend to provide the best profiling results may change sampling policies in identification cases of degrading cadavers.
Collapse
|
21
|
Differential expression and localization of Ankrd2 isoforms in human skeletal and cardiac muscles. Histochem Cell Biol 2016; 146:569-584. [PMID: 27393496 DOI: 10.1007/s00418-016-1465-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2016] [Indexed: 01/03/2023]
Abstract
Four human Ankrd2 transcripts, reported in the Ensembl database, code for distinct protein isoforms (360, 333, 327 and 300 aa), and so far, their existence, specific expression and localization patterns have not been studied in detail. Ankrd2 is preferentially expressed in the slow fibers of skeletal muscle. It is found in both the nuclei and the cytoplasm of skeletal muscle cells, and its localization is prone to change during differentiation and upon stress. Ankrd2 has also been detected in the heart, in ventricular cardiomyocytes and in the intercalated disks (ICDs). The main objective of this study was to distinguish between the Ankrd2 isoforms and to determine the contribution of each one to the general profile of Ankrd2 expression in striated muscles. We demonstrated that the known expression and localization pattern of Ankrd2 in striated muscle can be attributed to the isoform of 333 aa which is dominant in both tissues, while the designated cardiac and canonical isoform of 360 aa was less expressed in both tissues. The 360 aa isoform has a distinct nuclear localization in human skeletal muscle, as well as in primary myoblasts and myotubes. In contrast to the isoform of 333 aa, it was not preferentially expressed in slow fibers and not localized to the ICDs of human cardiomyocytes. Regulation of the expression of both isoforms is achieved at the transcriptional level. Our results set the stage for investigation of the specific functions and interactions of the Ankrd2 isoforms in healthy and diseased human striated muscles.
Collapse
|
22
|
Comparison of DNA yield and STR success rates from different tissues in embalmed bodies. Int J Legal Med 2016; 131:61-66. [DOI: 10.1007/s00414-016-1405-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
|
23
|
Characterization of gene expression profiling of mouse tissues obtained during the postmortem interval. Exp Mol Pathol 2016; 100:482-92. [PMID: 27185020 DOI: 10.1016/j.yexmp.2016.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/13/2016] [Indexed: 12/27/2022]
Abstract
Attempts to establish a tissue bank from autopsy samples have led to uncovering of the secrets of many diseases. Here, we examined the length of time that the RNA from postmortem tissues is available for microarray analysis and reported the gene expression profile for up- and down-regulated genes during the postmortem interval. We extracted RNA from fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) brains and livers of three different groups of mice: 1) mice immediately after death, 2) mice that were stored at room temperature for 3h after death, and 3) mice that were stored at 4°C for 18h after death, as this storage resembles the human autopsy process in Japan. The RNA quality of the brain and the liver was maintained up to 18h during the postmortem interval. Based on the microarray analysis, we selected genes that were altered by >1.3-fold or <0.77-fold and classified these genes using hierarchical cluster analysis following DAVID gene ontology analysis. These studies revealed that cytoskeleton-related genes were enriched in the set of up-regulated genes, while serine protease inhibitors were enriched in the set of down-regulated genes. Interestingly, although the RNA quality was maintained due to high RNA integrity number (RIN) values, up-regulated genes were not validated by quantitative PCR, suggesting that these genes may become fragmented or modified by an unknown mechanism. Taken together, our findings suggest that under typical autopsy conditions, gene expression profiles that reflect disease pathology can be examined by understanding comprehensive recognition of postmortem fluctuation of gene expression.
Collapse
|
24
|
Alqaydi M, Roy R. Quantitative and qualitative study of STR DNA from ethanol and formalin fixed tissues. Forensic Sci Int 2016; 262:18-29. [DOI: 10.1016/j.forsciint.2016.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 12/14/2015] [Accepted: 02/07/2016] [Indexed: 11/28/2022]
|
25
|
Guo J, Fu X, Liao H, Hu Z, Long L, Yan W, Ding Y, Zha L, Guo Y, Yan J, Chang Y, Cai J. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing. Sci Rep 2016; 6:24197. [PMID: 27052375 PMCID: PMC4823735 DOI: 10.1038/srep24197] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
Decomposition is a complex process involving the interaction of both biotic and abiotic factors. Microbes play a critical role in the process of carrion decomposition. In this study, we analysed bacterial communities from live rats and rat remains decomposed under natural conditions, or excluding sarcosaphagous insect interference, in China using Illumina MiSeq sequencing of 16S rRNA gene amplicons. A total of 1,394,842 high-quality sequences and 1,938 singleton operational taxonomic units were obtained. Bacterial communities showed notable variation in relative abundance and became more similar to each other across body sites during the decomposition process. As decomposition progressed, Proteobacteria (mostly Gammaproteobacteria) became the predominant phylum in both the buccal cavity and rectum, while Firmicutes and Bacteroidetes in the mouth and rectum, respectively, gradually decreased. In particular, the arrival and oviposition of sarcosaphagous insects had no obvious influence on bacterial taxa composition, but accelerated the loss of biomass. In contrast to the rectum, the microbial community structure in the buccal cavity of live rats differed considerably from that of rats immediately after death. Although this research indicates that bacterial communities can be used as a “microbial clock” for the estimation of post-mortem interval, further work is required to better understand this concept.
Collapse
Affiliation(s)
- Juanjuan Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Xiaoliang Fu
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Huidan Liao
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Zhenyu Hu
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Lingling Long
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Weitao Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yanjun Ding
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Lagabaiyila Zha
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yunfeng Chang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Jifeng Cai
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
26
|
Kakimoto Y, Tanaka M, Kamiguchi H, Hayashi H, Ochiai E, Osawa M. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart. Int J Cardiol 2016; 211:43-8. [PMID: 26974694 DOI: 10.1016/j.ijcard.2016.02.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/10/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Heart chamber-specific mRNA expression patterns have been extensively studied, and dynamic changes have been reported in many cardiovascular diseases. MicroRNAs (miRNAs) are also important regulators of normal cardiac development and functions that generally suppress gene expression at the posttranscriptional level. Recent focus has been placed on circulating miRNAs as potential biomarkers for cardiac disorders. However, miRNA expression levels in human normal hearts have not been thoroughly studied, and chamber-specific miRNA expression signatures in particular remain unclear. METHODS AND RESULTS We performed miRNA deep sequencing on human paired left atria (LA) and ventricles (LV) under normal physiologic conditions. Among 438 miRNAs, miR-1 was the most abundant in both chambers, representing 21% of the miRNAs in LA and 26% in LV. A total of 25 miRNAs were differentially expressed between LA and LV; 14 were upregulated in LA, and 11 were highly expressed in LV. Notably, the miR-208 family in particular showed prominent chamber specificity; miR-208a-3p and miR-208a-5p were abundant in LA, whereas miR-208b-3p and miR-208b-5p were preferentially expressed in LV. Subsequent real-time polymerase chain reaction analysis validated the predominant expression of miR-208a in LA and miR-208b in LV. CONCLUSIONS Human atrial and ventricular tissues display characteristic miRNA expression signatures under physiological conditions. Notably, miR-208a and miR-208b show significant chamber-specificity as do their host genes, α-MHC and β-MHC, which are mainly expressed in the atria and ventricles, respectively. These findings might also serve to enhance our understanding of cardiac miRNAs and various heart diseases.
Collapse
Affiliation(s)
- Yu Kakimoto
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Masayuki Tanaka
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hiroshi Kamiguchi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Hideki Hayashi
- Support Center for Medical Research and Education, Tokai University, Kanagawa, Japan
| | - Eriko Ochiai
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoki Osawa
- Department of Forensic Medicine, Tokai University School of Medicine, Kanagawa, Japan.
| |
Collapse
|
27
|
Akdis D, Medeiros-Domingo A, Gaertner-Rommel A, Kast JI, Enseleit F, Bode P, Klingel K, Kandolf R, Renois F, Andreoletti L, Akdis CA, Milting H, Lüscher TF, Brunckhorst C, Saguner AM, Duru F. Myocardial expression profiles of candidate molecules in patients with arrhythmogenic right ventricular cardiomyopathy/dysplasia compared to those with dilated cardiomyopathy and healthy controls. Heart Rhythm 2015; 13:731-41. [PMID: 26569459 DOI: 10.1016/j.hrthm.2015.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is mainly an autosomal dominant disease characterized by fibrofatty infiltration of the right ventricle, leading to ventricular arrhythmias. Mutations in desmosomal proteins can be identified in about half of the patients. The pathogenic mechanisms leading to disease expression remain unclear. OBJECTIVE The purpose of this study was to investigate myocardial expression profiles of candidate molecules involved in the pathogenesis of ARVC/D. METHODS Myocardial messenger RNA (mRNA) expression of 62 junctional molecules, 5 cardiac ion channel molecules, 8 structural molecules, 4 apoptotic molecules, and 6 adipogenic molecules was studied. The averaged expression of candidate mRNAs was compared between ARVC/D samples (n = 10), nonfamilial dilated cardiomyopathy (DCM) samples (n = 10), and healthy control samples (n = 8). Immunohistochemistry and quantitative protein expression analysis were performed. Genetic analysis using next generation sequencing was performed in all patients with ARVC/D. RESULTS Following mRNA levels were significantly increased in patients with ARVC/D compared to those with DCM and healthy controls: phospholamban (P ≤ .001 vs DCM; P ≤ .001 vs controls), healthy tumor protein 53 apoptosis effector (P = .001 vs DCM; P ≤ .001 vs controls), and carnitine palmitoyltransferase 1β (P ≤ .001 vs DCM; P = 0.008 vs controls). Plakophillin-2 (PKP-2) mRNA was downregulated in patients with ARVC/D with PKP-2 mutations compared with patients with ARVC/D without PKP-2 mutations (P = .04). Immunohistochemistry revealed significantly increased protein expression of phospholamban, tumor protein 53 apoptosis effector, and carnitine palmitoyltransferase 1β in patients with ARVC/D and decreased PKP-2 expression in patients with ARVC/D carrying a PKP-2 mutation. CONCLUSION Changes in the expression profiles of sarcolemmal calcium channel regulation, apoptosis, and adipogenesis suggest that these molecular pathways may play a critical role in the pathogenesis of ARVC/D, independent of the underlying genetic mutations.
Collapse
Affiliation(s)
- Deniz Akdis
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Argelia Medeiros-Domingo
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland; Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | | | - Jeannette I Kast
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Frank Enseleit
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Peter Bode
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Karin Klingel
- Department of Molecular Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Reinhard Kandolf
- Department of Molecular Pathology, University Hospital Tübingen, Tübingen, Germany
| | - Fanny Renois
- Laboratoire de Virologie Médicale et Moléculaire, EA 4684 CardioVir, Faculté de Médecine et CHU Robert Debré, Reims, France
| | - Laurent Andreoletti
- Laboratoire de Virologie Médicale et Moléculaire, EA 4684 CardioVir, Faculté de Médecine et CHU Robert Debré, Reims, France
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Hendrik Milting
- Department of Cardiology, University Hospital Bern, Bern, Switzerland
| | - Thomas F Lüscher
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Corinna Brunckhorst
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland
| | - Firat Duru
- Department of Cardiology, University Heart Center Zurich, Zurich, Switzerland; Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
28
|
Javan GT, Can I, Finley SJ, Soni S. The apoptotic thanatotranscriptome associated with the liver of cadavers. Forensic Sci Med Pathol 2015; 11:509-16. [PMID: 26318598 DOI: 10.1007/s12024-015-9704-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2015] [Indexed: 01/08/2023]
Abstract
Gene expression investigations are well-established components of ante mortem studies with broad applications ranging from elucidating basic mechanisms responsible for normal physiological processes to discovering therapeutic targets in pathophysiological conditions. However, gene expression studies and their application in the medico-legal field are still in their infancy. Therefore, the present study focuses on RNA using PCR array in the analysis of gene expression associated with tissues taken from actual criminal cases. RNA was extracted from the liver tissues of bodies with PMIs between 6 and 48 h. The results demonstrated that mRNA was stable up to 48 h postmortem. Further, as cell death is an indispensable and necessary part of the biological life cycle, apoptotic gene expression profiles were investigated. The gene expression related to the programmed cell death found in body tissues after death is defined as the apoptotic thanatotranscriptome (thanatos-, Greek for death). On comparison of control and decaying tissues, the results show that with time, pro-apoptotic genes such as caspases are up-regulated and the expression of genes responsible for anti-apoptosis such as BCL2 and BAG3 were down-regulated. Thus, this current work gives a unique perspective of the apoptotic thanatotranscriptome that is affected after death. Up to the present time, gene expression in bodies from criminal cases has not been reported in literature using PCR array techniques. Thus, this thanatotranscriptome study provides insight into postmortem gene activity with potential applications in medico-legal investigations.
Collapse
Affiliation(s)
- Gulnaz T Javan
- Forensic Science Program, Alabama State University, Montgomery, AL, 36104, USA.
| | - Ismail Can
- Forensic Science Program, Alabama State University, Montgomery, AL, 36104, USA.
| | | | - Shivani Soni
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36101, USA.
| |
Collapse
|
29
|
Sato T, Zaitsu K, Tsuboi K, Nomura M, Kusano M, Shima N, Abe S, Ishii A, Tsuchihashi H, Suzuki K. A preliminary study on postmortem interval estimation of suffocated rats by GC-MS/MS-based plasma metabolic profiling. Anal Bioanal Chem 2015; 407:3659-65. [PMID: 25749795 DOI: 10.1007/s00216-015-8584-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/05/2023]
Abstract
Estimation of postmortem interval (PMI) is an important goal in judicial autopsy. Although many approaches can estimate PMI through physical findings and biochemical tests, accurate PMI calculation by these conventional methods remains difficult because PMI is readily affected by surrounding conditions, such as ambient temperature and humidity. In this study, Sprague-Dawley (SD) rats (10 weeks) were sacrificed by suffocation, and blood was collected by dissection at various time intervals (0, 3, 6, 12, 24, and 48 h; n = 6) after death. A total of 70 endogenous metabolites were detected in plasma by gas chromatography-tandem mass spectrometry (GC-MS/MS). Each time group was separated from each other on the principal component analysis (PCA) score plot, suggesting that the various endogenous metabolites changed with time after death. To prepare a prediction model of a PMI, a partial least squares (or projection to latent structure, PLS) regression model was constructed using the levels of significantly different metabolites determined by variable importance in the projection (VIP) score and the Kruskal-Wallis test (P < 0.05). Because the constructed PLS regression model could successfully predict each PMI, this model was validated with another validation set (n = 3). In conclusion, plasma metabolic profiling demonstrated its ability to successfully estimate PMI under a certain condition. This result can be considered to be the first step for using the metabolomics method in future forensic casework.
Collapse
Affiliation(s)
- Takako Sato
- Department of Legal Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki, Osaka, 568-8686, Japan,
| | | | | | | | | | | | | | | | | | | |
Collapse
|