1
|
Nandiwada SL. Overview of human B-cell development and antibody deficiencies. J Immunol Methods 2023:113485. [PMID: 37150477 DOI: 10.1016/j.jim.2023.113485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
B cells are a key component of the humoral (antibody-mediated) immune response which is responsible for defense against a variety of pathogens. Here we provide an overview of the current understanding of B cell development and function and briefly describe inborn errors of immunity associated with B cell development defects which can manifest as immune deficiency, malignancy, autoimmunity, or allergy. The knowledge and application of B cell biology are essential for laboratory evaluation and clinical assessment of these B cell disorders.
Collapse
Affiliation(s)
- Sarada L Nandiwada
- The Texas Children's Hospital, Section of Immunology, Allergy, and Retrovirology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
2
|
Yazdani R, Fekrvand S, Shahkarami S, Azizi G, Moazzami B, Abolhassani H, Aghamohammadi A. The hyper IgM syndromes: Epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol 2018; 198:19-30. [PMID: 30439505 DOI: 10.1016/j.clim.2018.11.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 11/11/2018] [Indexed: 12/17/2022]
Abstract
Hyper Immunoglobulin M syndrome (HIGM) is a rare primary immunodeficiency disorder characterized by low or absent levels of serum IgG, IgA, IgE and normal or increased levels of serum IgM. Various X-linked and autosomal recessive/dominant mutations have been reported as the underlying cause of the disease. Based on the underlying genetic defect, the affected patients present a variety of clinical manifestations including pulmonary and gastrointestinal complications, autoimmune disorders, hematologic abnormalities, lymphoproliferation and malignancies which could be controlled by multiple relevant therapeutic approaches. Herein, the epidemiology, pathogenesis, clinical manifestations, diagnosis, management, prognosis and treatment in patients with HIGM syndrome have been reviewed.
Collapse
Affiliation(s)
- Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bobak Moazzami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran; Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
3
|
Abstract
T cell immunodeficiency can occur as one of a group of primary disorders or develop secondary to chronic infection, illness or drug therapy. Primary T cell disorders are rare, accounting for approximately 11% of reported primary immunodeficiencies, and generally present in infancy or early childhood. Early recognition is very important as many of these patients will require bone marrow transplantation prior to the onset of severe infection or other complications. Because of their rarity, these infants usually present to clinicians who have little or no prior experience of these conditions, and therefore laboratory-based clinicians with knowledge of the key laboratory/pathological abnormalities and clinical features have a valuable role in identifying the possibility of immunodeficiency. Secondary T cell deficiency is a cardinal feature of HIV infection and the specific susceptibility to infectious micro-organisms is highlighted. The possibility of T cell immunodeficiency should be considered in any patient presenting with unusual or severe viral, fungal or protozoal infection.
Collapse
Affiliation(s)
- J D M Edgar
- David M Edgar, Royal Hospitals, The Belfast Trust, Grosvenor Road, Belfast BT12 6BN, UK.
| |
Collapse
|
4
|
Routes J, Abinun M, Al-Herz W, Bustamante J, Condino-Neto A, De La Morena MT, Etzioni A, Gambineri E, Haddad E, Kobrynski L, Le Deist F, Nonoyama S, Oliveira JB, Perez E, Picard C, Rezaei N, Sleasman J, Sullivan KE, Torgerson T. ICON: the early diagnosis of congenital immunodeficiencies. J Clin Immunol 2014; 34:398-424. [PMID: 24619621 DOI: 10.1007/s10875-014-0003-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/17/2014] [Indexed: 01/27/2023]
Abstract
Primary immunodeficiencies are intrinsic defects in the immune system that result in a predisposition to infection and are frequently accompanied by a propensity to autoimmunity and/or immunedysregulation. Primary immunodeficiencies can be divided into innate immunodeficiencies, phagocytic deficiencies, complement deficiencies, disorders of T cells and B cells (combined immunodeficiencies), antibody deficiencies and immunodeficiencies associated with syndromes. Diseases of immune dysregulation and autoinflammatory disorder are many times also included although the immunodeficiency in these disorders are often secondary to the autoimmunity or immune dysregulation and/or secondary immunosuppression used to control these disorders. Congenital primary immunodeficiencies typically manifest early in life although delayed onset are increasingly recognized. The early diagnosis of congenital immunodeficiencies is essential for optimal management and improved outcomes. In this International Consensus (ICON) document, we provide the salient features of the most common congenital immunodeficiencies.
Collapse
Affiliation(s)
- John Routes
- Department of Pediatrics, Medical College of Wisconsin, and Children's Research Institute, Milwaukee, WI, 53226-4874, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Recent Advances in Transplantation for Primary Immune Deficiency Diseases: A Comprehensive Review. Clin Rev Allergy Immunol 2013; 46:131-44. [DOI: 10.1007/s12016-013-8379-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Gray PEA, Namasivayam M, Ziegler JB. Recurrent infection in children: when and how to investigate for primary immunodeficiency? J Paediatr Child Health 2012; 48:202-9. [PMID: 21564385 DOI: 10.1111/j.1440-1754.2011.02080.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While the impact of infectious diseases in developed countries has been diminished by improved nutrition, hygiene, vaccination coverage and health care, infections remain common, and even the healthiest children may suffer frequent infections, occasionally necessitating admission to hospital. When investigating a child with recurrent infections, it is therefore important to know the frequency, severity, infectious syndrome and infecting organisms which a normal child might experience, and to understand the impact of the child's underlying health on their susceptibility to infection. This paper examines infectious susceptibility in the healthy and immunocompromised child and explores the respective presentations of some primary immunodeficiencies.
Collapse
Affiliation(s)
- Paul E A Gray
- Department of Immunology and Infectious Diseases, Sydney Children's Hospital, Randwick, New South Wales, Australia.
| | | | | |
Collapse
|
8
|
Abstract
CD40/CD40 ligand (CD40L) cross-talk plays a key role in B-cell terminal maturation in the germinal centers. Genetic defects affecting CD40 cause a rare form of hyper-immunoglobulin M (IgM) syndrome, a disorder characterized by low or absent serum IgG and IgA, associated with recurrent infections. We previously reported on a few patients with homozygous CD40 mutations resulting in lack or severe reduction of CD40 cell surface expression. Here we characterize the 3 CD40 mutants due to missense mutations or small in-frame deletions, and show that the mutated proteins are synthesized but retained in the endoplasmic reticulum (ER), likely due to protein misfolding. Interestingly, the intracellular behavior and fate differ significantly among the mutants: progressive accumulation of the P2 mutant causes endoplasmic reticulum stress and the activation of an unfolded protein response; the mutant P4 is rather efficiently disposed by the ER-associated degradation pathway, while the P5 mutant partially negotiates transport to the plasma membrane, and is competent for CD40L binding. Interestingly, this latter mutant activates downstream signaling elements when overexpressed in transfected cells. These results give new important insights into the molecular pathogenesis of HIGM disease, and suggest that CD40 deficiency can also be regarded as an ER-storage disease.
Collapse
|
9
|
Abstract
Antibody deficiencies may arise as primary disorders or secondary to a variety of diseases, drugs and other environmental/iatrogenic factors. Significant primary antibody deficiencies are relatively rare but, collectively, account for the majority of primary immunodeficiency syndromes encountered in clinical practice. The genetic basis of a number of primary deficiencies has been clarified, although there is considerable genotype/phenotype heterogeneity and the role of gene/environment interactions has yet to be fully elucidated. Primary antibody deficiency can present at any age. The hallmark clinical presentation is recurrent bacterial infection, but these disorders are also associated with a wide variety of other infectious and non-infectious complications and with a high incidence of chronic, structural tissue damage, particularly in the respiratory tract. Clinical recognition of primary antibody deficiency is frequently delayed with consequent increased morbidity, diminished quality of life and early mortality. Clinical laboratories can contribute to improved and timely detection through awareness of routine test results which may be overtly or indirectly suggestive of antibody deficiency. Secondary deficiency is associated with increased awareness, better recognition and earlier diagnosis than in primary disorders. Early liaison and referral of patients with suspected antibody deficiency for specialist opinion and prompt, appropriate therapy is central to the achievement of good clinical outcomes.
Collapse
|